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Abstract: Muscular dystrophies (MDs) are a heterogeneous group of congenital neuromuscular
disorders whose clinical signs include myalgia, skeletal muscle weakness, hypotonia, and atrophy
that leads to progressive muscle disability and loss of ambulation. MDs can also affect cardiac
and respiratory muscles, impairing life-expectancy. MDs in clude Duchenne muscular dystrophy,
Emery-Dreifuss muscular dystrophy, facioscapulohumeral muscular dystrophy and limb-girdle
muscular dystrophy. These and other MDs are caused by mutations in genes that encode proteins
responsible for the structure and function of skeletal muscles, such as components of the dystrophin-
glycoprotein-complex that connect the sarcomeric-actin with the extracellular matrix, allowing
contractile force transmission and providing stability during muscle contraction. Consequently, in
dystrophic conditions in which such proteins are affected, muscle integrity is disrupted, leading to
local inflammatory responses, oxidative stress, Ca2+-dyshomeostasis and muscle degeneration. In this
scenario, dysregulation of connexin hemichannels seem to be an early disruptor of the homeostasis
that further plays a relevant role in these processes. The interaction between all these elements
constitutes a positive feedback loop that contributes to the worsening of the diseases. Thus, we
discuss here the interplay between inflammation, oxidative stress and connexin hemichannels in the
progression of MDs and their potential as therapeutic targets.

Keywords: muscular dystrophies; inflammation; oxidative stress; connexin hemichannels; resveratrol

1. Introduction

Muscular dystrophies (MDs) are a heterogeneous group of diseases caused by mu-
tations in genes encoding proteins with key functions for the muscle integrity. Despite
their diverse genetic causes, MDs exhibit common clinical features that include progressive
weakness and atrophy of specific muscular groups, e.g., distal limb, face, shoulder or upper
arm and leg skeletal muscle, joint contractures, loss of ambulation, and respiratory and
swallowing difficulties as the diseases progress [1]. Some MDs are also associated with
cardiac disorders [2]. MDs’ aspects, such as their onset, severity, muscles affected, and rate
of progression, mostly depend on the mutated gene. In this regard, mutations in around
50 genes have been associated with at least 70 different types of MD, which have been classi-
fied in nine different categories (see Table 1): Becker muscular dystrophy (BMD), congenital
muscular dystrophy (CMD), distal muscular dystrophies (DiMD), Duchenne muscular
dystrophy (DMD), Emery-Dreifuss muscular dystrophy (EDMD), facioscapulohumeral
muscular dystrophy (FSHD), limb-girdle muscular dystrophy (LGMD), myotonic dystro-
phy (MiD), and occulopharyngeal muscular dystrophy (OMD). These MDs’ classifications
are based on the clinical traits and age at onset, and they are subclassified according to their
inheritance and the genetic bases of the disease [3,4]. Histopathologically, MDs are charac-
terized by degeneration and necrosis of the muscle fibers, which are poorly regenerated and
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instead replaced by adipose and fibrotic tissue [5]. Another important trait of many MDs
is chronic inflammation, as observed by the abundant presence of infiltrating inflamma-
tory cells in dystrophic muscles. The persistent abundance of macrophages promotes the
release of pro-fibrotic agents, including the transforming growth factor (TGF-β), that lead
to excessive accumulation of extracellular matrix components, particularly collagen, and
contribute to the formation of fibrotic tissue [5]. Another common feature in many MDs is
the presence of oxidative stress (OS), which is characterized by the oxidation of lipids and
proteins, and by the unbalance of the endogenous antioxidant systems [6]. Table 1 shows
reported OS signs, inflammation markers and mitochondria traits, which are also involved
in OS and inflammation as discussed later in different types of MDs.

Table 1. Muscular dystrophy types, genes involved and reported oxidative stress signs, inflammation
markers and mitochondria traits in patients’ biopsies and animal models.

Muscular Dystrophy
Type Gene/Protein Associated Oxidative Stress Signs, Inflammation

Markers or Mitochondria Dysfunction

Becker muscular
dystrophy (BMD) DMD/dystrophin

Small inflammatory regions in patients’
muscles [7].

Presence of inflammatory miRNAs [8].

Congenital muscular
dystrophy (CMD)

CHKB/choline kinase
COL6A1/collagen type VI, subunit α1
COL6A2/collagen type VI, subunit α2
COL6A3/collagen type VI, subunit α3

DPM2/dolichyl-phosphate
mannosyltransferase polypeptide 2

DPM3/dolichyl-phosphate
mannosyltransferase polypeptide 3

FCMD/fukutin
FKRP/fukutin-related protein

TGA7/integrin α7
TGA9/integrin α9

LAMA2/laminin α2 chain of merosin
LARGE/like-glycosyl transferase

PABPN1/polyadenylate binding protein nuclear 1
PTRF/polymerase I and transcript release

factor (cavin-1)
POMT1/protein-1-O-mannosyl-transferase 1
POMT2/protein-1-O-mannosyl-transferase 2

POMGNT1/protein-O-linked mannose
β 1,2-N-aminyltransferase 1

SEPN1/selenoprotein N1

Inflammatory infiltrates in LAMA2-related
CMD [9].

Mitochondria dysfunction in LAMA2-related,
Megaconial and Ullrich CMDs [10–14].

Distal muscular
dystrophies (DiMD)

DYSF/dysferlin
GNE/bifunctional UDP-N-acetylglucosamine

2-epimerase/N-acetylmannosamine kinase
LDB3/Z-band alternatively spliced PDZ-motif

(ZASP)
MYH7/myosin heavy chain β

TIA1/Tia1 cytotoxic granule-associated rna binding
protein

TTN/titin

Inflammatory infiltrates in Miyoshi
myopathy [15,16].
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Table 1. Cont.

Muscular Dystrophy
Type Gene/Protein Associated Oxidative Stress Signs, Inflammation Markers or

Mitochondria Dysfunction

Duchenne muscular
dystrophy (DMD) DMD/dystrophin

Nucleotide oxidative products, oxidized glutathione
and lipid peroxidation [17–19].

Overexpression of pro-inflammatory cytokines [20].
Infiltrating inflammatory cells in muscle biopsies of

DMD patients [21]
Mitochondria abnormality in patients’ biopsies [22].

Mitochondrial dysfunction in mdx mice [23].

Emery-Dreifuss muscular
dystrophy (EDMD)

EMD/emerin
FHL1/four and a half LIM domain 1

LMNA/lamin A/C
SYNE1/nesprin-1
SYNE2/nesprin-2

Altered oxidant status [24,25].

Facioscapulohumeral
muscular dystrophy

(FSHD)

Unknown/DUX4
Unknown/SMCHD1

Lipid peroxidation, protein carbonylation and DNA
oxidation [26].

Mitochondrial dysfunction [26].

