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Abstract

Acetylcholine-based neurotransmission is regulated by cationic, ligand-gated ion channels called nicotinic acetylcholine
receptors (nAChRs). These receptors have been linked to numerous neurological diseases and disorders such as Alzheimer’s
disease, Parkinson’s disease, and nicotine addiction. Recently, a class of compounds has been discovered that antagonize
nAChR function in an allosteric fashion. Models of human a4b2 and a3b4 nicotinic acetylcholine receptor (nAChR)
extracellular domains have been developed to computationally explore the binding of these compounds, including the
dynamics and free energy changes associated with ligand binding. Through a blind docking study to multiple receptor
conformations, the models were used to determine a putative binding mode for the negative allosteric modulators. This
mode, in close proximity to the agonist binding site, is presented in addition to a hypothetical mode of antagonism that
involves obstruction of C loop closure. Molecular dynamics simulations and MM-PBSA free energy of binding calculations
were used as computational validation of the predicted binding mode, while functional assays on wild-type and mutated
receptors provided experimental support. Based on the proposed binding mode, two residues on the b2 subunit were
independently mutated to the corresponding residues found on the b4 subunit. The T58K mutation resulted in an eight-fold
decrease in the potency of KAB-18, a compound that exhibits preferential antagonism for human a4b2 over a3b4 nAChRs,
while the F118L mutation resulted in a loss of inhibitory activity for KAB-18 at concentrations up to 100 mM. These results
demonstrate the selectivity of KAB-18 for human a4b2 nAChRs and validate the methods used for identifying the nAChR
modulator binding site. Exploitation of this site may lead to the development of more potent and subtype-selective nAChR
antagonists which may be used in the treatment of a number of neurological diseases and disorders.
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Introduction

Nicotinic acetylcholine receptors (nAChRs) are ligand-gated,

cation channels found throughout the central and peripheral

nervous systems [1,2,3]. Physiologically, neuronal nAChRs are

complex, participating in many neurological processes including

cognition [4], pain sensation [5], and nicotine reward/addiction

mechanisms [6,7]. In addition to nicotine addiction, these

receptors have been linked to numerous neurological diseases

and disorders including Parkinson’s disease [8], Alzheimer’s

disease [8], schizophrenia [9], epilepsy [10], and lung cancer

[11], making them important therapeutic targets.

Pentameric in assembly, these plasma membrane channels may be

classified as either muscle- or neuronal-type receptors based on their

subunit composition. There are numerous subtypes of neuronal

nAChRs, with a2-a10 and b2-b4 subunits arranging in either homo-

or heteropentameric assemblies. The heteromeric receptors contain

both a and b subunits, with a general stoichiometry of 2a:3b
[12,13,14], although there is also evidence for (a4)3(b2)2 nAChRs

[15,16]. The homomeric receptors are solely comprised of a subunits

and have five agonist binding sites, while the heteromeric receptors

have two agonist binding sites. For heteromeric receptors, agonist

binding occurs at a(+)/b(-) interfaces, where the (+) notation implies

the contribution of a principle ligand-binding feature called the C

loop to the binding interface and the (-) notation refers to the

complementary subunit surface that completes the binding site.

Because the composition and distribution of nAChRs through-

out the nervous system are so varied, it is difficult to study the roles

of the various nAChR subtypes in neuronal signaling pathways. In

order to deduce these functional roles, there is a need for nAChR

antagonists that selectively target specific receptor subtypes.

Agonist binding at the a/b interface involves interactions with a

group of five aromatic residues often called the ‘‘aromatic nest’’.

Since these agonist-binding residues are conserved in all nAChR
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subunits, it is difficult to design selective nAChR molecules that

target the agonist binding site. Therefore, targeting allosteric

binding sites may be a more viable strategy in the development of

subtype-selective nAChR antagonists. Due to the emergence of

crystallographic structures that aid in the modeling of various

subtype assemblies, the ability to implement rational, structure-

based drug design techniques to the development of subtype-

selective nAChR antagonists is becoming an increasingly attain-

able goal.

The general nAChR structure (Fig. 1) is known from electron

microscopy (EM) data of the Torpedo marmorata muscle-type

receptor [17]. Structural comparison between the muscle-type

nAChR and acetylcholine binding protein (AChBP), a soluble

pentamer found in molluskan species, revealed that AChBP is a

structural homologue of the extracellular domain (ECD) of

nAChRs [18]. AChBP structures have been reported for three

different molluskan species [18,19,20]. The most recent nAChR-

related structure is that of the a1 extracellular domain of the

mouse nAChR [21]. These structures aid three-dimensional

modeling of nAChRs, with previous studies addressing topics

such as gating dynamics [22,23], agonist binding [24,25,26],

agonist selectivity [27,28], and allosteric modulator binding [29].

More recently, some studies have eschewed nAChR modeling all

together, using AChBP structures directly in virtual screening

attempts to identify novel nAChR ligands [30,31].

Since most nAChR-related experimental structures support

modeling of the ECD, and this receptor domain is known to bind a

number of ligands with varied pharmacological effects, the ECD is

the focus of this computational study. In this paper, we model

human (a4)2(b2)3 (ha4b2) and human (a3)2(b4)3 (ha3b4) nAChR

extracellular domains based on multiple crystallographic templates

and utilize empirical experimental data [32] to validate the

models. Human a4b2 nAChRs are the major nAChR subtype

present in brain and are a target for development of drugs for

smoking cessation and other brain cholinergic disorders while

human a3b4 nAChRs are the major ganglionic nAChRs and

often mediate undesirable off-target effects of smoking cessation

drugs. After validating the feasibility of docking to the models with

a set of agonists with established binding modes, we probed the

models for a binding site of a unique set of antagonists (Fig. 2B),

recently described as negative allosteric modulators (NAMs), that

act via non-competitive mechanisms to inhibit activation of

nAChRs [33,34]. Some of these compounds, including a molecule

called KAB-18, exhibit preferential inhibition of ha4b2 nAChRs

when compared to ha3b4 nAChRs, however potency of these

molecules is limited to the low mM range (10 mM for KAB-18).

Therefore, studying how these compounds specifically interact

with the receptor can allow us to design more potent drugs that

inhibit nAChRs of specific subunit compositions. Molecular

dynamics (MD) simulations and free energy calculations of the

antagonist KAB-18 bound to both models are used to support the

validity of the proposed binding mode. Additionally, functional

data involving mutated nAChRs are presented to further support

the computationally determined binding site.

Materials and Methods

Modeling
The extracellular domains of two different human nAChR

subtypes were modeled for use in this computational study:

(a4)2(b2)3 and (a3)2(b4)3. Hereafter, all references to nAChR

models refer to the extracellular domain only. Four different

crystallographic templates were used in the homology modeling

process: three different molluskan species of AChBP (PDB IDs:

1UW6 [35], 2BYR [36], and 2BJ0 [19]) as well as the mouse a1

ECD monomer (PDB ID: 2QC1 [21]). An artificial a1 pentamer

was created by superimposing the monomer over an AChBP

structure five separate times.

