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Abstract

iNO-associated renal dysfunction in patients with ARDS.

Background: Inhaled nitric oxide (INO) is a rescue therapy for severe hypoxemia in patients with acute respiratory
distress syndrome (ARDS). Pooled data from clinical trials have signaled a renal safety warning for iNO therapy, but
the significance of these findings in daily clinical practice is unclear. We used primary data to evaluate the risk of

Methods: We conducted a cohort study using data from a tertiary teaching hospital to evaluate the risk of incident
renal replacement therapy (RRT) in iNO users compared with that of non-users. Propensity score matching and
competing-risks regression were used for data analysis. Residual confounding was assessed by means of a rule-out
approach. We also evaluated effect modification by pre-specified factors using stratified analysis.

Results: We identified 547 patients with ARDS, including 216 iNO users and 331 non-users. At study entry, 313 (57.2%)
patients had moderate ARDS and 234 (42.8%) had severe ARDS. The mean patient age was 63 + 17 years. The crude
hazard ratio of the need for RRT in iNO users compared with non-users was 2.23 (95% Cl, 1.61-3.09, p < 0.001). After
propensity score matching, there were 151 iNO users matched to 151 non-users. The adjusted hazard ratio was 1.59
(95% Cl, 1.08-2.34, p=0.02). In the stratified analysis, we found that older aged patients (265 years) were more
susceptible to iNO-associated kidney injury than younger patients (p = 0.05).

Conclusions: This study showed that iINO substantially increased the risk of renal dysfunction in patients with ARDS.
Older aged patients were especially susceptible to this adverse event.
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Background

Inhaled nitric oxide (iNO) is a rescue therapy for severe
hypoxemia in patients with acute respiratory distress
syndrome (ARDS). Inhaled nitric oxide gas administered
via a gas mixture with the patient’s inhaled breath
reaches only normally ventilated lung units and causes
selective dilatation of the vessels surrounding normal
alveoli [1]. This improves the ventilation-perfusion
mismatch in patients with hypoxaemic respiratory failure
due to acute lung injury. Although the routine use of
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iNO in ARDS is not recommended based on current
evidence [2, 3], iNO has a substantial effect in improving
oxygenation and is still frequently used in many institu-
tions [4, 5].

Previous studies suggest that iNO has a good safety
profile [6, 7]. When iNO was first introduced, common
safety concerns based on pharmacological knowledge
included formation of methaemogloblin, production of
reactive nitrogen species, hypotension and platelet inhib-
ition [6, 8, 9], but nephrotoxicity was not a major
concern. However, a clinical trial of ARDS published in
1999 reported that iNO potentially doubled the risk of
the need for renal replacement therapy (RRT) compared
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with controls [10]. We recently performed a systematic re-
view and meta-analysis to evaluate the association be-
tween iINO exposure and renal dysfunction in
randomized controlled trials (RCTs), and found that
iNO increased the risk of acute kidney injury by 50%
in patients with ARDS [11].

However, the risk estimated from our meta-analysis
of RCTs may not accurately reflect the risk in daily
clinical practice because RCTs often exclude patients
with severe organ dysfunction and haemodynamic
instability. Excluding unstable patients who are par-
ticularly vulnerable to drug-induced kidney injury in
clinical trials may underestimate the risk of drug-
induced nephrotoxicity [12]. Another concern about
the results of meta-analysis is that study-level analyses
are unable to adjust for competing risks of death.
Furthermore, the information about how the baseline
renal function and risk factors of drug-induced
nephrotoxicity modify the risk of iNO-associated renal
dysfunction is useful for clinicians but has not been
evaluated.

Therefore, we conducted a cohort study to evaluate
the risk of RRT associated with iNO therapy in daily
clinical practice and to explore the effect modification
by age, baseline renal function, shock and disease sever-
ity. We hypothesized that iNO use in ARDS is associated
with an increased risk of the use of RRT.