Limb-girdle muscular
dystrophy (LGMD)

ANO5/anoctamin 5
CAPN3/calpain-3
CAV3/Caveolin-3

DAG1/dystrophin-associated glycoprotein 1
DES/desmin

DYSF/dysferlin
FKRP/fukutin-related protein

FKTN/fukutin
LMNA/lamin A/C

MYOT/myotilin
PLEC1/plectin 1

POMGNT1/protein-O-linked mannose
β 1,2-N-aminyltransferase 1

POMT1/protein-1-O-mannosyl-transferase 1
POMT2/protein-O-mannosyl-transferase 2

SGCA/α-sarcoglycan
SGCB/β-sarcoglycan
SGCD/δ-sarcoglycan
SGCG/γ-sarcoglycan

TCAP/titin cap
TRIM32/tripartite motif-containing 32

TTN/titin

Protein oxidation, lipid peroxidation, altered
reduced glutathione and antioxidant enzyme
activity in dysferlinopathy patients [27–29].
High levels of ROS, protein oxidation, lipid

peroxidation, and antioxidant enzyme activity in
dysferlin-deficient [30–33] and calpain-3 deficient

mice [34].
Activation of nuclear factor kappa B and

inflammasome in dysferin-deficient muscles [35].
Presence of the inflammatory markers Cd68 and

Lgals3 in muscles of α- and δ-sarcoglycan-deficient
mice [36].

Mitochondria abnormality in skeletal muscle of
d.ysferlinopathy patients [37] and calpain-3 deficient

mice [34].

Myotonic dystrophy
(MiD)

DMPK/myotonin-protein kinase
CNBP/cellular nucleic acid-binding protein

Antioxidant imbalance in MiD patients [38].
Mitochondria dysfunction in MiD patients [39].

Occulopharyngeal
muscular dystrophy

(OMD)

PABPN1/polyadenylate-binding nuclear
protein 1

Mitochondria dysfunction in an ice model of OMD
[40].

The underlying pathomechanisms causing MDs are initiated by mutations in genes
encoding proteins with dissimilar functions that, however, seem to converge in common
cellular dysregulations resulting in OS and chronic inflammation. As we discuss here,
MDs-causing mutations affect proteins critical to skeletal muscle integrity and homeostasis.
Therefore, their defective forms or absence does not only cause particular cellular defects,
but also activate signaling pathways that lead to OS and inflammation involving a positive
feedback loop that contributes to the progression of MDs.

2. Signs of Inflammation in the Skeletal Muscle

Inflammation is a nonspecific mechanism driven by the immune system in response
to harmful stimuli such as pathogen infection or damaged cells. Its purpose is to eliminate
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the cause of injury and to promote repair [41]. Inflammation occurs in vascularized tissue
and is mediated by humoral and cell-factors that lead to leukocyte infiltration into the
injured tissue. It has differentiated phases: acute, chronic, local and systemic. Acute
inflammation is a highly regulated process that has a relatively short course and is solved
once the noxious stimulus is removed [42]. Chronic inflammation is a long-lasting process,
characterized by the proliferation of blood vessels, fibrosis and the simultaneous destruction
and healing of the injured tissue [41]. Whereas local inflammation affects one organ or part
of it, systemic inflammation affects the complete organism. In response to noxious stimuli,
blood neutrophils and monocytes migrate towards the injured tissue. There, monocytes
become macrophages that “engulf” the inflammatory-stimuli and release pro-inflammatory
mediators promoting the recruitment of more immune-cells and amplifying the local acute
inflammation [42]. At the peak of acute inflammation, pro-inflammatory molecules make a
“transition” towards specialized pro-resolving mediators (SPMs) initiating the resolution of
the local acute inflammatory response. Upon resolution, macrophages “switch” from a M1
pro-inflammatory to a M2 anti-inflammatory phenotype [42], facilitating this process. If this
mechanism is dysregulated, pro-inflammatory signals persist and repair can be surpassed
by damage, leading to chronic inflammation and tissue dysfunction that characterize the
pathological conditions.

The skeletal muscle is a tissue permanently exposed to different traumas induced by
contraction. Hence, it is constantly subjected to cycles of inflammation and repair. Skeletal
muscles are organized in fascicles of between about 10 and 100 muscle fibers. These are
long multinucleated cells whose nuclei are located in the periphery of the cell, not in the cell
center [43]. Cylindrical organelles called myofibrils pack the contractile proteins myosin
and actin. Each myofibril is organized into a variable number of sarcomeres, the functional
unit for muscle contraction. The membrane of muscle fibers is called sarcolemma and
presents deep invaginations named transverse tubules. Those are part of a network of
endomembranes that surround myofibrils in association with the sarcoplasmic reticulum,
the main intracellular store of Ca2+. One transverse tubule and two sarcoplasmic reticulum-
cisternae constitute the “muscle triad”, the structural unit where the excitation-contraction
coupling occurs [43]. Non-contractile elements provide structural support and facilitate the
transmission of the force generated during contraction from sarcomere to all the muscle
tissue. Among these elements are sarcolemmal-anchored proteins such as dystrophin; trans-
membrane proteins such as β-dystroglycan, sarcoglycan and integrins; and extracellular
matrix-proteins such as the α-dystroglycan and laminin-2 [44].

Under physiological conditions, most skeletal muscles are adaptable tissues that can
undergo structural and functional modifications in response to different stimuli (i.e., use,
hormonal and nutrient status, a process called muscle plasticity) [45]. In addition, and
in response to intense exercise or injury, they are able to fully regenerate, recovering the
number and/or the size of muscle-fibers [46]. The nuclei of muscle fibers do not undergo
divisions; thus, under conditions in which muscle tissue must be repaired, the response
is performed by muscle-stem cells called “satellite cells”. These cells express the myo-
genic transcription factor Pax7 [47] and are located in a specialized region between the
sarcolemma and the basal lamina in a state of “quiescence”. After muscle injury, satel-
lite cells are activated, becoming MyoD+ and myogenin+ myoblasts that undergo fusion
and form syncytia, and upon innervation, they differentiate into mature fibers [47]. In
addition to the activation of satellite cells, a time-dependent local acute inflammation is
triggered in skeletal muscles after injury (Figure 1(A1)). This process is critical for the
recruitment of immune cells that contribute to muscle regeneration [48]. At the onset of the
muscle injury, the complement system is activated, promoting inflammatory cascades that
lead to the infiltration of monocytes, neutrophils and T-cells [49,50]. Monocytes acquire a
M1-proinflammatory profile that stimulates the proliferation of satellite-cells by releasing
growth factors and proinflammatory cytokines (Figure 1(A1)) [51]. Among them tumor
necrosis factor alpha (TNFα), interleukin (IL)-6 and IL-15 act as promoters of the myoblast
fusion and myotube formation [52,53]. These and other proinflammatory cytokines are also
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secreted by T-cells [54] importantly contributing to the process. Thereafter, a resolution
phase proceeds in which M1 macrophages switch to M2 further promoting differentiation
of myoblasts into myotubes, growth of muscle fibers (Figure 1(A2)) and skeletal muscle
regeneration (Figure 1(A3)) [55–57]. In healthy conditions, these events resolve rapidly
once the cause of injury has been “removed”. However, in pathological contexts in which
the stressor-agent persists the M1 to M2 transition is impaired becoming skeletal muscle
inflammation chronic (Figure 1B). The latter might produce accumulation of fibrotic and
fat tissue (Figure 1B), making regeneration inefficient and contributing to the pathophysi-
ology of muscle diseases [58]. Persistent immune cells as well as muscle fibers release an
exacerbated amount of proinflammatory cytokines enhancing the activation of signaling
mediated by the nuclear factor kappa B (NF-kB), a key inductor of the transcription of
pro-inflammatory genes (Figure 1B). Parallel the assembly of the NLRP3 inflammasome
leads to the activation of the caspase-1 enzyme and the subsequent proteolysis of pro-
IL-1β and pro-IL-18 (Figure 1B) further promoting inflammation and perpetuating the
inflammation/regeneration cycle (Figure 1B).
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Figure 1. Inflammation in skeletal muscle healing and degeneration. (A1–A3) Upon muscle injury
immune cells infiltrate, monocytes become macrophages with a proinflammatory M1-phenotype
that release proinflammatory cytokines and growth factors promoting satellite cell proliferation
(A1), myotube formation and muscle healing (A2) The transition from M1 to M2 pro-resolutive
macrophages favors muscle regeneration (A3). (B) When these processes are deregulated the M1 to
M2 transition is suppressed and inflammation becomes chronic, producing accumulation of fibrotic
tissue and muscle dysfunction and atrophy. Proinflammatory cytokines bind to their receptors
in inflammatory cells as well as in muscle cells, promoting the activation of the NFKB signaling,
assembly of the NLRP3 inflammasome, activation of caspase-1 and cleavage of the immature forms
of the IL1 family (pro-IL1), thus enhancing inflammation and potentially contributing to muscle
damage. Damage signals also activate toll-like receptors (TLRs), promoting the same mechanism.
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In MDs, mutated proteins critically affect the homeostasis of skeletal muscle, causing
damage to the sarcolemma and contractile apparatus and leading to the persistence of
the inflammatory events. The accumulation of proinflammatory mediators in the skeletal
muscle tissue affects its regenerative capacity, impairing the healing mechanisms [58]. Con-
sequently, muscle is replaced by fibrotic tissue and fat [5], leading to muscle dysfunction.
Hence, chronic inflammation has been described in the context of different MDs. In the
most severe forms of MDs, it progresses, affecting other muscles and tissues becoming
a systemic chronic inflammation, which appears to contribute to the progressive muscle
weakness and atrophy. Among MDs that reportedly develop with chronic inflammation
are DMD [59], LGMD [35], merosin/laminin-deficient congenital muscular dystrophy [60],
Miyoshi myopathy (MM) [15,16] and LMNA-related myopathies [61]. Chronic inflam-
mation also appears to contribute to the atrophy in non-dystrophic myopathies such as
in the valosin-containing-protein myopathy [62] and in the sporadic late-onset nemaline-
myopathy [63].