The alignment of the four template structures to the target

sequences was largely performed manually, although cues were

taken from PSIPRED [37] and PHD [38] secondary structure

predictions (See Fig. S1, Table S1, and Table S2 for alignment

Figure 1. Schematic of neuronal nAChR structure. The propor-
tions of the extracellular domain (A), transmembrane domain (B), and
intracellular domain (C) are illustrated on the right while the modeled
subunit stoichiometry and configuration for heteromeric neuronal
nAChRs is illustrated on the left, including labels for the (+) and (2) side
of each subunit and the location of each of the two agonist binding
sites.
doi:10.1371/journal.pone.0024949.g001

Figure 2. Compounds used in ha3b4 and ha4b2 nAChR ECD
blind docking. A. Docked agonists included acetylcholine, nicotine,
and epibatidine. B. Docked antagonists included COB-3, PPB-9, APB-12,
and KAB-18.
doi:10.1371/journal.pone.0024949.g002
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and homology information). Alignment algorithms were not used

due to the low identity between the target (nAChR) and template

(AChBP) sequences. The insertions and/or deletions in loops

regions coupled with the low sequence identity resulted in poor

alignments, therefore a manual alignment based on conserving

structural features was deemed appropriate. Following alignment,

three-dimensional models were built with MODELLER9v1 [39]

in an iterative fashion, with 200 models being built in each

iteration. Since the model assessment methods used in MOD-

ELLER were exclusively calibrated with single-chain proteins,

they are not suitable for selecting top structures among the

pentameric nAChR models. To more accurately select a top

structure, each model was scored with a molecular mechanics –

Poisson Boltzmann surface area (MM-PBSA) approach. Each

model was solvated in a TIP3P water box, energy minimized,

stripped of its waters, then scored with a Poisson Boltzmann

approach in the Amber 9 suite of programs [40].

Initially, a rat a3b4 (ra3b4) nAChR model was created in six

modeling iterations, where each successive iteration added

additional symmetry, distance, and secondary structural restraints

as well as incorporating the best-ranking model from the previous

iteration as a fifth template structure. Molecular dynamics with

locally enhanced sampling (LES) [41] was applied to the top

structure of the sixth modeling iteration to better sample the

conformation of the A loop and its connection to the adjoining b5

strand of each subunit. The loop and strand regions treated by the

locally enhanced sampling (LES) method correspond to residues

94-105 for the a subunits and 96-107 for the b subunits (see Fig.

S1 for numbering scheme). In total, there were 55 LES residues for

which five copies of each were made. This left the remaining 987

residues of the models to be treated classically. The structure with

the lowest computed energy during the five-copy, 4 ns LES-MD

simulation was selected as the final template for homology

modeling. The same templates and restraints used to obtain the

final ra3b4 nAChR model were also used to create the human

a3b4 and a4b2 nAChR models. The ra3b4 nAChR was initially

modeled to complement available experimental data [33,34].

Ultimately, we modeled the ha3b4 and ha4b2 nAChR to reflect a

switch in receptors used by our experimental collaborators [32].

Conformational Sampling of the Receptor
An ensemble of receptor snapshots was collected from a

molecular dynamics (MD) trajectory to account for protein

flexibility during docking. Constant volume and temperature

MD simulations of the nAChR models used the SHAKE

algorithm as implemented by Amber with a 2 fs time step. Prior

to the production run, the model was solvated in a TIP3P water

box with a 15 Å buffer around all edges of the protein. After

solvation, the system was charge neutralized by the addition of

Na+ counterions, and energy minimized by 500 steps of steepest

descent minimization followed by 1500 steps of conjugate gradient

minimization. The system was equilibrated by first increasing the

temperature of the system from 0 K to 300 K over 200 ps in which

all protein atoms were fixed with a 50 kcal/mol harmonic

potential. This proved to be an important step, since it allowed

the water molecules to fill in the gaps at the protein/water

interface that were left vacant by the solvating algorithm in the

LEaP module of Amber. If the waters were not first allowed to

equilibrate around the protein, undesired side chain movements

were observed that detrimentally effected agonist docking to the

agonist binding sites. A final 200 ps of unrestrained MD completed

the equilibration process. Production runs of 5 ns followed the

equilibration. All simulations used a heat bath coupling constant of

2.0 ps and were performed at 1 atm with a pressure relaxation

time of 2.0 ps. Nonbonded interaction calculations were cutoff at

8 Å, while the electrostatic energy was computed using the Particle

Mesh Ewald method. The simulations were run using the sander

code of Amber 9 with the ff99 force field. Snapshots were captured

at 200 ps intervals along the production run trajectories to form a

set of 26 receptor conformations that were used for docking.

Blind Docking
Blind docking grids of size 90.00 Å 6 90.00 Å 6 56.25 Å with

grid point spacing of 0.375 Å were constructed for each snapshot

conformation with AutoGrid4. These grids were large enough to

encompass the entire extracellular domain, only excluding the

Cys-loop region, since docking results in this region are unrealistic

due to the contact these loops make with the TM2-TM3 loops that

are not part of these models.

Three different agonists with known experimental binding

modes to AChBP were blindly docked to each of the receptor

conformations collected from the MD trajectory. These com-

pounds, illustrated in Fig. 2A, include acetylcholine, nicotine, and

epibatidine. Agonist structural coordinates were taken from the

PDB and processed by the LigPrep program of the Schrödinger

suite to determine the ionization state of each compound at pH 7

6 2. All agonists were determined to carry a positive charge within

the pH range considered. All compounds were assigned Gasteiger

charges and docked with the Lamarckian genetic algorithm (LGA)

[42] in AutoDock4 [43] with the maximum number of freely

rotating bonds per ligand. One hundred independent docking runs

were completed for each ligand to each of the receptor

conformations. A cutoff of 25,000,000 – 100,000,000 energy

evaluations was used, depending on the number of rotatable bonds

in the ligand, while all other docking parameters maintained the

default setting.

Each of the 100 docking positions for each ligand at each

receptor conformation were clustered by their centroid points with

a 4 Å tolerance. The four most populous clusters of each ligand

were then clustered against those from the other receptor

conformations. This clustering of clusters was based on the

receptor residues that came into contact with each cluster instead

of the Cartesian coordinates attributed to the centroid-based

clusters. This method allowed for the clusters from different time

points to be compared to each other without having to worry

about spatial drift or rotation of the receptor. A list of residues

coming within 5 Å of each of the docked conformations for each

centroid-based cluster was created with scripts utilizing functions

available in the Chimera program [44]. Clusters with residue lists

that shared a 65% intersection were considered to belong to the

same docking position.

Antagonist Docking to Ternary Complex
After the initial round of blind docking to the unbound nAChR

models, the epibatidine docking with the smallest RMSD from the

AChBP binding mode (as found in PDB ID: 2BYQ) was kept as

part of each nAChR structure. Each agonist-bound system was

then resampled via an MD simulation similar to the protocol

described above. A second epibatidine molecule was then docked

to the models using the same ensemble blind docking method

employed to dock the first compound. Again, the docking with the

smallest RMSD from the AChBP binding mode at the second

agonist binding site was added to the system to create a ternary

complex: nAChR saturated with two agonist molecules. Epibati-

dine was chosen as the agonist in the model to correspond to the

agonist used in functional assays [32].