Methods

Data source and study population

This study was conducted using the electronic medical
records and web-based imaging system of the National
Taiwan University Hospital, a tertiary medical centre in
northern Taiwan. We assembled a base cohort com-
posed of all patients with a diagnosis of ARDS recorded
in the admission or discharge notes of the electronic
medical records between 1 January 2007 and 31 March
2015. Patients were included if they were >20 years of
age and were managed in the ICU with invasive mech-
anical ventilation. We evaluated the clinical course and
serial chest radiographs of each case in the base cohort
to identify those patients who fulfilled the moderate or
severe ARDS diagnostic criteria using the Berlin definition
published in 2012 [13]. We excluded patients with mild
ARDS (partial arterial oxygen pressure (PaO,)/fraction of
inspired oxygen (FiO,) above 200 mmHg) to avoid diver-
sity in the case definition before and after 2012. We also
excluded patients who had received RRT before the onset
of ARDS, patients who received extracorporeal life sup-
port and patients starting iNO therapy more than 3 days
after the onset of ARDS. The patients who were started
on iNO therapy more than 3 days after the onset of ARDS
were excluded, because this study aimed to use incident
user design. Incident user design has the advantages of
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avoiding erroneous adjusting for consequences of treat-
ment and reducing the chances of immortal time bias
[14]. Figure 1 shows the selection process of study
subjects.

Exposure and outcome

Patients who received any dose of iNO were defined as
iNO users. There was no standard protocol for iNO
therapy for the treatment of patients with ARDS in the
study hospital. The initiation and discontinuation of
iNO were at the discretion of the primary care team.
The primary outcome of interest was incident RRT
including intermittent haemodialysis, sustained low
efficiency dialysis and continuous RRT. All patients were
followed from the onset of ARDS until the initiation of
RRT, or until censored on death from any cause, transfer
to another hospital or 30-day follow up after the onset
of ARDS, whichever occurred first.

Covariates

We obtained patient data from the medical records
including age, sex, year of cohort entry, body height and
weight, aetiology of ARDS, Simplified Acute Physiology
Score II (SAPS II) [15], Lung Injury Score [16], comor-
bidities, ventilator settings, vital signs, arterial blood gas,
complete blood cell count, creatinine and bilirubin
levels, urine output, radiographic pattern and vasopres-
sor use on the first day of ARDS. Creatinine clearance
was estimated using the Cockcroft-Gault formula [17].
In the study hospital, patients with ARDS were venti-
lated using tidal volumes and PEEP settings recom-
mended by the ARDS network [18].

Statistical analysis

Cox proportional hazard modelling was used to calculate
the crude hazard ratio and propensity-adjusted cause-
specific hazard ratio for RRT. We computed the propen-
sity score using logistic regression with receipt of iNO
therapy as the dependent variable. Propensity-based
matching was used to select control patients who were
similar to patients receiving treatment, matching on
many confounders simultaneously [19]. For matching, a
caliper width of 0.2 times the standard deviation of the
propensity score without replacement was used [20].
Using the propensity-matched cohort, we analysed data
by intention-to-treat analysis and calculated the point
estimates and 95% confidence intervals (95% CI) of the
treatment effect.

Because the important assumption of non-informative
censoring required for a Kaplan-Meier estimator and
Cox proportional hazard model might be violated in
our case due to the presence of a competing risk of
death [21], we used a cumulative incidence function
rather than a Kaplan-Meier estimator to estimate the
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Fig. 1 Process for selection of study subjects. ARDS acute respiratory distress syndrome, iNO inhaled nitric oxide, ECMO extracorporeal membrane

probabilities of incident RRT over time. Our primary
analysis used the model proposed by Fine and Gray
to account for competing risks due to death [22].

In addition, we assessed the strength of an unmeasured
confounder needed to move the observed effect to the null
using the rule-out approach proposed by Schneeweiss
[23], because there may be unmeasured confounders
inherent to the nature of the design of this observa-
tional study. To explore possible effect modification
by age, baseline renal function, shock and disease severity
based on biological plausibility [24, 25], we used stratified
analysis to estimate the risk in each subgroup. All
analyses were conducted with Stata version 11
(StataCorp, TX, USA).