3. Chronic Inflammation in Skeletal Muscle Dystrophies

DMD is the most frequent MD with an estimated worldwide prevalence of 4.78 per
100,000 births [64]. It is caused by X-linked mutations in the DMD gene encoding dys-
trophin. This protein is believed to be a component of the dystrophin glycoprotein complex
(DGC) that connects the actin cytoskeleton with the extracellular matrix providing stability
and structural integrity to the sarcolemma during muscle contraction [65]. DMD mutations
produce dystrophin deficiency, leading to membrane depolarization, fragility, and high
susceptibility to injury during muscle contraction [66]. Such defects associate to massive
immune cell infiltration, chronic inflammation, and necroptosis, a programmed form of
necrosis [67]. In this regard, mdx mice, a mammalian model of DMD, display an enhanced
susceptibility to sarcolemma rupture under mechanical stress [68]. Upon DMD, skeletal
muscles lose their ability to regenerate, resulting in fibrosis, early onset muscle dysfunction,
and eventually loss of ambulation [20,69,70]. One variant of this disease is BMD. It is
also caused by X-linked mutations in the dystrophin gene, but in this case, they preserve
the reading-frame, allowing the expression of a partially functional truncated form of
dystrophin [71,72]. Such differences result in a milder form of dystrophy in BMD, with a
slower progression than that observed in DMD [72].

Local and systemic inflammation have been reported to be associated with the fibrosis
and atrophy in DMD. Overexpression of pro-inflammatory cytokines such as IL-6, IL-1β
and TNF-α [20], as well as anti-inflammatory cytokines such as IL-10 and TGF-β [73], are
chronically detected in DMD. The over-activation of the NF-kB (Figure 1B), has also been
reported in DMD patients and animal models [69]. Congruently, the inhibition of NF-κB
has been postulated as a potential therapeutic target in Duchenne. In 2016, Hammers and
collaborators used the NF-κB inhibitors edasalonexent and CAT-1041 to treat the dystrophy
in mdx mice. The oral administration of these NF-κB inhibitors, which were composed by
omega-3- polyunsaturated fatty acids (PUFAS) conjugated to salicylic acid, improved the
dystrophic phenotype in terms of activity and muscle mass, reduced inflammation and
fibrosis [74]. In the same line, treatment with eicosapentaenoic acid (EPA) has further shown
to protect against the muscle damage in the mdx mice by promoting a shift from the M1 to
M2 macrophage phenotype [75]. In placebo-controlled, double-blind, randomized trials
carried out in DMD patients, treatment with EPA and docoshexaenoic acid (DHA) reduced
inflammation markers and diminished the expression of NF-κB in leukocytes [76,77].
Furthermore, in phase 2 and 3 clinical trials in DMD young patients, NF-κB inhibitors such
as flavocoxid or edasalonexent, showed to reduce the serum levels of IL-1β and TNF-α,
slowed-down the disease progression and preserved muscle function [78–80], indicating
that NF-κB might be a promising targeted therapy for MDs.

Another important mediator of the inflammatory process that is over-active in neu-
romuscular diseases including DMD is the NLRP3 inflammasome [81]. Inflammasomes
are cytosolic-receptors of the innate immune system that assemble in response to harmful
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stimuli, mediating the activation of caspase-1 [82] (Figure 1B). This enzyme catalyzes the
proteolytic processing of inactive precursors of IL-1β and IL-18, turning them into their
active forms [82] and promoting inflammation (Figure 1B). The NLRP3 inflammasome is
also expressed in skeletal myofibers [35] and its inhibition has been evaluated as a poten-
tial therapeutic target in DMD. In 2018, Boursereau and collaborators demonstrated that
Adiponectin (ApN), an adipocyte-secreted cytokine that regulates glucose and fatty-acid
metabolism [83], exerts downregulation of NLRP3 via the micro-RNA miR-711 [59]. Con-
gruently, overexpression of ApN seems to protect skeletal muscle against inflammation and
injury, as well to improve the muscle function in mdx mice [84]. The positive regulation of
the ApN receptor reduced infiltration of T-cells and promoted the transition from M1 to
M2 macrophages in the muscles of mdx mice, promoting regeneration [85]. More recently,
AdipoRon, an ApN-receptor agonist, has been used in mdx mice with similar results. The
oral administration of AdipoRon for eight weeks managed to protect the mdx skeletal
muscle against chronic inflammation and OS, attenuating the dystrophic phenotype [86]. In
the same line ghrelin, another metabolic hormone that participates in the regulation of the
appetite, exerts a similarly positive effect and has been suggested as a potential candidate
for the DMD treatment. Ghrelin possesses anti-inflammatory activity, prevents skeletal
muscle atrophy, increases muscle regeneration, and improves the dystrophic phenotype
rescuing the muscle function in mdx mice [87]. As with ApN, the ghrelin action seems to
rely on the inhibition of the NLRP3 inflammasome assembly [87].