Upon creation of the ternary complex for both ha3b4 and

ha4b2 nAChR models, the systems underwent one final MD

nAChR Allosteric Site
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simulation to create ensembles of epibatidine-bound receptor

conformations. A final blind docking procedure was carried out

with the antagonists illustrated in Fig. 2B. The results of the

ensemble blind docking with the antagonists were clustered in the

same fashion as the agonists in order to identify the most probable

docking sites.

Focused Docking and Induced Fit MD
KAB-18 was docked to focused docking grids of size 37.5 Å 6

36.0 Å 6 37.5 Å with 0.375 Å point spacing. The grids were

centered at an a/b interface, encompassing the regions surround-

ing the epibatidine-bound agonist binding site. KAB-18 was

docked with similar parameters as the agonists, using a cutoff of

100,000,000 energy evaluations for the LGA. Recurring docking

poses were determined by clustering the docking results with an

all-atom RMSD tolerance of 2 Å.

Following binding mode analysis, MD simulations of both the

agonist and antagonist bound to the same subunit interface were

performed to evaluate the antagonist binding stability. Two in silico

mutant models were built with MODELLER based on a stable

KAB-18 binding conformation of the ha4b2 model. Both a T58K

and F118L model was built and simulated in order to correlate

KAB-18 binding to these models with experimental data described

below.

Binding Energy Calculations
Binding free energies were calculated for six cases: epibatidine

binding to both ha4b2 and ha3b4 nAChR models, KAB-18

binding to both models in the presence of epibatidine, and KAB-

18 binding to the ha4b2 T58K and F118L models. The standard

Amber MM-PBSA protocol [45] was applied to 1500 bound-state

conformations, extracted at 1 ps intervals from the MD

simulations described above. The receptor systems were composed

of a full a/b ECD interfaces for both enthalpic and entropic

calculations.

Convergence of the computed binding free energies was tracked

to assure sufficient sampling. Standard deviations of time averages

are reported for sliding average data with a window size of 200

data points. Time averages at increasing intervals were computed

(Fig. S2) to quantify the convergence of each binding free energy.

The average change in computed binding free energy between the

first 1400 and first 1500 data points was 0.16 kcal/mol for the six

cases reported, supporting the convergence of the values over the

sampling period.

Measurement of Intracellular Calcium Using HEK ts201
Cells Transiently Expressing Recombinant nAChRs

Calcium accumulation assays were performed as described

previously [34] with slight modifications. Briefly, HEK ts201 cells,

transiently expressing ha4b2WT nAChRs or ha4b2M nAChRs,

were plated on 96-well plates at a density of 2.66105 cells per well.

Twenty-four hours after plating, the cells were washed and then

incubated with fluo-4-AM for 30 minutes at 37uC followed by 30

minutes at 24uC. After incubation, cells were washed and

fluorescence was measured at ,0.7 second intervals using a fluid

handling integrated fluorescence plate reader (Flex Station,

Molecular Devices, Sunnyvale, CA). The experimental design

involved three treatment groups (control-sham treated, control-

epibatidine treated, and antagonist treated). Functional responses

were quantified by first calculating the net fluorescence changes

(the difference between control sham-treated and control agonist-

treated groups). Data were expressed as a percentage of control-

epibatidine treated groups. Results were calculated from the

number of observations (n) performed in triplicate. Curve fitting

was performed by Prism software (GraphPad, San Diego, CA).

EC50 values, IC50 values, and Hill coefficients were obtained by

averaging values generated from each individual concentration-

response curve. EC50 values and IC50 values were expressed as

geometric means (95% confidence limits). Experimental values

were compared using the t-test (p,0.005), as indicated.

Site-Directed Mutagenesis and Transient Expression of
nAChRs in HEK Cells

Human nAChR a4 and b2 full-length cDNAs in the vector

pSP64 (poly A) were obtained from Dr. Jon Lindstrom (University

of Pennsylvania) and used as the template for mutagenesis (b2) and

for transient expression (a4 and b2). A single mutation was made

in the b2 subunit using the Quik Change Lightning Multi Site-

Directed Mutagenesis Kit (Stratagene) following the manufactur-

ers instructions. Primers were designed using the QuikChange

Primer Design Program (Stratagene) and Oligo 4.0 (National

Biosciences) and synthesized by Invitrogen. Primers were designed

to replace the threonine residue at position 58 in the hb2 subunit

with a lysine found at the similar position in the hb4 subunit. The

following primer was designed to change the threonine (ACC) at

position 58 in the b2 subunit to lysine (AAG): b2 mutant 59-

CCACCAATGTCTGGCTGAAGCAGGAGTGGGAAGATT-

ATCG-39. The underlined nucleotides defined the mutation.

Primers were also designed to replace the phenylalanine residue at

position 118 in the hb2 subunit with a leucine found at the similar

position in the hb4 subunit. The following primer was designed to

change the phenylalanine (TTC) at position 118 in the b2 subunit

to leucine (TTG): 59-TCTCCTATGATGGTAGCATCTTGT-

GGCTGCCGCCTGC-39 and 59- GCAGGCGGCAGCCA-

CAAGATGCTACCATCATAGGAGA-39. It should be noted

that for the F118L mutation, an additional mutation (T) was

introduced which did not change the coding sequence, but relaxed

a potential loop in the primer in order to allow for the generation

of this mutation. The mutant hb2 cDNAs were subcloned into

pcDNA 3.1+Zeo (Invitrogen). The wild type ha4 and hb2 cDNAs

were also subcloned into the pcDNA 3.1+ and pcDNA 3.1+ Zeo

vectors respectively. All cDNA clones were completely sequenced

using a 3730 DNA Analyzer (Applied Biosystems) at the Ohio

State University Plant-Microbe Genomics Facility. DNAs used for

transfection were purified using PureLink High Pure Mini or Midi

Kits (Invitrogen). HEK ts201 cells (kind gift of Dr. Rene Anand,

Ohio State University Department of Pharmacology) were

transiently transfected with wild-type ha4 mutant hb2 or wild-

type ha4b2 cDNAs using Lipofectamine 2000 (Invitrogen) in 60

mm dishes. After 8 hours, the cells were replated into 96 well

dishes for the intracellular calcium accumulation assays.

Results

Homology Modeling
In order to identify a new allosteric site on nAChRs, it was

necessary to build high-quality human nAChR models. Initially,

our work began with modeling rat a3b4 nAChRs to complement

experimental data related to function [33,34]. This work served as

the basis for the human nAChR modeling presented here. Figure 3

illustrates the progression of refinement through the seven

iterations of ra3b4 modeling. The calculated MM-PBSA (molec-

ular mechanics Poisson-Boltzmann/surface area) energy of the

ra3b4 model was reduced by 11.2% from the initial round of

modeling through the final iteration. Three modeling adjustments

that made the most significant improvements in the calculated

energies included refinement of the alignment with secondary

nAChR Allosteric Site
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structure assignments, incorporation of the mouse a1 monomer as

a fourth crystallographic template, and LES (locally enhanced

sampling) refinement of loop A, which yielded -4.47%, -2.45%,

and -3.50% changes in total computed energy, respectively. Over

the 3.93 ns duration of the simulation, the all-atom root mean

square deviation (RMSD) for residues in the LES regions reached

a maximum RMSD of 5.3 Å with respect to the starting structure.

Comparing this deviation to the maximum RMSD of 3.4 Å

exhibited by the non-LES residues characterizes the enhanced

sampling achieved by this treatment.

