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H I G H L I G H T S

• A 3-tier structure consisting of HER2-positive, HER2-low, and HER2-zero could more effectively fit clinical needs for IDC.
• Multisequence MRI-based machine learning radiomics showed good efficiency in classifying expression status of HER2.
• Random forest algorithm exhibits higher diagnostic performance than the classification algorithms of LR and SVM.
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A B S T R A C T

Background: Human epidermal growth factor receptor 2 (HER2) is a tumor biomarker with significant prognostic
and therapeutic implications for invasive ductal breast carcinoma (IDC).
Objective: This study aimed to explore the effectiveness of a multisequence magnetic resonance imaging (MRI)-
based machine learning radiomics model in classifying the expression status of HER2, including HER2-positive,
HER2-low, and HER2 completely negative (HER2-zero), among patients with IDC.
Methods: A total of 402 female patients with IDC confirmed through surgical pathology were enrolled and
subsequently divided into a training group (n = 250, center I) and a validation group (n = 152, center II).
Radiomics features were extracted from the preoperative MRI. A simulated annealing algorithm was used for key
feature selection. Two classification tasks were performed: task 1, the classification of HER2-positive vs. HER2-
negative (HER2-low and HER2-zero), and task 2, the classification of HER2-low vs. HER2-zero. Logistic
regression, random forest (RF), and support vector machine were conducted to establish radiomics models. The
performance of the models was evaluated using the area under the curve (AUC) of the operating characteristics
(ROC).
Results: In total, 4506 radiomics features were extracted from multisequence MRI. A radiomics model for pre-
diction of expression state of HER2 was successfully developed. Among the three classification algorithms, RF
achieved the highest performance in classifying HER2-positive from HER2-negative and HER2-low from HER2-
zero, with AUC values of 0.777 and 0.731, respectively.
Conclusions: Machine learning-based MRI radiomics may aid in the non-invasive prediction of the different
expression status of HER2 in IDC.

1. Introduction

Breast carcinoma is the most prevalent cancer and the leading cause
of cancer-related mortality in women worldwide [1]. Invasive ductal
carcinoma (IDC), which accounts for 80% of all invasive breast cancers,
is a heterogeneous group of diseases with different characteristics and

behaviors. Human epidermal growth factor receptor 2 (HER2) protein
serves as a tumor biomarker with significant prognostic and therapeutic
implications in invasive breast carcinoma [2]. Historically, HER2 status
has typically been classified as either HER2-positive (immunohisto-
chemical [IHC] score of 3+, or amplification detected through HER2
gene fluorescence in-situ hybridization [FISH]) or HER2-negative. This
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binary categorization plays a crucial role in determining the prognosis
and treatment decisions for breast carcinoma [3]. HER2-positive inva-
sive breast cancer is characterized by high invasiveness, high degree of
malignancy, recurrence, metastasis, and poor prognosis [4]. Anti-HER2
targeted treatment is routinely considered in the management of the
breast carcinomas that test positive for HER2 in clinical practice [5].
Therefore, it is crucial to accurately evaluate the HER2 status in in-
dividuals with invasive breast carcinomas. Recently, there has been
growing attention in invasive breast carcinomas regarding a newly
proposed category known as “HER2-low” (IHC score of 1+, or 2+ with
FISH-negative). Approximately half of breast tumors that are catego-
rized as HER2-negative display HER2-low expression [6]. Compared to
both completely HER2--negative (HER2--zero [IHC score of 0]) and
HER2-positive, the HER2-low breast carcinomas exhibit unique char-
acteristics in terms of biology, clinicopathological features, therapeutic
response, and clinical outcome [7]. In HER2-low breast carcinoma,
recent reports have shown encouraging response rates of antibody-drug
conjugates, trastuzumab-emtansine and trastuzumab-deruxtecan
(formerly DS8201a) [8–10]. Hence, it is imperative to identify the
HER2-low status as a novel classification of breast carcinoma. In inva-
sive breast carcinoma, a three-tier structure consisting of HER2-positive,
HER2-low, and HER2-zero can more effectively meet the clinical needs
to enhance prognosis prediction and provide personalized treatment
guidance.

The HER2 status is primarily determined through IHC and FISH ex-
amination after biopsy or surgical tumor excision. Nevertheless, biopsy
procedures are associated with complications. Furthermore, the smaller
sample size obtained from the core needle biopsy procedure may not be
sufficient to represent the HER2 status of the whole tumor owing to the
intratumor heterogeneity of HER2 expression [11]. Moreover, the
instability of HER2 expression is evident throughout the progression
from initial to relapsed breast cancer [12]. Therefore, a non-invasive,
economical and effcetive method is required for the pretreatment pre-
diction of HER2 status in IDC.