In addition to the evidence reported in the DMD context, inflammation has been also
described as part of the pathological mechanisms in other MDs. Merosin/laminin- congen-
ital muscular dystrophies, EDMD, and LGMD constitute other examples of inflammatory
diseases. The merosin-deficient congenital muscular dystrophy type 1A (MDC1A) is caused
by mutations in the LAMA2 gene [60] that lead to the partial or complete absence of α2-
laminin. This protein, also called merosin, is a component of the extracellular matrix (ECM)
that links the ECM to the DGC and to the sarcolemma-associated integrin complex [46].
Consequently, merosin plays a critical role in the maintenance of the sarcolemma integrity
and muscle function. Mutations in other genes that code components of the ECM, such
as the collagen type VI, are associated with other MDs, including Bethlem myopathy and
Ullrich-scleroatonic muscular dystrophy [88]. The expression of merosine in satellite cells
is associated with the proliferation and differentiation of myogenic cells [46]. Consequently,
MDC1A-causing mutations in the LAMA2 gene lead to a defective muscle repair associated
with chronic inflammation, fibrosis, and muscle atrophy [89]. Clinical symptoms of MDC1A
include severe muscle atrophy, progressive muscle weakness, joint contractures, breathing
and feeding difficulties [60]. Most patients lose their ambulation in infancy and exhibit a
drastic shortening of their lifespan [89]. In skeletal muscle of patients and mouse models
of MDC1A, an early onset of chronic inflammation occurs, leading to cycles of degenera-
tion/regeneration and accumulation of fibrotic lesions [60]. In DyW mice, a murine model
of laminin-deficient muscular dystrophy, merosin-deficient skeletal muscles exhibit high
macrophage infiltration from early ages to adulthood. This infiltration is accompanied by
an increase in the NF-κB signaling and over-expression of pro-inflammatory cytokines,
which favors inflammation and causes inhibition of myogenesis [89].

EDMD is an early onset dystrophy characterized by slowly progressive muscle atrophy
and weakness, spinal stiffness and heart disease. The overall prevalence of EDMD is
unknown, but it is estimated to be the third most prevalent muscular dystrophy with
an estimated of 1 case per 100,000 newborns [90]. EDMD is mostly caused by X-linked
mutations in the EMD gene encoding emerin and by autosomal mutations in the LMNA-
gene encoding lamin A/C [90]. Mutations in these genes have a negative impact on several
functions of the nuclear envelope, such as the nuclear structure, cell signaling, and gene
expression [61]. Mutations in lamin A/C and laminin-binding proteins are associated
with the activation of the transcription factor NF-κB and with the consequent secretion of
proinflammatory cytokines. A 2018 study carried out by Cappelletti et al. [61] demonstrated
that myoblasts from patients with mutations in the LMNA gene secrete high amounts of
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pro-inflammatory cytokines, such as IL-6 and IL-8, in a similar way to what occurs with
factors secreted by senescent cells or persistently damaged cells. In fact, mutations in
the LMNA gene cause structural lesions of the nuclear lamina in macrophages, inducing
a modification of their adhesive properties and promoting their infiltration in skeletal
muscles [61].

Mutations in sarcoglycan components of the DGC lead to LGMD [91]. It is a heteroge-
neous group of MDs that primarily affects shoulders and hips. Its clinical manifestations
range from severe forms with neonatal-onset to milder late-onset and slowly progres-
sive forms. Mutations in genes encoding the caveolae-associated protein caveolin-3 [92],
the Ca2+-regulated proteolytic enzyme calpain-3 [93], the component of intermediate
filaments desmin [94], the giant sarcomeric protein titin [95] or the glycosyltransferase-
enzymes are also associated with different forms of LGMD [3]. Recessive mutations in
the DYSF gene, which encodes the protein dysferlin, cause LGMD type 2B (LGMD2B)
and MM [96]. Dysferlin is expressed in skeletal and cardiac muscle cells, as well as in
monocytes and macrophages playing a key role in membrane fusion and repair [97]. It in-
teracts with annexin-A1 and annexin-A2, which are Ca2+-binding molecules involved in the
sarcolemma-repair [97]. The membrane-repairing function in dysferlin-deficient myofibers
can be recovered in dysferlinopathy models by expressing a “mini-dysferlin” peptide or
myoferlin, another ferlin family protein, but these approaches do not arrest muscular de-
generation [98]. In this regard, an additional function of dysferlin has been proposed, which
could be implicated in the pathological mechanisms of dysferlinopathy. As dysferlin has
been localized in intracellular vesicles [99], regulates the cytoskeletal actin remodeling [100]
and has been detected in non-mechanically active tissues including endothelial cells, where
its absence causes deficient trafficking of membrane-bound proteins [101], it is likely that
dysferlin acts as a mediator in the traffick of other proteins. Thus, the main dysferlin
dysfunction caused by dysferlinopathy-linked mutations requires further study. In this
regard, the mechanisms contributing to the onset and progression of this type of LGMD
are not yet fully defined, although mutations in the DYSF gene are associated with the
loss of dysferlin expression and seem to compromise the capability of myofiber for repair
following sarcolemmal injury. The latter leads to chronic inflammation, degeneration, and
gradual adipogenic replacement of the muscle tissue [97]. This has been demonstrated
through the involvement of immune factors in the pathogenesis of dysferlinopathy [102]. In
fact, the absence of dysferlin favors intramuscle macrophage recruitment, proliferation, and
skews macrophages toward a cyto-destructive phenotype [103]. As activated macrophages
are a rich source of radical species and proinflammatory cytokines, their infiltration in
muscles exacerbates local damage. In fact, several studies suggest that these mediators
make dysferlin-deficient muscles more vulnerable to damage. Remarkably, the suppression
of the innate-immune response mediated by toll-like receptors (TLRs) has been shown to
reduce the atrophy and improve muscle strength in a dysferlin-deficient mouse model [104].
These data are consistent with the research carried out by Rawat et al. in 2010 [35], who
showed that TLR-mediated signaling pathways trigger an inflammatory response that
involves the activation of NF-κB and the assembly of the NLRP3 inflammasome in the
dysferin-deficient dystrophic muscles [29,35].

Acute inflammation is necessary to trigger a repair-program that regenerate mus-
cles after injury [48]. However, the mechanisms that transform this process in a chronic
condition contributing to muscle degeneration remain poorly understood. A possible
explanation could be related to the large amount of reactive oxygen species (ROS) pro-
duced by the inflammatory cells, such as macrophages and neutrophils, which infiltrate the
skeletal muscle damaged [41]. As chronic inflammation seems to be importantly involved
in the progression of MDs, this is an aspect to be considered in the search of new potential
therapeutic targets.
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4. Oxidative Stress in Muscular Dystrophies

In biology, ROS are endogenous molecules produced by different tissues under phys-
iological conditions, although they can be overproduced in pathological states. In the
skeletal muscle, ROS such as the radical superoxide (O2

•−) and its dismutation product
hydrogen peroxide (H2O2) are transiently produced during high metabolic demand and
ATP depletion, for instance during physical activity [105]. Major sources of ROS include
mitochondria [106], purine metabolism by xanthine oxidase [107], oxygenases that metab-
olize arachidonic acid (lipoxygenases and cyclooxygenases) [108] and the nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase complex (Figure 2) [109]. The main
source of O2

•− during exercise comes from the activation of the NADPH-oxidase (NOX)
complex [110]. This membrane-bound enzyme system catalyzes the O2