The final ha4b2 and ha3b4 models were very similar to each

other as they were both based on the same modeling restraints and

share a one-to-one alignment. The backbone RMSD between the

two models was 1.1 Å. Comparing the two models to the

templates, the most prominent structural differences were in the

conformations of loop 1 (a1-b1 loop), the A loop (b4-b5 loop), and

the F loop (b8-b9 loop). The loop 1 conformations were most

similar to the mouse template for the modeled a subunits, however

the corresponding loops in the modeled b subunits had a unique

conformation due to a different alignment. Modeled F loop

conformations were most similar to the A. californica AChBP and

mouse templates, where the modeled A loops took on conforma-

tions that placed the backbone between those of the molluskan and

mammalian templates.

Blind Docking
The binding site of three nAChR antagonists, COB-3, PPB-9,

and APB-12 (Fig. 2B) [32,34], was searched for using blind

docking methods in conjunction with molecular dynamics

simulations. Since these compounds have been shown to be non-

competitive nAChR antagonists [33,34], they were docked in the

presence of agonist. Prior to antagonist docking, several agonists

with known binding sites, acetylcholine, nicotine, and epibatidine

(Fig. 2A), were used to test and validate the blind docking

approach to the nAChR models. After docking the three agonists

to 26 individual ha3b4 and ha4b2 model conformations, the

results were compared to find the most frequently occurring

docking positions. The docking results for the agonists near the

agonist binding site are presented in Table 1 with representative

docking modes illustrated in Fig. 4. Although blind docking of the

agonists to the ha3b4 snapshots was able to locate both binding

sites, only one of the two ha4b2 binding sites was properly located.

This was due to an unusual C-loop conformation at agonist

binding site 1 in the unbound state (described in Dynamics

Analysis). Experimental binding affinities for all three agonists on

human nAChRs could not be found in the literature, however the

EC50 values for acetylcholine, nicotine, and epibatidine have been

reported for recombinant ha4b2 and ha3b4 receptors expressed

in HEK293 and Xenopous oocytes [46,47,48]. The docking energies

for the agonists were able to reproduce binding energy trends, with

epibatidine binding more strongly than nicotine which displays

greater binding affinity than acetylcholine. Additionally, the

average docking energies of the agonists all showed a preference

to bind the ha4b2 models over the ha3b4 models, a trend that is

also experimentally observed [46,47,48].

Three antagonists, COB-3, PPB-9, and APB-12, were docked to

the models using the same ensemble blind docking method that

was used to dock the agonists. Based on LigPrep (Schrödinger,

Figure 3. Histograms of model energies per modeling iteration. The number of models per cluster were plotted against the total calculated
model energy (internal energy + PB solvation energy term) in kcal/mol * 1023. Iterations 2-7 incorporates the top scoring model from the previous
iteration as an additional template. 1. Two roughly aligned AChBP templates (PDB ID: 1UWG and PDB ID: 2BYR) were used with symmetry restraints.
2. An additional AChBP template (PDB ID: 2BJ0) was included; template alignment was refined, secondary structure assignments and distance
restraints of select conserved motifs were added. 3. b-sheet restraints were added. 4. Mouse a1 monomer (PDB ID: 2QC1) was included as a fourth
crystallographic template; a1 template specifically used to refine loop 1; hydration pocket waters added. 5. a1 template was used to refine F loop
conformation. 6. C loop conformation of b subunits was refined. 7. The A loop of all subunits were refined with a template modified by LES MD
simulation; symmetry were restraints removed. 8. Human a3b4 ECD models built using same alignments and constraints as in G. 9. Human a4b2 ECD
models built using same alignments and constraints as in G.
doi:10.1371/journal.pone.0024949.g003
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LLC) results, the antagonists are all positively charged at

physiologic pH, protonated at the nitrogen atom of their

piperidine/pyrrolidine moieties. Each antagonist also has one or

more stereogenic centers. The two stereoisomers of each

compound with the lowest computed energy were used in the

blind docking study; each of these conformations had equatorial

branching off of the heterocyclic moieties. The antagonist docking

site that was ultimately validated as the correct binding site was

populated by 28.2% of the dockings to the epibatidine-bound

model conformations. Three other sites were more prominently

populated with alternate docking clusters; these had 69.6%, 57.1%

and 47.1% rates of being identified as one of the four largest

docking clusters for each antagonist that was docked. The

positions of these other sites were all located on the inside of the

doughnut-shaped extracellular domain facing the pore. They were

either at subunit interfaces (both a/b and b/b) or tucked inside an

A loop.

One of the frequently occurring antagonist blind docking modes

was investigated more closely by redocking the antagonist KAB-18

to the new allosteric site with focused docking grids. KAB-18

became a focus because this compound exhibits preferential

antagonism of ha4b2 nAChRs versus ha3b4 nAChRs [32]. The

selection of a precise docking mode was aided by existing structure

activity relationship (SAR) data that indicate modifying the

terminal phenyl of the biphenyl group of KAB-18 to a succinimide

moiety results in a loss of ha4b2 selectivity [46]. Additionally,

modifying the length of the aliphatic linker on the opposite end of

the antagonist was also shown to result in a loss of relative ha4b2

selectivity. Taking this into consideration, a binding mode in

which the aforementioned regions of KAB-18 were found to

associate with receptor residues that vary between the ha4b2 and

ha3b4 nAChRs was selected. This mode is illustrated in Fig. 5A,

highlighting the amino acids with which the antagonist makes

contact, while a superposition of the other antagonist docking

modes is found in Fig. 5B. Interestingly, the residues that seem to

confer selectivity for this binding mode, i.e. those sites of variation

between the ha4b2 and ha3b4 subtypes (amino acids at positions

78, 110, 112, 118, 58, and 35), are all found on the b subunit,

forming a band along the 6-membered b-sheet that creates the (-)

side of the a/b interface (dark blue in Fig. 5A).

Dynamics Analysis and Hypothetical Mode of
Antagonism

Since that antagonists we are studying act allosterically, it was

important to model the receptor in the presence of agonist as

would occur in vivo. To prepare the nAChR models for antagonist

blind docking, MD simulations were conducted for the receptors

in various binding states, including an unbound state, a binary

complex bound to a single epibatidine molecule, and a ternary

complex saturated with two epibatidine molecules. The stability of

these simulations was quantified by all-atom RMSD analysis. It

was found that the Cys loops were conformationally unstable,

Figure 4. Blind docking modes compared to X-ray structures. Docking modes for epibatidine (A – magenta), nicotine (B – orange), and
acetylcholine (C – green) to ha4b2 models compared to crystallographic binding modes (blue). Crystallographic structures for AChBP bound to
epibatidine, nicotine, and carbamylcholine (PDB IDs: 2BYN, 1UW6, and 1UV6 respectively) were superimposed on nAChR ECD models to determine
RMSDs of the dockings.
doi:10.1371/journal.pone.0024949.g004

Table 1. Blind docking results for agonists to multiple ha4b2 and ha3b4 nAChR ECD conformations.

ha4b2 ha3b4

average docking
energy (kcal/mol)a

expt. potency,
EC50 (mM)b

cluster size average RMSD of
dockings (Å)c

average docking
energy
(kcal/mol)a

expt. potency,
EC50 (mM)b

cluster size average RMSD of
dockings (Å)c

acetylcholine 24.86 100 132 3.13 24.66 203.14 150 6.45

nicotine 26.59 3.5 282 1.72 26.31 40.3 90 4.97

epibatidine 27.83 0.043 154 5.44 27.28 0.151 149 7.42

aAutoDock energies.
bExperimental agonist potencies from data reported in [46,47,48].
cRMSD measurements with respect to corresponding AChBP crystal complexes.
doi:10.1371/journal.pone.0024949.t001
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leading to steadily increasing RMSDs over the duration of the 5 ns

simulations. However, when the RMSDs were recalculated to

exclude the Cys loop residues, the all-atom RMSD for each model

leveled off in the range of 2–3 Å, indicating stable MD trajectories

(Fig. S3).