In clinical practice, the magnetic resonance imaging (MRI) has
become a routine examination for patients at a risk of breast carcinoma.
Nonetheless, MRI still presents limitations in the evaluation of HER2
status. Radiomics is a novel research field focused on extracting and
analyzing imaging features to reflect tissue information [13]. It has been
used to identify molecular subtypes, predict responses to neoadjuvant
chemotherapy, and forecast survival outcomes in breast carcinoma
[14–17]. According to recent studies, radiomics derived from MRI can
potentially offer insights into forecasting the HER2 status in breast
carcinomas [18,19]. However, these investigations anticipated the
HER2 condition by utilizing a binary classification, merging HER2-low
and HER2-zero as HER2-negative. In this study, we aimed to use mul-
tisequence MRI-based radiomic features coupled with machine learning
to classify the various expression statuses of HER2 in IDC.

2. Materials and methods

2.1. Patients

A total of 402 patients, 250 from center I and 152 from center II,
were enrolled in this retrospective multicenter study. The inclusion
criteria were as follows: (1) confirmed IDC through surgical pathology;
and (2) underwent MRI less than 1 month before surgery. The exclusion
criteria were as follow: (1) preoperative treatment, (2) lack of complete
pathology data (HER-2 status unknown), (3) inability to visualize a
known malignancy, and (4) poor MRI quality. Data from centers I and II
were assigned to the training and validation cohorts, respectively.
Clinical characteristics, including age, body mass index, maximum axial
diameter of the tumor size, type of time-intensity curve (TIC), estrogen
receptor (ER), progesterone receptor (PR), and Ki-67, were extracted
from the patients’ medical records. The TIC were divided into type I
(inflow type), type II (plateau type), and type III (outflow type). Patients

were classified into three subtypes based on their HER2 expression
status: HER2-positive, HER2-low, and HER2-zero. Two binary classifi-
cation tasks were conducted, involving the categorization of HER2 as
either positive or negative (including HER2-low and HER2-zero) in task
1 and the classification of HER2-low from HER2-zero in task 2. A
flowchart of the study is shown in Fig. 1. The institutional review boards
of both participating centers approved this retrospective study and
waived the requirement for informed consent.

2.2. MRI acquisition and image analysis

All patients underwent preoperative breast MRI scan. Axial fat
saturation T2 weighted image (FST2WI) was acquired before contrast
medium administration. Next, the DCE-MRI series were obtained prior
to and at five to six points at 60 sec intervals using contrast medium
(gadodiamide and gadopentetate dimeglumine) at a dose of 0.1 mmol/
kg and a rate of 2–3 ml/s. The first phase (T1WI) and peak enhanced
phase (T1WI+C), according to the TIC, were selected for analysis. De-
tails of the MR images acquisition parameters can be found in the Sup-
plementary Material S1. A radiologist manually delineated the three-
dimensional region of interest (ROI) covering the entire tumor volume
using ITK-SNAP 3.8.0 software on axial FST2WI, T1WI, and T1WI+C
(Fig. 2). Subsequently, 50 cases were randomly selected, and segmen-
tation was repeated by another radiologist.

2.3. Histopathological analysis

The immunohistochemical status of the IDCs, including ER, PR, Ki-
67, and HER2 status, were obtained from the final histopathological
results of the surgical tumor specimens. ER and PR with over 1 %
staining were defined as hormone receptor (HR)-positive [20]. The
cutoff value for Ki-67 was set at 30 % [21]. HER2 status was categorized
as HER2-positive (IHC score of 3+ and 2+ with FISH-positive),
HER2-low (IHC score of 1+, or 2+ with FISH-negative), and HER2
-negative (IHC score of 0) (Fig. 3).

2.4. Radiomics feature extraction

Prior to image extraction, the pixels of the image were resampled
using B-spline interpolation to a uniform voxel size of 1 × 1 × 1 mm.
Subsequently, gray-level normalization was performed using the z-score
method, with pixel intensity values constrained to within ±3 standard
deviations of the mean. Additionally, gray levels were discretized using
bin widths of 5. A series of image filters were then used, including the
Laplacian of Gaussian, gradient, local binary pattern, and wavelet image
filters. The PyRadiomics package was used to extract features from the
original and filtered images [22]. The process of features extraction and
standardization followed the Image Biomarker Standardization Initia-
tive guidelines [23]. Supplementary Material S2 presents the detailed
information regarding these features. In total, 1502 features were ac-
quired for each sequence, including 14 shape, 288 first-order, and 1200
texture features.