Results

A total of 547 patients met the study inclusion criteria,
including 216 iNO users and 331 non-users. The process
for selection of study subjects is provided in Fig. 1. The
mean patient age was 63 + 17 years. At study entry, 313
patients (57.2%) had moderate ARDS and 234 (42.8%)
had severe ARDS. The major causes of ARDS were
pneumonia (77.7%) and non-pulmonary sepsis (14.4%).
The median exposure duration of iNO for iNO users
was 4 days (interquartile range, 2—7 days) and median
initial dose of iINO was 20 ppm (interquartile range,
15-20). The iNO users had worse oxygenation, higher

Lung Injury Scores, higher plateau pressure and
higher mean airway pressure compared with the non-
users (Table 1). After one-to-one matching for pre-
treatment covariates, 151 iNO users were matched
with iNO non-users. Table 1 presents the baseline
characteristics of the patients in the overall and
propensity-matched cohorts. The propensity score
distributions among iNO users and non-users and the
30 variables used in the propensity score model are pro-
vided in Additional file 1 (Additional file 1: Table S1 and
Figure S1). The overall 30-day mortality for the total
cohort and propensity-matched cohort was 42% and 43%
respectively.

The crude risk for the need for RRT was significantly
higher in iNO users compared with non-users (37% vs.
21%, p <0.001), although the baseline estimated cre-
atinine clearance was better in iNO users (60.9 vs.
54.5 mL/minute, p =0.04, Table 1). The crude hazard
ratio was 2.23 (95% CI 1.61-3.09, p < 0.001).

Figure 2 depicts the cumulative incidence of RRT over
time using the propensity-matched cohort. The 30-day
cumulative incidence of RRT was 34% and 23% for iNO
users and non-users, respectively. Table 2 summarizes
the adjusted hazard ratios of incident RRT estimated
by different models. The primary analysis with Fine-
Gray competing-risks regression using the propensity-
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Table 1 Baseline characteristics of patients before and after propensity matching

Characteristic

Overall cohort (n=547)

Propensity-matched cohort (n=302)

iNO users (n=216) Non-users (hn=331) Pvalue iNO users (n=151) Non-users (n=151) P value

Age, years 61+17 64+16 0.07 63+17 62+ 16 0.59
Female sex, n (%) 66 (30.6) 114 (344) 0.34 48 (31.8) 50 (33.1) 0.81
ARDS severity

Moderate, n (%) 105 (49) 208 (63) 0.001 82 (54) 74 (49) 0.36

Severe, n (%) 111 (51) 123 (37) 69 (46) 77 (51)
Body-mass index, kg/m? 233+47 219+39 <0001 227+47 227+40 0.95
Cause of ARDS, n (%)

Pneumonia 167 (77.3) 258 (78.0) 0.52 121 (80.1) 122 (80.8) 0.93

Non-pulmonary sepsis 32 (14.8) 47 (14.2) 20 (133) 19 (12.6)

Acute interstitial pneumonia 11 (5.1) 10 (3.0) 7 (4.6) 5(3.3)

Multiple transfusion 1(0.5) 5(1.5) 1(0.7) 2(1.3)

Others 5(23) 11 (33) 2(13) 3(20)
Renal function

Creatinine, mg/dL 1.1 (0.8-1.6) 1.1(08-1.8) 0.75 1.1(08-1.06) 1.0 (08-1.7) 0.83

Creatinine clearance, mL/min 570 (355-822) 483 (31.0-702) 0.01 55.2 (35-81) 53.8 (33.3-81.5) 097

AKl stage 1, n (%) 57 (78) 91 (79) 39 (81) 42 (84)