The average RMSDs from the starting structures for each

subunit in the three sampled binding states showed that the MD

trajectories were relatively stable (Fig. S4, Table S3). The maximal

backbone RMSD average for a single subunit was 4.56 Å, while

the typical subunit only deviated an average of 2.02 Å from its

initial conformation over simulation times of 5 ns. Some regions,

including the C, Cys, and L1 loops, were particularly more

variable in conformation when compared to each subunit as a

whole, while the A, B, and F loops were generally more stable.

Plots of the all-atom RMSDs on a per residue basis are shown in

Fig. S4.

Most nAChR agonists, including epibatidine, carry a positive

charge at physiologic pH. This plays a significant role in their

binding to the nAChRs due to cation-p interactions between a

group of aromatic residues at the agonist binding site and the

positively charged agonist [49]. In addition to cation-p interac-

tions, proper fitting into the agonist binding site can allow for

strong hydrogen bond formation between the positively charged

nitrogen of the agonist and the backbone carbonyl of Trp148, as

observed in crystallographic structures [35,36] and proven

important in mutational studies [49]. Both of these interactions

have been measured in our dynamics studies (Table 2, Figs. S5

and S6 for plots of distance measurements). Based on these

measurements, the epibatidine molecules were found to be stably

bound in the agonist binding sites of the models over the 5 ns MD

simulations. However, introduction of a second epibatidine

molecule to the ha4b2 model resulted in a 90̊ torsion around

the one freely rotating bond of the epibatidine molecule, causing a

temporary break in the hydrogen bond with Trp148 (Figure S6B).

This hydrogen bond is ultimately reformed for the final 2 ns of the

MD simulation.

C loop dynamics are another important aspect of ligand binding

to the agonist binding site of nAChRs as these motions are thought

to initiate channel gating [22]. As observed in crystallographic

structures, the C loop takes on a ‘closed’ or capped conformation

upon binding of small agonists such as nicotine, acetylcholine, or

epibatidine, while competitive antagonists are much larger than

agonist compounds, and their presence in the binding site can

force the C loop into a more ‘open’ conformation [36]. To track C

loop dynamics in our MD simulations, we measure the Ca-Ca
distance between aCys191 on the (+) side of the binding site and

b58 (b2Thr58/b4Lys58) on the (2) side of the interface as

illustrated in Fig. 6. These corresponding distances for 22 different

AChBP crystal structures were measured (Table S4) and have

been used to create generalized Ca-Ca ranges of C loop

‘openness’ for agonist, partial agonist, and antagonist binding in

addition to unbound states which are grouped with the non-

peptidic antagonists (Table 3). The general range for agonist

binding, based on four X-ray structures, is 7.72–8.19 Å, compared

Figure 5. Detailed antagonist docking modes. A. Docking mode of KAB-18 (magenta) at the a4(+) (green)/b2(-) (blue) interface in the presence
of the agonist epibatidine (grey). Residues varying between the b2 and b4 subunits are featured (dark blue). B. Superimposed Glide docking modes
of KAB-18 (magenta), APB-12 (cyan), PPB-9 (orange), and COB-3 (green) at the same binding site.
doi:10.1371/journal.pone.0024949.g005
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to the unbound state which has a range of 15.36–15.72 Å based on

two structures.

Using this Ca-Ca distance between the tip of the C loop and

the b2 strand of the adjoining subunit as a metric of C loop

closure, we have been able to quantify these dynamics (Table 4)

and relate them to different functional states (Table 3). The

average Ca-Ca distance from the 5 ns MD simulations of

unbound agonist binding sites (apo binding sites 1 & 2, binary

complex binding site 1) all had values between the partial agonist

and unbound ranges defined in Table 3, implying more ‘‘open’’

C loops (see Figs. S7 and S8 for plots of Ca-Ca distances

collected from MD trajectories). An exception was observed for

agonist binding to site 1 of the apo ha4b2 receptor. Here, the C

loop is closed in the absence of agonist, which may represent the

closed unbound state observed by Mukhtasimova et al [50].

Upon agonist binding, the measured Ca-Ca distances decreased

to values in the ranges measured for agonist-bound and partial

agonist-bound receptors (Table 3), consistent with structural data

that implicates agonists causing C loop closure to initiate channel

opening [36]. In the bound states, the low standard deviations

indicate relatively stable C loop conformations; the standard

deviations for the time-averaged Ca-Ca distances are greater in

the unbound states.

In our computational KAB-18 binding studies, the dynamics of

the C loop show that even though epibatidine is forming a stable

hydrogen bond with the carbonyl oxygen of Trp148, the C loop is

obstructed from closing to an agonist-bound state due to the

presence of KAB-18. The minimum Ca-Ca distances in

simulations of epibatidine and KAB-18-bound ha4b2 and

ha3b4 nAChRs was 10.58 and 11.55 Å respectively, while the

average values over 5 ns of simulation were larger at 12.97 and

18.97 Å respectively.

Table 2. Measurements of agonist binding distances in MD simulations of epibatidine bound ha4b2 and ha3b4 nAChR ECDs.

ha4b2 ha3b4

agonist binding site 1 agonist binding site 2 agonist binding site 1 agonist binding site 2

hydrogen bonding interaction distance (Å)a

binary complexc 2.88 (0.13) – 2.84 (0.11) –

ternary complexd 2.89 (0.13) 3.75 (1.16) 2.84 (0.12) 2.86 (0.13)

cation-p interaction distance (Å)b

binary complexc 3.91 (0.39) – 3.34 (0.25) –

ternary complexd 3.72 (0.38) 4.55 (0.75) 3.45 (0.27) 4.87 (0.49)

aDistance between positively charged N of epibatidine and backbone O of Trp148.
bDistance between positively charged N of epibatidine and center of mass for the indole group of Trp148 (Å).
cSingle epibatidine molecule bound to agonist binding site 1.
dEpibatidine bound to both agonist binding sites.
Average measurements calculated from 5 ns MD simulations with standard deviations in parentheses.
doi:10.1371/journal.pone.0024949.t002

Figure 6. C loop closure of AChBP bound to various ligands.
Superposition of four crystal structures of AChBP in complex with
various compounds to illustrate the difference in intersubunit distances
between Ca of residue C191 of the a subunit C loop on the (+) side of
the binding interface and Ca of residue 58 of the b subunit b2 strand on
the (2) side of the interface. Only epibatidine is shown (pink surface) for
clarity, to highlight the ligand binding site. The tabulated Ca-Ca
distances allows for quantification of the degree of C loop closure upon
ligand binding.
doi:10.1371/journal.pone.0024949.g006