2.5. Radiomics selection and model establishment

Initially, the ComBat harmonization technique was applied to align
the feature distributions computed from various MRI scanners and
protocols. Subsequently, the intraclass correlation coefficient (ICC) was
utilized to evaluate the interobserver variability of the radiomics fea-
tures. Features with an ICC greater than 0.75 were retained for further
analysis. Subsequently, univariable analysis was conducted to identify
significant features using the Wilcoxon rank-sum test (P < 0.05). The
Boruta algorithm was employed to remove irrelevant features [24].
Finally, the best radiomics features were selected using simulated
annealing (SA) algorithm. This algorithm considers spectral character-
istics from a global view of the data and extracts features in an optimized
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combination to avoid overfitting the model training [25].
Radiomics models were established to identify the HER2 status based

on the retained radiomics features. Two classification tasks were con-
ducted. The first step involved establishing a model to distinguish be-
tween HER2-positive and HER2-negative (including HER2-low and
HER2-zero). Next, the task 2 was executed to further classify HER2-
low and HER2-zero. Three machine learning algorithms—logistic
regression (LR), random forest (RF), and support vector machine
(SVM)—, were utilized to build the prediction models. These models
were developed using the training cohort and subsequently validated on
both the training and validation cohorts.

2.6. Statistical analysis

R software (version 4.1.0, www.rproject.org) was used to perform
statistical analyses. The Mann-Whitney U test and chi-square test were
used to compare the variations in variables. Receiver operating char-
acteristic (ROC) curves were plotted. The area under the ROC curve
(AUC), accuracy, sensitivity, and specificity were used to evaluate the
models’ performance. Youden’s index was utilized to determine the
optimal cutoff point on the ROC curve. The DeLong test was employed to
compare the differences in values between the radiomics models. The
clinical usefulness of the models was evaluated through decision curve
analysis (DCA). Statistical significance was set at P < 0.05.

Fig. 1. Flowchart of patient selection and study design.

Fig. 2. Examples of manual lesion segmentation in a patient with endometrial
cancer. Axial fat saturation T2-weighted imaging (FST2WI) with manually
segmented regions of IDC (a) and axial contrast-enhanced T1-weighted imaging
(T1WI+C) (b).

Fig. 3. Immunohistochemistry (IHC) showing an invasive ductal breast carcinoma (IDC) with completely negative expression of human epidermal growth factor
receptor 2 (HER2) (HER2-zero) (a), an IDC with HER2-low (b), and IDC with HER2-positive (all original magnification ×40).
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3. Results

3.1. Patient clinical characteristics

In total, 402 female patients with IDC were consecutively enrolled
and stratified into the training (250 patients, center I), and validation
(152 patients, center II) cohorts. Table 1 presents the clinical charac-
teristics of the training and validation cohorts. The HER2-positive,
HER2-low, and HER2-zero proportions were 29.20 %, 32.80 %, and
38.00 %, respectively, in the training, and 20.39 %, 54.61 %, and
25.00 %, respectively, in validation cohort.

3.2. Feature selection and model establishment

From the multisequence MRI, 4506 radiomic features were extrac-
ted. ComBat eliminated the radiomics features variations caused by
intrascanner variability. For task 1, 26 features were retained after the
ICC and univariate analyses. After the Boruta algorithm selection, 12
radiomics features were selected. Finally, four radiomics features
remained after the SA algorithm was applied, including three from
FST2WI (original_GLRLM_RunEntropy, wavelet.LHL_GLCM_Difference
Variance, and wavelet.LHL_GLCM_DifferenceVariance), and one from
T1WI+C (wavelet.LHH_GLRLM_LowGrayLevelRunEmphasis). For task
2, four radiomics features finally remained with three from FST2WI
(original_GLSZM_GrayLevelNonUniformityNormalized, wavelet.LLL_GL
RLM_GrayLevelNonUniformityNormalized, and wavelet.LLL_GLSZM_Gr
ayLevelNonUniformityNormalized) and one from T1WI+C (wavelet.
LHH_GLCM_ClusterShadewere). The distribution of radiomics features is
shown in Supplementary Material S3. Three machine learning classi-
fiers, LR, RF, and SVM, were used to establish the prediction models in

the training and validation cohorts.