•− production by
transferring an electron from NADPH to the diatomic oxygen (O2). During exercise, the
NOX system seem to be stimulated by either membrane depolarization or protein kinase
C (PKC) activation [111,112]. PKC activation results from a positive feedback loop gen-
erated by the release of ATP through pannexin channels with the consequent activation
of purinergic P2Y1 receptors [112,113]. Increased levels of NADH during contraction can
also contribute to O2

•− production via the NOX system [110]. In addition, activation of
the insulin receptor in skeletal muscle cells constitutes an additional mechanism for ROS
production, as it promotes the activation of NOX, through a mechanism that involves
phosphoinositide 3-kinase (PIK3) and PKC [114]. In turn, ROS production during physical
activity favors Ca2+ release through the ryanodine receptor [115] and contributes to about
50% of glucose uptake through the glucose transporter 4 (GLUT4) [116]. This mechanism
requires the translocation of GLUT4 from intracellular stores towards the sarcolemma and
transverse tubules [117]. The contraction-induced GLUT4 translocation is impaired when
muscles are pre-incubated with ROS-scavengers [118], suggesting that ROS are necessary
for contraction-mediated glucose uptake. Upon moderate exercise, the small GTPase Rac1
is activated, promoting actin polymerization and consequently favoring the actin-mediated
GLUT4-translocation [119]. In this regard, mice deficient in Rac1 or the NOX2 subunit
p47phox exhibit a reduced ROS production and impaired glucose uptake in response
to moderate exercise [116]. It has also been reported that ROS participate in exercise-
induced mitochondrial adaptations [120], via a mechanism that involves the nuclear factor
erythroid-derived 2-related factor 2 (Nrf2) [121]. Major mitochondrial changes produced
by endurance-training in response to exercise are modifications in their content, biogenesis,
fusion and segmentation [122].

Skeletal muscles also produce reactive nitrogen species (RNS) such as nitric oxide
(NO•), peroxynitrite (ONOO−), nitroxyl (HNO) and nitrosonium cation (NO+), among
others [123]. NO• is a highly diffusible molecule with a very short biologic half-life
(0.1–2 s) that under physiological conditions acts as a second messenger by stimulating the
guanylyl cyclase (GC) and cyclic guanosine monophosphate (cGMP) pathways. During
contraction, NO• is generated by the activation of the splice variant µ of the neuronal
nitric oxide synthase (nNOS), via a mechanism that seems to be mediated by the nNOSµ
phosphorylation by AMPK [124]. In turn, the NO• produced during contraction reportedly
acts as a paracrine vasodilator that counteracts the sympathetic vasoconstriction produced
during exercise [125]. It has been also proposed that NO• promotes glucose uptake [124].
However, glucose uptake in gastrocnemius muscle during exercise is not impaired in
nNOSµ-knock-out (KO) mice [126]. It is therefore possible that other NO• sources or
mechanisms contribute to the exercise-induced glucose uptake.
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Figure 2. Mechanisms contributing to muscle dystrophy progression. Mutations in proteins that
critically regulate skeletal muscle integrity and homeostasis can cause myofiber damage with con-
secutive accumulation of inflammatory cells that produce ROS. In muscular dystrophies (MDs),
such as Duchenne muscular dystrophy (DMD), myofibers also display sarcolemma microtears that
allow Ca2+ entry. The de novo expression of non-selective channels, such as connexin hemichannels,
can further contributes to excessive high cytosolic Ca2+ concentrations, which in turn might lead to
activation of Ca2+-activated proteases, mitochondria dysfunction and reactive oxygen species (ROS)
generation from mitochondria, NADPH-oxidase (NOX) and oxidases (Oxs) such as xanthin oxidase.
ROS overproduction leads to Ca2+ leak from the sarcoplasmic reticulum via ryanodine receptors
(RyR1), oxidation of lipids, proteins and DNA, and deregulation of the nuclear factor kappa B (NF-κB)
and nuclear factor erythroid-derived 2-related factor 2 (Nrf2) signaling pathways, which regulate the
expression of inflammatory mediators and antioxidant enzymes. All these elements contribute to
muscle degeneration.

Although moderate levels of ROS are necessary for normal contraction and force
production, the excess of ROS can lead to muscle fatigue and contractile dysfunction [105].
Under physiological conditions different enzymes, such as superoxide dismutase (SOD),
catalase, glutathione peroxidase and thioredoxin reductase, and antioxidant endogenous
molecules such as glutathione (GSH), prevent ROS accumulation [105]. Either catalase or
glutathione peroxidase reduce H2O2 to H2O. On the other hand, RNS can be neutralized
by hemoglobin, uric acid, β-carotene, vitamins E and C, as well as by SOD, glutathione
peroxidase and thioredoxin [127]. These antioxidant systems allow a fine-tune balance
of ROS levels, and disruption of this equilibrium can cause OS, a condition implicated in
the progression of different skeletal muscle affections, including sarcopenia and different
types of myopathies [6,128]. The redox imbalance may be due to an increased production
of O2

•− or a reduced neutralization of ROS and RNS. Thus, persistent high levels of
O2

•− and H2O2 may release metal ions, such as copper and iron, from their respective
protein complexes to favor the production of hydroxyl radical (HO•) by a Fenton-type
reaction mechanism [129]. HO• is one of the most reactive ROS that has an oxidative
potential of 1.9 V at pH 7.0 and a half-life of 10−9 s, properties that mean that its harmful
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actions may be limited to a restricted area [130]. As O2
•− can react with NO• to generate

ONOO−, another strong oxidant that further reacts with carbon dioxide (CO2) to form
the radicals CO3

•− and NO2
•−, or the adduct ONOOCO2

− [127], high levels of ROS can
also trigger nitrosative stress. These different ROS and RNS can produce post-translational
modifications such as oxidation, S-nitrosylation, S-glutathionylation or S-tyrosine-nitration
of proteins, lipid peroxidation, and oxidation and nitration of nucleic acids (Figure 2),
thus causing disfunction of different cellular elements and processes and deleterious
effects to cells [127,131]. Furthermore, high ROS generation can also activate cellular
signaling pathways that lead to apoptosis or necrosis, such as the c-Jun N-terminal kinases
(JNK)/p53 pathway [132] and receptor-interacting serine/threonine protein kinase (RIP)
1 and 3 complexes [133], respectively. Among the target proteins susceptible to modification
by ROS is NF-κB [134]. As aforementioned, this signaling is involved in different skeletal
muscle physiological processes, but, its chronic activation has been observed in different
skeletal muscle disorders, including MDs [29,89,135]. ROS can both directly modify NF-
κB and its upstream kinases, and these can lead to either activation or repression of the
NF-κB signaling (Figure 2); in turn, NF-κB activation can promote either anti- or pro-
oxidant responses [136]. In this case, the interplay between ROS and NF-κB depends on
the context and stage of the muscle redox state. ROS can also influence the activity of
the Nrf2 (Figure 2). Under OS, this nuclear factor translocates to the nucleus to promote
the expression of many antioxidant enzymes that render protection upon a stronger OS-
promoting condition [137]. In contrast, its deficiency enhances ROS-induced damage in
dystrophic muscles [31], whereas its activation seems to mitigate the progress of these
diseases [69], presumably acting as a preconditioning factor.