Table 3. General ranges for C loop ‘‘openness’’ upon binding
ligands of different pharmacological function measured from
AChBP X-ray structures.

average Ca-Ca range (Å)a

agonist 7.72–8.19

partial agonist 9.75–12.30

antagonist/unbound 12.88–16.05

peptidic antagonist 17.50–19.24

aAverage Ca-Ca distance between residues that correspond to C191 on the C
loop of nAChR a subunits on the (+) side of the binding interface and residue
58 on the b2 strand of b subunits on the (2) side of the interface.

doi:10.1371/journal.pone.0024949.t003

nAChR Allosteric Site

PLoS ONE | www.plosone.org 8 September 2011 | Volume 6 | Issue 9 | e24949



Binding Energy Calculations
The binding free energies for several ligand binding events to the

nAChR ECD models have been calculated with the MM-PBSA

protocol in Amber [45]. The free energies for epibatidine binding

alone and KAB-18 binding in the presence of epibatidine were

calculated for both ha4b2 and ha3b4 nAChR models over

simulation times of 1.5 ns, with data calculated at 1 ps intervals

(Table 5 and Figs. S9 and S10). A binding energy of -17.46 kcal/mol

for epibatidine binding alone to the ha4b2 model was computed,

compared to the experimental range of -14.49 – -14.27 kcal/mol

[47]. For epibatidine binding to the ha3b4 model, a binding energy

of -14.91 kcal/mol was computed, compared to the experimental

range of -13.19 – -13.19 kcal/mol [48]. These more computation-

ally intensive free energy calculations yield numbers that follow the

experimental binding trends for epibatidine in addition to being

much closer estimates of the experimentally derived energies than

the AutoDock scores reported in Table 1. The binding energy

calculations for KAB-18 binding to the ha4b2 nAChR model

showed a favorable binding energy of -6.25 kcal/mol, while an

unfavorable binding energy of 11.25 kcal/mol was calculated for

KAB-18 binding to the ha3b4 nAChR model.

The binding energy for KAB-18 bound to two ha4b2 models

with mutations in the putative allosteric binding site were also

assessed with the MM-PBSA method. KAB-18 was computed to

bind slightly weaker to the model with a T58K mutation on the b2

subunit with binding energy of -5.34 kcal/mol, a 0.91 kcal/mol

difference from the wild-type binding energy. A F118L mutation

on the b2 subunit resulted in a positive computed binding energy

of 7.31 kcal/mol. Both of these in silico mutation experiments

correspond with the functional data presented below.

Table 4. Measurements of C loop closure for MD simulations of epibatidine bound ha4b2 and ha3b4 nAChR ECDs.

average Ca-Ca distance (Å)a

ha4b2 ha3b4

agonist binding site 1 agonist binding site 2 agonist binding site 1 agonist binding site 2

apo 8.94 (1.57) 15.08 (1.73) 12.68 (2.12) 15.06 (2.25)

binary complexb 7.78 (0.46) 14.32 (3.00) 8.69 (0.48) 12.99 (1.60)

ternary complexc 8.02 (0.45) 11.62 (1.79) 10.62 (1.35) 7.88 (0.38)

average distance (Å) minimum distance (Å) average distance (Å) minimum distance (Å)

epibatidine/KAB-18 complexd 12.97 (1.49) 10.58 18.97 (2.95) 11.55

aSame Ca-Ca measurement as defined in Table 4.
bsingle epibatidine molecule bound to agonist binding site 1.
cepibatidine bound to both agonist binding sites.
dcompounds bound to agonist binding site 2.
Data averaged over 5 ns MD simulations with standard deviations in parentheses.
doi:10.1371/journal.pone.0024949.t004

Table 5. MM-PBSA binding energy calculations for epibatidine and KAB-18 bound to ha4b2 and ha3b4 nAChR ECD models.

ha4b2-WT ha4b2-T58K ha4b2-F118L ha3b4-WT

epibatidine bindinga

DH -33.28 (1.01) – – -32.29 (0.96)

TDS -15.82 (2.07) – – -17.37 (1.28)

DG -17.46 (2.32) – – -14.91 (1.46)

Expt. rangeb -14.49 – -14.27 – – -13.25 – -13.19

distance 1c 2.86 (0.04) – – 2.83 (0.02)

distance 2d 7.79 (0.30) – – 8.65 (0.27)

KAB-18 binding in presence of epibatidinee

DH -28.27 (2.02) -28.56 (2.69) -21.30 (1.67) -14.90 (0.98)

TDS -22.02 (1.77) -23.22 (1.99) -28.61 (2.28) -26.15 (2.38)

DG -6.25 (2.86) -5.34 (3.32) 7.31 (2.59) 11.25 (3.06)

distance 1c 2.90 (0.06) 2.93 (0.07) 2.97 (0.11) 2.86 (0.03)

distance 2d 11.83 (0.21) 13.76 (0.40) 16.84 (0.34) 13.61 (0.57)

aBinding at agonist binding site 2 in the absence of antagonist.
bExperimental binding affinities calculated from data reported in [47,48].
cDistance between the positively charged N atom in the bound epibatidine molecule and the backbone O atom of Trp148, quantifying epibatidine binding stability.
dCa-Ca distance between a191 and b58 at the binding interface, quantifying C loop closure.
eBoth compounds bound at agonist binding site 2.
Data averaged over 1.5 ns MD simulations with standard deviations in parentheses.
doi:10.1371/journal.pone.0024949.t005
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Mutagenesis
To experimentally validate the computationally determined

KAB-18 binding mode, two independent mutations were made on

the b2 subunit of a4b2 nAChRs expressed in HEK cells.

Functional IC50 values fro KAB-18 and control antagonists (d-

tubocurarine and mecamylamine) as well as function EC50 values

for a control agonist (epibatidine) were obtained using a

fluorescence calcium accumulation assay. Changes in the IC50

values of KAB-18 were used to document a change in the

apparent affinity of KAB-18 as caused by mutation of the target

amino acids. First, threonine at position 58 was selected for

mutation based on its contribution of a key hydrogen bonding

donor to the binding stability of the theoretical binding mode

presented in Fig. 5A. Lysine was chosen to replace threonine since

this amino acid is found at the same position on human b4

subunits and KAB-18 has no functional activity on human a3b4

nAChRs when tested at concentrations up to 100 mM [32] (higher

concentrations were not possible due to solubility limitations). The

IC50 for KAB-18 was reduced to 71.8 mM on the b2T58K mutant

from the wild-type IC50 of 8.5 mM (Table 6 and Fig. S11), an

eight-fold decrease in observed potency. Second, the phenylala-

nine at position 118 was mutated to leucine. As in the case of the

T58K mutation, the phenylalanine was mutated to leucine as it is

the corresponding residue on the human b4 subunit. This

mutation resulted in a loss of inhibitory activity for KAB-18 at

concentrations up to 100 mM (Table 6 and Fig. S11). It is

important to note these single point mutations did not affect

apparent affinities at either 1) the orthosteric site for epibatidine

(an agonist) and tubocurarine (a competitive antagonist) or 2) the

binding site for mecamylamine, a non-competitive antagonist

which binds at a different location on the receptor.