3.3. Performance of the machine learning radiomics models

For the classification of HER2-positive from HER2-negative, the RF
model outperformed the LR (AUC: 0.777 vs. 0.611, P < 0.001) and SVM
models (AUC: 0.777 vs. 0.702, P = 0.064) in the training cohort. This
finding was also observed in the validation cohort. The RFmodel yielded
the highest AUC (0.765), followed by the LR (AUC: 0.542, < 0.001) and
SVM models (AUC: 0.714, P = 0.261). The performance of each model
for task 1 is listed in Table 2. The ROC curve analysis of the radiomics
models is shown in Fig. 4. The AUC of the RF model for distinguishing
between HER2-low and HER2-zero in the training and validation co-
horts were 0.731 and 0.713, respectively, which were higher than those
of the other two models. Fig. 5 shows the ROC curve analysis for the
identification of the HER2-low status. The discrimination performance
of each model is summarized in Table 3. The DCA results demonstrated
that the RF algorithm achieved higher net benefits than the other clas-
sifiers, with threshold range of 0.125–0.961 for task 1 and 0.205–0.823
for task 2.

4. Discussion

Given the increasing interest in HER2-low in breast carcinoma, we
developed machine learning radiomics models based on multisequence
MR images for the noninvasive assessment of HER2 status, including
HER2-positive, HER2-low, and HER2-zero in IDC. The LR, RF, and SVM
classification algorithms were used to build the prediction models. Our
results demonstrated that the RF model yielded the best performance in
the training cohort. Results were validated using an independent,
external validation cohort.

Radiomics is a non-invasively approach that allows the extraction of
a multitude of quantitative features from medical images, enabling the
delineation of intrinsic biological characteristics. Previous studies have
demonstrated the utility of radiomics for classifying of HER2-positive
and HER2-negative in breast carcinoma. Li et al. [18] reported that a
radiomics model based on MR images for predicting HER2-positive
breast carcinoma yielded an AUC of 0.808 in the training cohort.
Another study non-invasively evaluated the efficacy of radiomics model
based on multiparametric MRI and showed its ability to predict the
HER2 status, with an AUC of 0.810 in the validation cohort [26]. In our
study, the results revealed an AUC of 0.777 for the RF model for pre-
dicting HER2-positive in IDC. These findings are partially consistent
with those of above studies, which also showed that machine learning
radiomics from multisequence MRI was a useful analytical tool to for
identification of HER2-positive IDC.

Recently, a new nomenclature for HER2-low breast carcinomas was
proposed. HER2-low breast carcinoma has been actively investigated by
both oncologists and pathologists because of its distinct clinical and
mutational features compared with HER2-zero and HER2-positive
breast cancer. Therefore, the categorization of HER2 into three sub-
types: (1) HER2-positive, (2) HER2-low, and (3) HER2-zero, may pro-
vide clearer insight into the prognosis and management of IDC patients.
Herein, we developed a machine learning radiomics model based on
multisequence MRI for the prediction of HER2-low IDC. Four optimal
texture features, grey-level cooccurrence matrix, grey-level run-length
matrix, and grey-level size zone matrix, were retained to establish a
model for distinguishing HER2-low from HER2-zero IDC. According to
the hypothesis, texture features are conducive to the better exploration
of intratumor heterogeneity and subtle differences in gray and texture
level features [27]. In comparison to HER2-zero, the values of these
features were significantly higher in the HER2-low group, suggesting
more homogeneity in IDC with HER2-low.

In machine learning, classification is considered as a supervised
learning task that infers a function from labeled training data [28]. In
this study, we employed three classifiers, LR, RF, and SVM, with a

Table 1
Patient clinical characteristics in the training and validation cohorts [median
(Q1, Q3) or no. (%)].

Training cohort
(n = 250)

Validation cohort
(n = 152)

P

Age (year) 49.00
[44.00;56.00]

50.00
[45.000;57.000]

0.637

Body mass index
(kg/cm2)

24.10
[22.13;26.60]

23.93 [22.20;26.67] 0.956

Tumor size (cm) 2.50 [1.90;3.68] 2.20 [1.70;2.92] <

0.001
TIC Type <

0.001
Type I 6 (2.40 %) 10 (6.58 %)
Type II 80 (32.00 %) 76 (50.00 %)
Type III 164 (65.60 %) 66 (43.42 %)
Position: 0.980
Left 125 (50.00 %) 75 (49.34 %)
Right 125 (50.00 %) 77 (50.66 %)
Estrogen receptor state 0.171
Negative 71 (28.40 %) 33 (21.71 %)
Positive 179 (71.60 %) 119 (78.29 %)
Progesterone receptor
state