AKI stage 2, n (%) 9(12) 13(11) 0.98 5(10) 4 (8) 091

AKI stage 3, n (%) 7 (10) 11(10) 4(8) 4(8)
Shock, n (%) 91 (42.1) 117 (354) 0.11 56 (37.1) 56 (37.1) 1.00
SAPS I 499+ 151 498+ 147 0.95 499+ 142 502+152 0.89
Lung injury score, total score 114+£19 1095+ 19 0.005 11.3+18 11.5+18 046
FiO, 0.9 (0.6-0.9) 0.7 (0.6-1.0) <0.001 08 (06-1.0) 0.8 (0.6-1.0) 0.96
PaO,/FiO, 96 (68 — 134) 123 (84-181) <0.001 104 (74-143) 99 (66 — 140) 045
PEEP, cm H,O 89+36 8.1£30 0.002 83+34 87+32 035
Tidal volume, mL/pBW 87+£19 85+20 0.23 87+£19 86+20 0.82
pH 7.38+0.10 7.39+£0.09 0.35 739+£0.10 740 £0.08 0.66
Pa0,, mmHg 820+332 942+434 <0001 839+350 809+320 045
PaCO, mmHg 375+104 371£105 067 374+£99 373+87 0.97
HCO3, mmol/L 220+5.1 225+£56 0.27 223+52 225+47 0.66
Static respiratory compliance, mL/cm-H,O  29.6+12.8 29.7£13.1 092 290+124 302£137 045
Plateau pressure, cm H>O 28+6.8 26+73 0.03 27+6.1 27+79 0.70
Driving pressure (cm H,0) 188+64 182+66 0.35 185+56 185+7.1 0.95
Mean airway pressure, cm H,O 15743 145£39 0.002 150£4.1 152+38 062
Duration of mechanical ventilation, days 11 (6-20) 12 (7-24) 0.09 12 (6-22) 12 (6-21) 093

Data are expressed as the mean + standard deviation or median (interquartile range) unless otherwise specified. Detailed variables used in the propensity score
model are listed in Additional file 1: Table S1. Abbreviations: ARDS acute respiratory distress syndrome, AKI acute kidney injury, iNO inhaled nitric oxide,
PEEP positive end-expiratory pressure, pBW predicted body weight, SAPS Simplified Acute Physiology Score

matched cohort showed that the adjusted hazard ratio of
iNO users compared with non-users was 1.59 (95% CI
1.08-2.34, p = 0.02). The cause-specific hazard ratio from
the Cox proportional hazard model, treating death as
censoring, was 1.76 (95% CI 1.19-2.60, p = 0.005).

Figure 3 shows the results of the pre-specified sub-
group analyses based on competing-risk regression using

the propensity-matched cohort. In the subgroup analysis,
older age (age =65 years) was associated with a higher
risk of iNO-associated RRT compared with younger
age (p value for interaction 0.05). The risk of iNO-
associated RRT was also higher among female patients
and patients with lower creatinine clearance, absence of
shock and lower SAPS II scores compared with their
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Fig. 2 The cumulative incidence of the initiation of renal replacement
therapy for inhaled nitric oxide (iNO) users and non-users in the
propensity-matched cohort
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counterparts, but these findings were not statistically sig-
nificant on interaction.

Additional file 1: Figure S2 shows the results of sensi-
tivity analysis to determine whether an unmeasured
binary confounder could explain a hazard ratio of this
magnitude based on competing risk regression using
the propensity-matched cohort. The x-axis represents
the hypothetical hazard ratio for RRT associated with the
unmeasured confounder and the y-axis represents the
hypothetical association between the confounder and iNO
use.

Discussion

This is the first study to evaluate the risk of iNO-
associated renal dysfunction in daily clinical practice.
We found that among patients with ARDS, exposure to
iNO significantly increased the risk of need for RRT, and
that patients =65 years old were especially prone to this
hazard. Our results are consistent with the data from
prior RCTs, which have shown that iNO therapy in-
creases the risk for renal dysfunction in patients with
ARDS by 50% [11, 26]. Even though we used competing-
risk analysis for a conservative estimation of the event
risk, the risk of RRT increased by 59% in patients receiv-
ing iNO therapy in this cohort study. Based on the re-
sults of this study and the pooled data from randomized
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trials [11, 26], we suggest that clinicians monitor renal
function in patients receiving iNO and exercise caution
with the concurrent use of nephrotoxic agents and iNO
therapy.