A critical interplay during OS is which occurs between ROS and mitochondria, the
main source for ATP production in skeletal muscles during aerobic respiration. These or-
ganelles also produce ROS as a result of the electron leakage at the electron transport chain
during basal respiration [138]. The O2

•− generated, less than 1% of the total fraction of O2
utilized [139], is neutralized by the Mn-SOD (SOD2) and Cu, Zn-SOD (SOD1) present in the
mitochondrial matrix and intermembrane space, respectively [140]. However, ROS produc-
tion by mitochondria drastically increases under danger signals, as observed during MDs
(Figure 2), wherein proinflammatory cytokines, or high levels of cytosolic Ca2+ and Na+

that reduced the mitochondrial membrane potential promote mitochondrial ROS genera-
tion [141]. During physiological Ca2+ signals, mitochondria uptakes Ca2+ from the cytosol
essentially through a uniporter Ca2+ channel in the inner mitochondrial membrane [142].
This Ca2+ uptake stimulates the oxidative metabolism in the mitochondrial matrix by
regulating Kreb cycle enzymes, such as the isocitrate-dehydrogenase, α-ketoglutarate de-
hydrogenase and pyruvate dehydrogenase [143]. However, excessively high cytosolic Ca2+

concentrations overcharge the mitochondrial Ca2+, inducing the constant opening of the
mitochondrial permeability transition pore, a non-specific pore that allows the passage
of molecules of <1.5 kDa to the mitochondria matrix [144]. A high and persistent con-
ductance of this pore can lead to osmotic swelling, rupture of the outer membrane, and
metabolic collapse [145]. Furthermore, OS can also induce an imbalance in mitochondrial
fission-fusion, promoting their fragmentation [146], thus contributing with an additional
mechanism inducing cell damage.

OS has been found in different types of MD, being more extensively studied in DMD.
Indeed, OS signs, such as nucleotide oxidative products, oxidized glutathione or lipid
peroxidation products, have been found in patients with DMD [17–19] and animal models
of the disease [147,148]. An oxidative imbalance has also been reported in other MDs such
as the LGMD2B and MM caused by dysferlin mutations. In this regard, muscle biopsies
of patients suffering from dysferlinopathy show increased levels of protein oxidation and
lipid peroxidation and altered reduced glutathione and antioxidant enzyme activity [27–29].
Dysferlin-deficient A/J mice also show high levels of ROS in flexor digitoris brevis (FDB)
myofibers [30,31] and protein thiol oxidation in quadriceps [32]. As we recently reported,
quadriceps and gastrocnemius muscles of dysferlin-deficient Bla/J mice, another model
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of dysferlinopathy, exhibit high levels of protein oxidation and lipid peroxidation and
altered activity of the antioxidant enzymes superoxide dismutase and catalase [33]. In
this regard, the treatment of dysferlin-deficient Bla/J mice with the antioxidant agent
N-acetylcysteine reduces the OS signs and appears to improve muscle strength and/or
resistance to fatigue [33]. A common feature that might induce OS in MDs is the absence or
malfunction of sarcolemma integrity-associated proteins such as dystrophin and dysferlin,
which can lead to an altered Ca2+ homeostasis (Figure 2) [96,149,150]. The mechanism by
which these types of MDs show altered Ca2+ levels is not clear, and it has been proposed
that it is a consequence of a non-specific Ca2+ influx through microtears in the sarcolemma
(Figure 2) [149,150]. However, as we discuss later, the de novo expression of connexin
(Cx) hemichannels and overexpression of pannexin (Panx) might further contribute to
the Ca2+ dyshomeostasis in MDs such as DMD and dysferlinopathy (Figure 2) [151,152].
Importantly, the interplay between the Ca2+ homeostasis and ROS is bidirectional. Indeed,
persistent high intracellular Ca2+ levels can contribute to mitochondrial Ca2+ overload,
NOX-activation and ROS overproduction (Figure 2) [153,154]. In turn, ROS production by
NOX4 contributes to the S-nitrosylation of the ryanodine receptor 1 (RyR1), increasing the
Ca2+ leak from the sarcoplasmic reticulum (Figure 2) [154].

An altered oxidant status has also been found in EDMD [24,25]. This skeletal muscle
disorder is caused by mutations in the gene encoding lamin A/C that increase the basal
levels of ROS and lead to mitochondrial dysfunction [155]. It has been hypothesized that
conserved cysteine residues in the lamin A C-terminal neutralize ROS, thus preventing pro-
tein oxidation [156]. It has also been proposed that lamin-A mutations associated to EDMD
induce an atypical nuclear localization of the stress responsive protein Ankrd2, increasing
the susceptibility to ROS damage [157]. On the other hand, muscle-specific expression of
the mutant lamins in Drosophila produced reductive stress caused by cytoplasmic protein
aggregation [158].

An increased susceptibility to ROS has also been observed in FSHD [159]. OS signs
such as high levels of lipid peroxidation, protein carbonylation and DNA oxidation, and
mitochondrial dysfunction have been found in skeletal muscles biopsies and blood samples
from FSHD patients [26]. This muscle affection was initially associated with hypomethy-
lation of a region known as D4Z4 in the chromosome 4q35, which contains the double
homeobox 4 (DUX4) gene. However, recent analyses show that the D4Z4 hypomethylation
did not correlate with the disease status [160,161] and, instead, it seems to be due to the
chromatin structure present in the contracted allele [161]. Immortalized human myoblasts
expressing DUX4 exhibit high levels of ROS [162], and in turn, OS increases the DUX4
expression [163]. In this regard, a transcriptome analysis in DUX4-expressing myoblasts
identified 200 genes relevant for the FSHD pathogenesis that are deregulated by DUX4
indirectly, through OS [162]. Interestingly, silencing one of such genes managed to restore
the differentiation ability of DUX4-expressing myoblasts [162].

5. Connexin and Pannexin Channels in Muscular Dystrophies

The Cx gene family comprises 20 members in mice and 21 genes in the human genome,
of which 19 can be grouped as orthologous pairs [164]. These proteins form poorly selective
membrane channels called hemichannels, which are present in the cell membrane of most
cell types allowing communication between the cytoplasm and the extracellular medium.
In addition, Cxs can form gap junction channels that communicate the cytoplasm of cells in
contact [165]. Cx hemichannels also participate in autocrine and paracrine communication,
as they are permeable to different small metabolites and molecules involved in cell signaling,
such as glucose, NAD+, NO, prostaglandin E2, glutamate, and ATP [166]. In addition,
some of them (i.e., Cx26 and Cx43) have been shown to be permeable to Ca2+ [167,168],
whereas others (i.e., Cx39) might be rather impermeable to this divalent cation [169].

Other poorly selective channels are those constituted of Panx, a family of glycopro-
teins composed of 3 members, Panx1-3 [170]. Panx1 is ubiquitously expressed in various
tissues, while Panx2 is primarily expressed in the central nervous system [171]. Panx3 is
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found in bone, skin, and skeletal muscles [170,172]. Panx1 channels localize in the cell
membrane and play a relevant role in the release of ATP from different cell types [170].
Different stimuli capable of activating Panx1 channels have been reported, including volt-
age [173], membrane stretching [174,175], intracellular Ca2+ augmentation [175,176], and
its C-terminal domain proteolysis [177]. However, it was recently shown that Panx1 is
not directly sensitive to stretching instead, stretch stimulates other channels that allow the
entry of Ca2+ promoting the activation of the Ca2+/calmodulin-dependent protein kinase
II (CaMK ll), which phosphorylates Panx1, causing a conformational change of the channel
that allows the passage of ATP through its “lateral tunnels” [175].