0.544

Negative 91 (36.40 %) 50 (32.89 %)
Positive 159 (63.60 %) 102 (67.11 %)
HER2 state <

0.001
HER2-zero 95 (38.00 %) 38 (25.00 %)
HER2-low 82 (32.80 %) 83 (54.61 %)
HER2-positive 73 (29.20 %) 31 (20.39 %)
Ki-67 <

0.001
Low (30 %) 177 (70.8 %) 49 (32.20 %)
High (≥30 %) 73 (29.2 %) 103 (67.80 %)
ALN metastasis 0.990
Negative 87 (34.80 %) 52 (34.21 %)
Positive 163 (65.20 %) 100 (65.79 %)

TIC: time intensity curve; HER2: human epidermal growth factor receptor 2;
ALN: axillary lymph node
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Table 2
Performance of radiomics models with LR, RF, and SVM for task 1.

AUC (95 % CI) ACC (95 % CI) SEN (95 % CI) SPE (95 % CI) PPV (95 % CI) NPV (95 % CI)

Training cohort
LR 0.611(0.536–0.685) 0.516(0.452–0.579) 0.822(0.643–0.904) 0.390(0.237–0.475) 0.357(0.303–0.379) 0.841(0.763–0.866)
RF 0.777(0.715–0.839) 0.608(0.544–0.669) 0.904(0.741–0.974) 0.486(0.328–0.559) 0.420(0.373–0.439) 0.925(0.892–0.934)
SVM 0.702(0.632–0.772) 0.648(0.585–0.707) 0.781(0.589–0.863) 0.593(0.310–0.678) 0.442(0.374–0.467) 0.868(0.774–0.882)
Validation cohort
LR 0.542(0.423–0.661) 0.414(0.335–0.497) 0.806(0.484–0.903) 0.314(0.091–0.430) 0.231(0.153–0.252) 0.864(0.647–0.897)
RF 0.765(0.669–0.861) 0.750(0.673–0.817) 0.710(0.452–0.852) 0.760(0.562–0.866) 0.431(0.326–0.477) 0.911(0.883–0.921)
SVM 0.714(0.604–0.825) 0.743(0.666–0.811) 0.581(0.387–0.742) 0.785(0.438–0.909) 0.409(0.316–0.469) 0.880(0.803–0.894)

AUC: area under curve; ACC: accuracy; SEN: sensitivity; SPE: specificity; PPV: positive predict value; NPV: negative predict value; 95 % CI: 95 % confidence interval;
LR: logistic regression; RF: random forest; SVM: support vector machine

Fig. 4. Areas under the ROC curve of the logistic regression (LR), random forest (RF), and support vector machine (SVM) classifiers in the classification of HER2-
positive from HER2-negative in the training cohort (a) and validation cohort (b).

Fig. 5. Areas under the ROC curve of the logistic regression (LR), random forest (RF), and support vector machine (SVM) classifiers in the classification of HER2-low
and HER2-zero in the training cohort (a) and validation cohort (b).
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relatively large number of samples to obtain more accurate results. Our
results demonstrated the AUC of RF was higher than those of LR and
SVM for HER2 status prediction in the training cohort, and this was
verified by the multicenter dataset. RF is a widely used machine learning
algorithm with many important advantages, such as an effective struc-
ture for complex multimodal data and parallel computing [29]. Yu et al.
[30] developed an MRI-based RF model to predict the axillary lymph
node metastasis status and disease-free interval in breast cancer and
provided useful clinical decision-making guidance. Zhang et al. [31]
reported an XGBoost model based on the ultrasound signs to predict
sentinel lymph node metastasis. Based on the above data, the machine
learning radiomics could be a convenient preoperative approach for
assessing molecular subtypes in patients with IDC.

This study had several limitations. First, its retrospective design may
have introduced a selection bias. Additional studies are needed to
further validate the diagnostic performance of the models established
using a large cohort. Second, manually delineated ROIs were used. In a
future study, we will employ the semiautomatic and automatic ROI
methods. Third, only primary IDC lesions were included. The validation
of the results of relapsed lesions is also crucial in clinical practice.

5. Conclusions

Machine learning-based multisequence MRI radiomics features can
effectively classify IDC patients into groups based on their HER2
expression status. This provides supplementary information to clinicians
for precise medical interventions in patients with IDC.
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