Discussion

Nicotinic acetylcholine receptors serve as a prototype for ligand-

gated ion channels and are one of the most studied allosteric

membrane proteins [51]. In this study, we identified the binding

site of a negative allosteric modulator of ha4b2 nAChRs called

KAB-18. In silico modeling, docking, MD simulations, and binding

energy calculations were used to predict the binding mode while

site-directed mutagenesis and functional assays provided experi-

mental data that supported the theoretical model.

The iterative homology modeling approach was shown to be

successful in refining the nAChR models, with each successive

iteration reducing the computed receptor energies (Fig. 3).

Conventionally, nAChR models are based on a single template

[23,24,25,26,27,28,29], while the models reported in this paper

are based on four crystallographic templates. Incorporating the

mouse a1 monomer into the homology modeling process refined

the conformation of several loop regions: L1, L5 (A loop), L7 (Cys-

loop), and L9 (F loop) due to the one-to-one sequence alignment

found in the mouse that is not present in molluskan AChBP. In

addition to template differences, the alignment used to create the

models in this paper is unique, particularly in loop regions, from

those previously reported. This implies differences in model

structure that likely effect docking and dynamics results.

Flexibility of the agonist binding site has been documented by

unbound and agonist-bound AChBP crystal structures [36]. When

docking, this flexibility was accounted for by the use of multiple

receptor conformations as extracted from MD trajectories. The

AChBP structures suggest that ligands induce a conformational

change of the C loop upon binding. Thus, the high RMSD values

for agonist docking (Table 1), which are in reference to the binding

modes found in AChBP crystal structures, may be explained by

the expected induced-fit effect between the ligand and receptor.

Docking to the multiple receptor conformations helped locate the

correct binding site. However with only docking data, it would

have been difficult to distinguish the proper docking site from the

false positives. SAR data have shown some compounds in this class

of antagonists to selectively act on a4b2 over a3b4 nAChRs [32]

implying that the correct docking mode would interact with

residues that were not conserved between the a4b2 and a3b4

nAChRs. Ultimately, two of these non-conserved residues were

mutated to experimentally validate the binding site in functional

assays.

Quantification of the C loop dynamics for the KAB-18-bound

models (Table 4) coupled with the large set of structures examining

AChBP bound to numerous ligands of varied pharmacological

effect (Table 3, Fig. 6, and Table S4), indicates a possible

mechanism of noncompetitive antagonism: inhibition of C loop

closure that is required for the channel to open while not

interfering with agonist binding. Although this mode of antago-

nism has been previously noted [36,52], this is the first time a

negative allosteric modulator has been suggested to act in this

fashion.

Furthermore, superposition of the X-ray structure of AChBP in

complex with the a7 nAChR partial agonist, 3-(2,4-dimethox-

ybenzylidine)-anabaseine (DMXBA) [53], to a MD snapshot of

our equilibrated epibatidine and KAB-18-bound ha4b2 nAChR

complex, reveals interesting similarities in ligand binding (Fig. 7).

The anabaseine portion of DMXBA superimposes well with the

epibatidine molecule bound in the nAChR model, while the

dimethoxybenzylidine moiety of DMXBA branches towards the (-)

Table 6. Effects of agonists and antagonists on wild-type and mutated human a4b2 nAChRs.

ha4b2-WT nAChRs ha4b2-T58K nAChRs ha4b2-F118L nAChRs

EC50 or IC50 Valuesa nH
b EC50 or IC50 Valuesa nH

b EC50 or IC50 Valuesa nH
b

epibatidine (EC50)c 33.9 (20.1–57.2) nM 0.9 29.2 (9.8–87.2) nM 0.7 23.7 (12.6–44.6) nM 0.8

d-tubocurarine (IC50) 6.3 (4.0–10.0) mM 21.0 6.2 (2.1–18.5) mM 20.6 6.5 (3.9–10.9) mM 20.9

mecamylamine (IC50) 0.2 (0.1–0.4) mM 21.4 0.2 (0.1–0.5) mM 20.6 0.4 (0.3–0.5) mM 21.1

KAB-18 (IC50) 8.5 (5.4–13.4) mM 21.2 71.8 (48.3–107.3) mMc 21.0 .100 mMd 2-

aValues represent geometric means (confidence limits), n = 5-7.
bnH, Hill coefficient.
csignificantly different from wild-type response, p,0.005.
dcompound is insoluble at concentrations greater than 100 mM.
Data ranges in parenthesis.
doi:10.1371/journal.pone.0024949.t006
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surface of the subunit interface to the same region occupied by

KAB-18 in the nAChR model. Anabaseine acts as a full a7

agonist, while the addition of the dimethoxybenzylidine group

reduces the level of efficacy, transforming the molecule into a

partial agonist [53]. The experimental Ca-Ca measurements of C

loop closure for anabaseine average 7.72 Å in the bound state

while DMXBA measures 9.75 Å. KAB-18 seems to share some of

the nAChR binding qualities that make DMXBA antagonists,

However KAB-18 is able to more effectively prevent C loop

closure while not competing with the agonist binding site. These

similar binding features coupled with varied degrees of C loop

closure can provide some insight on what may differentiate a

partial agonist from a full agonist or antagonist; pharmacological

effects of a ligand binding at or near the orthosteric site are related

to the degree to which the ligand induces or inhibits C loop

closure.

Finally, to experimentally validate our binding mode prediction,

the pharmacological activity of KAB-18 was tested on ha4b2WT,

ha4b2M T58K, and ha4b2M F118L nAChRs. Our prediction,

that disrupting the hydrogen bond formed between KAB-18 and

side chain of T58 would decrease the apparent affinity of the

compound for the receptor, was validated when an eight-fold

decrease in potency was measured in a functional assay (Table 6).

The change in potency of KAB-18 is indicative of an observed

change in its apparent affinity for the receptor due to the T58K

mutation, supporting the involvement of T58 in the binding of

KAB-18. This experimental result was backed up by an in silico

mutation which showed that KAB-18 still bound stably to the

mutant receptor, and even formed a hydrogen bond with the

lysine side chain. However, due to the mobility of lysine residues,

this hydrogen bond was weaker and shorter lived than the

hydrogen bond formed with the threonine side chain in the wild-

type receptor.

The F118L mutation resulted in a loss of inhibitory activity for

KAB-18 up to concentrations of 100 mM (Table 6). As with the

T58K mutation, this result is indicative of a change in apparent

affinity of KAB-18 and supports the involvement of F118 in the

binding of KAB-18. The observation that agonist activity was

unaffected by this mutation (Table 6) shows that L118 altered

KAB-18 binding while leaving the receptor functionally intact.

The simulation of KAB-18 in the allosteric binding site of the

F118L model revealed that the weakened binding could be due to

the loss of a p-p stacking interaction between the F118 side chain

and the terminal phenyl group of KAB-18 in addition to the loss of

a cation-p interaction between the F118 side chain and the

positively charge piperidine moiety of KAB-18. These data

support the experimental findings that KAB-18 preferentially

inhibits ha4b2 over ha3b4 nAChRs [32] and are consistent with

KAB-18 binding to the allosteric site predicted by computational

modeling. This allosteric site can be used to develop drugs targeted

to specific nAChR subtypes.