In skeletal muscles, myoblasts express Cx-based hemichannels and gap junction chan-
nels essential during myogenesis [178]. However, at terminal stages of the myogenesis, the
expression of Cxs is inhibited [178] in a manner dependent on the release of acetylcholine by
motoneurons [179]. In the adult stage, skeletal muscles present a preform Cx mRNA [179],
suggesting that they might be rapidly translated under particular conditions which are
not yet identified. Indeed, the expression of Cxs 39, 43 and 45 occurs transiently during
regeneration after damage [180,181]. On the other hand, the expression of Panx1 is very
low in undifferentiated myoblasts but drastically increases upon muscle differentiation,
playing a key role in this process [182,183].

The de novo expression of Cx-hemichannels has been implicated in skeletal muscle
inflammation by acting as a pathway for the release of ATP which is the source of extra-
cellular adenosine that mediate preconditioning [184]. In addition, preconditioning has
been associated to the translocation of Cx43 to the mitochondria where it can affect the dis-
tribution of K+ across the inner membrane [185]. On the other hand, metabolic inhibition
increases plasma membrane expression, nitrosylation and opening of Cx43 hemichan-
nels [186] and nitrosylation at the residue C271 promotes the opening of Cx43 hemichannel,
as observed in mdx mouse-cardiomyocytes [187]. A crosstalk between Cx hemichannels
and OS has also been demonstrated, as inhibition of Cx hemichannels protects cells from
OS [188–190] and Cx hemichannels are inhibited by antioxidant agents such as resveratrol
and α-tocopherol and partially nhibited by N-acetylcysteine [191]. Therefore, in addition
to the intrinsic antioxidant effects of some compounds, their protective effect could include
prevention of the rise in intracellular Ca2+ signaling known to activate several metabolic
pathways that generate superoxide anion as described above. Remarkably, myofibers
deficient in Cx43 and Cx45 expression do not present mitochondrial dysfunction induced
by a synthetic glucocorticoid, suggesting that mitochondrial impairment occurs down-
stream of de novo Cx hemichannel expression, which reduces the membrane potential
and consequently reduces the ionic asymmetry across the sarcolemma, affecting normal
mitochondrial functioning [191].

In the pathological context of MDs, Cx and Panx hemichannels have been implicated.
Panx1 over-expresses, together with the de novo expression of Cx hemichannels, contribut-
ing to increase the permeability of the sarcolemma [151,152]. In mdx mice, in which the
absence of dystrophin is associated with an increase in the intracellular Ca2+ [149,150] that
lead to myofiber necrosis [192], the de novo expression of Cx39, Cx43 and Cx45 has been
demonstrated [151]. Interestingly, mdx mice in which a myofiber-specific KO of Cx43 and
Cx45 was performed, presented normal intracellular Ca2+ signals, absence of myofiber
apoptosis, reduced myofiber necrosis and improved muscle function [151]. The latter
strongly suggests that a Cx hemichanel-mediated Ca2+ dyshomeostasis could importantly
contribute to the pathophysiology of MDs (Figure 2). The role of elevated cytoplasmic
Ca2+ in cell death is supported by experiments in which the overexpression of the transient
receptor potential canonical 3 (TRPC3) in myofibers leads to increased Ca2+ influx, resulting
in a dystrophic phenotype [192]. On the contrary, the transgenic suppression of TRPC
channels in mdx mice reduced the Ca2+ influx and dystrophic signs [192]. However, in
these studies the sarcolemma’s permeability to Evans blue is not observed, and rather is
completely abrogated in myofibers deficient in Cx43 and Cx45 [151,152], indicating that
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Cx hemichannels and not sarcolemma microtears are the initial step of myofiber damage
in MDs.

Panx1 channel expression is also enhanced in mdx mice [151,172,193]. It is accom-
panied by an increase in the Panx1-mediated ATP release, which promotes the increase
in the intracellular Ca2+. In this respect, it was shown that the treatment with the L-type
voltage-dependent-Ca2+-channel inhibitor nifedipine reduced the extracellular ATP levels
in mdx myofibers by reducing the intracellular Ca2+ concentration [193]. The nifedipine
treatment also reduced the expression of the NOX2 system, which is overexpressed in the
diaphragm of mdx mice where it associates to the overproduction of ROS and decreased
respiratory function [193]. At the level of cardiac muscle, there is an aberrant expression of
Cx43 hemichannels in mdx mice, which is associated with an altered Ca2+ signaling. Con-
gruently, a reduction in the Cx43 hemichannel activity seems to improve Ca2+ signaling, as
well as to reduce NOX2 and ROS production, protecting mdx mice from inducible arrhyth-
mias and cardiomyopathies [194]. In addition, it has been reported that the suppression of
Cx43 decreases the activation of the inflammasome, which was preceded by a decrease in
the production of ROS and NOX2 [195]. In turn, OS alters the subcellular localization of
Cx43 in the heart [196] and modifies the normal transport of Cxs from intercalated discs
towards the lateral membrane, affecting excitability of the cardiomyocyte membrane [196].
However, the subcellular location of Cxs has not yet been studied in pathologies that affect
skeletal muscle. On the other hand, NOX inhibition in dystrophic cardiomyocytes reduced
Cx43 hemichannel activity, probably due to decreased nitrosylation [197].

In dysferlinopathy, a de novo expression of Cxs 39, 43 and 45 has also been re-
ported [151,198,199]. As discussed above, it is accompanied with inflammation [35] and
intracellular Ca2+ deregulation [151,152]. In human myoblasts lacking dysferlin, the de
novo expression of Cx40.1, an ortholog of the rodent Cx39, has been reported in addition to
Cxs 43 and 45 [152]. Similarly, skeletal muscles of blAJ mice exhibit an elevated expression
of Cx39, 43 and 45 associated to elevated basal intracellular Ca2+ in myofibers, and muscle
atrophy and lipid accumulation [198,199]. Remarkably, the downregulation of Cx43 and
Cx45 prevents increases in intracellular Ca2+ and normalizes aberrant lipogenic/muscular
commitment, eliminating lipid accumulation and recovering the muscular performance
in blAJ mice [199]. These findings suggest that Cx and Panx hemichannels constitute a
potential therapeutic target for the treatment of dysferlinopathies. In this regard, the use of
boldine, a Cx/Panx-hemichannel blocker that does not affect gap junction channels [200]
prevents muscle alterations induced by mutations in the DYSF gene [198].

There are other MDs in which the involvement of Cx and Panx hemichannels has not
yet been explored. However, as described above, most MDs share non-specific pathological
mechanisms including OS and chronic inflammation in which Cx and Panx hemichannels
could participate. In support of this idea the use of boldine has been shown to reduce the
ROS levels and inflammation signs in different pathologies [201,202].