A number of risk factors enhance the vulnerability of
the kidney to the nephrotoxic effects of drugs and are
usually categorized as patient-specific, kidney-related,
and drug-related factors [25]. Old age, female sex and
chronic kidney disease are important patient-specific
factors associated with increased vulnerability to drug-
related kidney injury [12, 25]. In the subgroup analysis
of our study (Fig. 3), older patients were more prone to
iNO-associated renal dysfunction. We also observed a
higher risk of iNO-associated renal dysfunction in fe-
male patients and in patients with impaired baseline
renal function, but these factors were not found to be
significant effect modifiers . Shock is also an important
risk factor for acute kidney injury among critically ill pa-
tients [27]. In the subgroup analysis, we did not observe
a synergistic effect of iNO and shock on the risk of renal
dysfunction. In contrast, the effect of iNO on renal dys-
function appeared to be obscured by the presence of
shock. We speculate that this might be related to the
dominant effect of shock on the development of acute
kidney injury via the mechanism of ischaemic kidney
injury [28].

Emerging data have revealed the phenomenon and
mechanism of lung-kidney cross-talk [29]. Positive-
pressure ventilation and PEEP alters venous return, neu-
rohormonal system, pulmonary vascular resistance, and
right ventricular function. High PEEP is associated with
renal dysfunction [30], and right ventricular dysfunction
may contribute to alterations of renal perfusion and oxy-
genation [29]. The prevalence of acute cor pulmonale in
ARDS is estimated to be 20-30% [31]. If iNO was used
to treat cor pulmonale or its use was associated with a
higher airway pressure setting, a biased association
between iNO exposure and renal dysfunction may be
observed in the context of lung-kidney cross-talk. In this
study, pulmonary arterial pressure was seldom measured
and iNO therapy was usually initiated for hypoxaemia.
PEEP levels, mean airway pressure and plateau pressure
are similar in iNO users and non-users. Lung-kidney

Table 2 Primary analysis of the hazard ratio of renal replacement therapy associated with inhaled nitric oxide (iNO)

Model Events/person days, number Hazard ratio (95% Cl) P value
iNO Control

Crude hazard ratio 79/2175 69/5417 223 (1.61 to 3.09) <0.001

Multiple regression Cox model® 79/2175 69/5417 2.17 (148 to 3.20) <0.001

Cause-specific Cox model, propensity-matched cohort 52/1600 36/2370 1.76 (1.19 to 2.60) 0.005

Fine-Gray competing-risks regression, propensity-matched cohort 52/1600 36/2370 1.59 (1.08 to 2.34) 0.02

@Adjusted for all variables used in the logistic regression model for the propensity score
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Sub Hazard Ratio  P-value for

Hbgroup (95% CI)  Heterogeneity
Age

265yr —_—— 2.57 (1.32, 5.02)

<65yr — 1.08(0.62,1.87) 005
Sex

Female — 2.24 (1.17,4.28) 021

Male —T 1.30 (0.75, 2.23) '
Creatinine clearance

= 60 ml/min — T 1.40 (0.60, 3.27) 067

< 60 ml/min — 1.74 (1.09, 2.78) :
Shock

Yes 108(061,189) o

No —— 2.18(1.22,3.91) .
SAPS I

> 50 -1 1.36 (0.81, 2.27) 025

<50 —_— 2.23 (1.13, 4.40) -

T T
0.1 1 10
Fig. 3 Adjusted hazard ratios for the need for renal replacement therapy in patients treated with inhaled nitric oxide compared with that of
non-users in the pre-specified subgroups. SAPS Simplified Acute Physiology Score

cross-talk cannot explain the excessive risk of renal
dysfunction observed in the iNO-treated group. It is
noteworthy that the PEEP levels in this study were
lower than the levels recommended in the literature.
This situation is not uncommon in observational
studies because there are barriers to achieving the
suggested PEEP levels in clinical practice. In the
LUNG SAFE study [4], a large epidemiology study of
ARDS management in real-world practice, the ob-
served PEEP levels (8.4 ¢cm H,O) were similar to the
PEEP levels in our study.