Supporting Information

Figure S1 Numbered sequence alignment of AChBP and
nAChR sequences used for modeling. Templates (bold) are

the acetylcholine binding protein from three molluskan species

(Lymnaea stagnalis, Aplysia californica, and Bulinus truncatus) and the

mouse a1 nAChR ECD. Targets are the human a3, a4, b2, and

b4 nAChR ECDs. Magenta highlighting indicates a conserved

residue, while turquoise highlighting indicates residue similarity.

Light green bars above residues represents a helices, dark green

bar represent 310 helices, and light blue arrows represent b strands.

The alignment was done manually with cues taken from AChBP

X-ray structures and the secondary structure prediction algorithms

PHD and PSIPRED.

(TIF)

Figure S2 Convergence of MM-PBSA calculations. Aver-

age free energies of binding as a function of sampling period for A.
epibatidine binding ha4b2 model B. epibatidine binding to ha3b4

model C. KAB-18 binding to epibatidine-bound ha4b2 model D.
KAB-18 binding to epibatide-bound ha4b2 T58Kb2 model E.
KAB-18 binding to epibatidine-bound ha4b2 F188L model F.
KAB-18 binding to epibatidine-bound ha3b4 model. Energies are

presented as averages with ps intervals.

(TIF)

Figure S3 RMSD plots for nAChR model MD simula-
tions. All-atom RMSD plots for ha4b2 (A) and ha3b4 (B) in three

different states: unbound, binary complex, and ternary complex.

Dashed lines represent RMSD values for the entire extracellular

domain models, while the solid lines represent the RMSD for the

entire models excluding the Cys loop residues. Data was smoothed

with a 50 frame sliding window average.

(TIF)

Figure S4 Average all-atom RMSDs for ha4b2 and ha3b4
nAChR ECD models in three different binding states. All-

atom RMSD of each residue from the initial structure of a 5 ns

MD simulation of three states: unbound (blue), bound to one

epibatidine molecule at agonist binding site 1 (ax1/bx1 interface)

(green), and bound to an epibatidine molecule at both agonist

binding sites (red). Several loop regions are highlighted, including

L1 (14-27), Cys-loop (127-138), F loop (159-174), and the a-

Figure 7. Comparison of experimental DMXBA binding to
computationally predicted KAB-18/epibatidine binding. The X-
ray structure of DMXBA (orange) in complex with Aplysia californica
AChBP (grey ribbon) superimposed on a ha4b2 nAChR ECD model
(green and blue ribbon for a4 and b2 subunits, respectively) bound to
both epibatidine (grey) and the negative allosteric modulator KAB-18
(magenta). The C loops for each protein have been removed for clarity
in the main figure, while the inset features the varied degree of C loop
closure.
doi:10.1371/journal.pone.0024949.g007
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subunit C loop (189-195). A. ha4b2 nAChR data B. ha3b4

nAChR data.

(TIF)

Figure S5 Measurement of epibatidine binding distanc-
es to ha4b2 and ha3b4 nAChR ECD binary complexes.
Distance measurements quantifying epibatidine binding stability to

agonist binding site 1 for ha4b2 (A, C) and ha3b4 (B, D) nAChR

ECDs from 5 ns MD simulations. The distances between the

positively charged nitrogen atom of epibatidine and both the

backbone carbonyl oxygen atom of Trp148 (A, B) and the center

of mass for the indole group of Trp148 (C, D) are measured.

Picosecond interval data are plotted in the lighter color, while

sliding average data with a window size of 50 data points are

plotted in the darker color.

(TIF)

Figure S6 Measurement of epibatidine binding distanc-
es to ha4b2 and ha3b4 nAChR ECD ternary complexes.
Distance measurements quantifying epibatidine binding stability to

agonist binding site 1 (A, C, E, G) and binding site 2 (B, D, F, H)

for ha4b2 (A, B, C, D) and ha3b4 (E, F, G, H) nAChR ECDs

from 5 ns MD simulations. The distances between the positively

charged nitrogen atom of epibatidine and both the backbone

carbonyl oxygen atom of Trp148 (A, B, E, F) and the center of

mass for the indole group of Trp148 (C, D, G, H) are measured.

Picosecond interval data are plotted in the lighter color, while

sliding average data with a window size of 50 data points are

plotted in the darker color.

(TIF)

Figure S7 Measurements of C loop closure for ha4b2
and ha3b4 nAChR ECDs bound to epibatidine. Distance

data that quantifies C loop dynamics upon agonist binding to the

human a4b2 nAChR extracellular domains (A, B, C) and human

a3b4 nAChR extracellular domains (D, E, F). The distance

between Ca atoms of C191 on the C loop of a subunits on the (+)

side of the binding interface and residue 58 on the b2 strand of b
subunits on the (-) side of the interface is measure for unbound

states (A, D), binary complexes (B, E), and ternary complexes (C,

F). Distances are given at ps intervals (light-colored plots) and are

also represented as sliding averages (dark-colored plots) with a

window size of 50 data points. The magenta dashed lines are the

average values for each plot.

(TIF)

Figure S8 Measurements of C loop closure for ha4b2
and ha3b4 nAChR ECDs bound to both epibatidine and
KAB-18. The distance between Ca atoms of C191 on the C loop of

a subunits on the (+) side of the binding interface and residue 58 on

the b2 strand of b subunits on the (-) side of the interface is measure

for the ha4b2 (A) and ha3b4 nAChR ECDs bound to both

epibatinde and KAB-18 at binding site 2. Distances are given at ps

intervals (light-colored plots) and are also represented as sliding

averages (dark-colored plots) with a window size of 50 data points.

The magenta dashed lines are the average values for each plot.

(TIF)

Figure S9 MMPB-SA binding energy calculations for
epibatidine and KAB-18 binding. Binding energy compo-

nents for epibatidine binding alone (A, C) and KAB-18 binding in

the presence of epibatidine (B, D) to both ha4b2 (A, B) and ha3b4

(C, D) nAChR ECDs. Data is plotted at ps intervals (light trace) in

addition to a sliding average trace (dark) with a window size of 200

data points.

(TIF)

Figure S10 MMPB-SA binding energy calculations and
dynamics analysis for ligand binding to ha4b2 and ha3b4
nAChRs. A. Epibatidine binding B. KAB-18 binding in the

presence of epibatidine. The top three plots in each figure contain

binding free energy data computed with the MM-PBSA protocol

in Amber: DH (blue), TDS (red), DG (purple). The bottom plot in

each figure is distance data extracted from the MD simulations

over the sampling period: distance between positively charged

nitrogen atom of epibatidine and the backbone oxygen atom of

Trp148 (green), and the Ca-Ca between a191 and b58 (yellow).

The solid trace represents data for ligands bound to the ha4b2

nAChR extracellular domain model, while the dashed trace

represents the ha3b4 nAChR data. All data is presented as sliding-

window averages with a window size of 200 data points.

(TIF)

Figure S11 Dose-response curves for epibatidine and
KAB-18 on wild-type and mutant ha4b2 nAChRs. A.
Functional response for epibatidine binding to ha4b2WT (wild-

type) and ha4b2M T58K/F118L mutant nAChRs. B. Functional

response of KAB-18 on wild-type and mutant nAChRs. Data are

expressed as a percentage of control responses using 3 mM

epibatidine. Values represent means 6 SEMs (n = 5 – 7).

(TIF)
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