6. Pharmacological Therapies for MDs: Fight OS, Inflammation and Hemichannels
Overexpression as a Potential Alternative

Innovative therapeutic approaches, such as CRISPR/Cas systems and nanomedicine
for drug repurposing, are in development for the treatment of MDs [203,204]. However,
they are not available in the near future and may not be affordable for many patients.
“Nutraceuticals” or functional foods have emerged in the last few years as an alternative to
traditional medicine. These can be defined as a food or part of a food that provides health or
medical benefits. A large number of nutraceuticals are thought to have anti-inflammatory
and/or antioxidant effects [205]. Among them are resveratrol, coenzyme Q10 (CoQ10)
and curcumin.

As chronic inflammation, OS and connexin de novo expression are pathological mech-
anisms that coexist in MDs, an effective therapy should consider the targeting of these
three processes. In this regard, an interesting compound is resveratrol, a polyphenol that
exhibits both antioxidative and anti-inflammatory properties, as well as inhibits Cx43
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hemichannels [191]. This polyphenol reportedly regulates the expression of different types
of antioxidative and anti-inflammatory signaling proteins by inhibiting the NF-KB path-
way [206,207]. It also activates sirtuin 1 [208], a NAD-dependent deacetylase that regulates
transcription factors involved in muscle development, mass and metabolism [209]. In the
skeletal muscle, resveratrol regulates the expression of genes involved in mitochondrial
biogenesis [210,211], increasing aerobic capacity in mice [210]. Indeed, administration of
0.4 g resveratrol/kg to mdx mice prevent mitochondria accumulation and reduced ROS
levels [212,213]. This polyphenol further promotes skeletal muscle hypertrophy in wild-
type mice [214] and attenuates, either by itself or in combination with exercise training, the
skeletal muscle atrophy induced in different disease animal models [215–218], including
DMD [219]. In mdx mice, it also reduces skeletal muscle necrosis and the expression of
inflammatory markers [214]. As evaluated in a pilot randomized controlled trial in se-
nior adults, it enhances the aerobic capacity and improves skeletal muscle mitochondrial
function in combination with exercise [220]. Recently, an open-label, single-arm, phase-2
trial was performed with 11 patients with Duchenne, Becker, or Fukuyama MDs who
received 500 mg/day of resveratrol, a dose that was increased every 8 weeks to 1000 and
1500 mg/day. After 24 weeks of treatment, motor function, muscular strength and creatine
kinase levels significantly improved [221].

It is noteworthy that most of the studies in mdx mice showing that resveratrol im-
proved the dystrophic pathology used doses ranged from 100–400 mg/Kg/day [216–219],
which are 7 to 28-fold higher than maximal doses used in human [220,222]. Only a recent
study showed that a low dose of resveratrol (5 mg/Kg/day) reduced exercise-induced
skeletal muscle necrosis in mdx mice, as measured by inflammatory infiltrate, myofibres
with fragmented sarcoplasm and areas of regenerating myofibres [214]. However, this
low dose of resveratrol did not reduce necrosis in the quadriceps of sedentary mdx mice,
nor did it increase skeletal muscle hypertrophy, as observed in wild-type mice. Serum
creatin kinase activity was not reduced with low resveratrol doses in either sedentary or
exercise mdx mice [214]. The latter authors proposed that low doses of resveratrol control
exercise-induced inflammation by a signaling pathway different from that of sirtuin 1 [214].
Other studies show that resveratrol displays biphasic dose-dependent effects, exerting
antioxidant properties at low concentrations, and increasing oxidative stress at high concen-
trations [223]. For instance, a low dose of resveratrol (0.07 mg/kg/day) inhibits adenoma
development in mice more potently than a dose 200-fold higher (14 mg/kg/day) [224].
Therefore, it is necessary to determine how different doses of resveratrol can impact skeletal
muscle function.

Another interesting compound is CoQ10. This is an electron carrier in mitochondrial
electron-transport chain [225] and an efficient liposoluble antioxidant [226]. These two
CoQ10 properties are beneficial for mitochondrial bioenergetics [227]. Meta-analysis of
clinical trials indicates that CoQ10 supplementation increases the levels of total antioxidant
capacity and antioxidant defense system enzymes [228,229]. In vitro studies in primary
skeletal muscle cell cultures from mdx mice showed that CoQ10 reduced the OS and
restored Ca2+ levels [230]. In a pilot trial in DMD patients treated with prednisone, CoQ10
showed to increase muscle strength [231]. Therefore, it could be another antioxidant agent
that deserves further study in MDs. Furthermore, considering that it exhibits different
properties than those described for resveratrol, the effectiveness of these two antioxidant
agents could be potentiated when used in combination.

Curcumin is a chemical compound belonging to the group of curcuminoids, which
are phenolic pigments produced by plants of the Curcuma longa species [232]. Curcumin
presents anti-inflammatory and antioxidative properties [233], which seem to rely on its
capability to inhibit the activation of NF-κB [234]. Combined with resveratrol, curcumin
increases skeletal muscle mass in patients with chronic kidney disease [222]. Furthermore,
curcumin has also been shown to significantly reduce the expression of Cx43 by promoting
its degradation [197]. Curcumin has been studied in the context of DMD. In 2006 Durham
and collaborators fed mdx mice with a 1% (w/w)-curcumin-supplemented diet, showing
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an improvement in the muscle contractile properties (compared to mice fed with a control
standard chow diet) [235]. Two years later, Pan et al. (2008) reported that the intraperitoneal
injection of a higher dose of curcumin (1 mg/Kg) improved specific muscle strength
as well as managed to suppress NFκB activation and to reduce the serum TNF-α and
IL-1β levels in mdx mice [236]. These data suggest that supplementing the diet with
curcumin could help to mitigate the inflammatory and dystrophic signs in DMD. As other
neutraceuticals, including resveratrol, curcumin exhibits a very low bioavailability due to
its fast metabolization in intestine and liver [237]. However, new delivery systems that
improved drug solubility in oral formulations are in development [237].

7. Concluding Remarks

MDs are a group of diseases that initially affect mainly skeletal muscles and that
are caused by mutations in genes encoding proteins essential for muscle structure and
function. The absence or dysfunction of these proteins disturb the muscle integrity and/or
homeostasis, provoking a cascade of events including inflammation, overexpression of non-
selective channels such as Cx hemichannels, disruption of the ionic asymmetry across the
sarcolemma, intracellular Ca2+ mishandling and activation of ROS-generating metabolic
pathways. Among these latter is mitochondrial dysfunction, which importantly contributes
to ROS generation, cell death and consequent muscle degeneration. The type of MD and
the MD-causing mutation seem to be critical aspects defining which of these pathways
happen first. However, the interaction between them might constitute a positive feedback
loop that worsen the disease; therefore, the more advanced is the pathological state the
more difficult seems to find a specific molecular target that could abrogate the progression
of the disease. Up to now there is no cure for these ailments, yet gene therapy strategies
that are in development will probably be accessible in the future. Therefore, the use of
existing pharmacological therapies that can disrupt the interplay between these different
cellular responses might help to slow down the progression of the muscle dystrophy. In this
regard, nutraceuticals that interfere with the signaling pathways inducing OS, inflammation,
mitochondria dysfunction or hemichannel activity might mitigate the progress of these
diseases and improve the life quality of the patients. Among them, resveratrol, a polyphenol
that inhibits the NF-KB pathway and Cx hemichannels, and displays antioxidant and anti-
inflammatory properties has shown promising results in clinical trials. However, additional
studies are required to determine its optimal dose and treatment schedule.
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