The mechanisms accounting for iNO-associated renal
dysfunction are unclear. The metabolites and by-products
of nitric oxide may play a role. Nitric oxide is metabolized
in the blood in several ways [32]. First, iNO interacts with
dissolved O, to form NO5. Also, iNO interacts with oxy-
haemoglobin to form methaemoglobin, which is in turn
reduced back to haemoglobin and NOj [33]. Finally, nitric
oxide can combine with deoxyhaemoglobin to form nitro-
sohaemoglobin, or it may combine with carrier molecules
to form S-nitrosothiols [7]. These nitric oxide metab-
olites can increase protein nitrosation and increase
the oxidative load [34]. With respect to the renal
effects of these metabolites and by-products of iNO,
excessive methaemoglobin may result in tissue hypoxia;
however, the formation of methaemoglobin is usually in-
significant in iNO doses below 20 ppm [6]. In a previous
animal study, systemically circulating NO; may have led
to cytotoxic effects on renal parenchymal cells [35]. Future
studies are needed to determine the pathways of iNO
associated renal dysfunction.

We performed sensitivity analysis to address whether
an unmeasured binary confounder could explain the
hazard ratio of the observed effect. Additional file 1:
Figure S2 shows the results of our sensitivity analysis.
For example, we supposed that the use of a nephrotoxic
drug was a potential unmeasured confounder and was
used in 40% of the patients (green line). If the drug was
used fourfold more frequently in iNO-users than in non-
users (y-axis), and the risk of renal dysfunction increased
more than fourfold (x-axis), then the drug alone could
itself account for the observed association between iNO
exposure and renal dysfunction. However, such a sce-
nario is very unlikely in actual clinical practice because
no known commonly used interventions in ARDS are
associated with high nephrotoxicity (increased fourfold
risk of initiating RRT). For the potential confounders
with prevalence of 10% (blue line), these confounders
must be associated with more than fivefold increased
risk of renal dysfunction. These results suggest that
the association that we observed between iNO expos-
ure and renal dysfunction is unlikely to be due solely
to confounding.

Using RRT as a surrogate measure of nephrotoxic
effects may introduce bias if RRT was initiated for indi-
cations other than iNO-associated renal failure or if the
physicians considered different thresholds for initiation
of RRT for iNO users and non-users. Bias related to the
former aspect would be limited because the factors asso-
ciated with initiation of RRT, such as comorbidity, shock
and baseline renal function, were well-balanced in the
two groups after propensity-score matching. In addition,



Ruan et al. Critical Care (2016) 20:389

this bias would not alter the study conclusion because
non-differential misclassification leads the true risk to
the null value.

Our study has several limitations. First, this is a single-
centre study, and the risk of iNO-associated renal dys-
function observed in this study may not be generalizable
to patients in other hospitals. Second, there was no
standard protocol for iNO therapy for the treatment of
patients with ARDS in the National Taiwan University
Hospital. The initiation and discontinuation of iNO were
at the discretion of the primary care team. It is unclear
whether the preference for iNO therapy affected the
practice on RRT. We used propensity score matching in
this study to balance the baseline covariates among
iNO users and non-users to decrease confounding by
indication. Finally, there may be unmeasured con-
founders inherent in the design of this observational
study. We performed sensitivity analysis (Additional
file 1: Figure S2) to address whether an unmeasured
binary confounder could explain the hazard ratio of
the observed effect. The results of the sensitivity ana-
lysis suggest that the observed association between
iNO and renal dysfunction is unlikely to be solely
due to confounding.

Conclusions

This study used data from a clinical practice environment
to evaluate the risk of iNO-associated renal dysfunction in
terms of newly initiated RRT. We found that iNO was
associated with an increased risk of the need for RRT in
patients with ARDS, especially in patients 265 years old.
Clinicians should monitor renal function and avoid the
concurrent use of nephrotoxic agents during iNO therapy.
In addition, we advise the monitoring and reporting of
renal function in future iNO trials.

Additional file

Additional file 1: Table S1. Baseline variables used for propensity
matching. Figure S1. Propensity score distribution for the users and
non-users of inhaled nitric oxide (iINO). Figure S2. The strength of an
unmeasured confounder needed to move the observed effect to the
null. (PDF 410 kb)
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