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Abstract: Huntington’s disease is a rare neurodegenerative disease caused by a
cytosine–adenine–guanine (CAG) trinucleotide expansion in the Huntingtin (HTT) gene. Although
Huntington’s disease (HD) is well studied, the pathophysiological mechanisms, genes and metabolites
involved in HD remain poorly understood. Systems bioinformatics can reveal synergistic relationships
among different omics levels and enables the integration of biological data. It allows for the
overall understanding of biological mechanisms, pathways, genes and metabolites involved in HD.
The purpose of this study was to identify the differentially expressed genes (DEGs), pathways
and metabolites as well as observe how these biological terms differ between the pre-symptomatic
and symptomatic HD stages. A publicly available dataset from the Gene Expression Omnibus
(GEO) was analyzed to obtain the DEGs for each HD stage, and gene co-expression networks
were obtained for each HD stage. Network rewiring, highlights the nodes that change most their
connectivity with their neighbors and infers their possible implication in the transition between
different states. The CACNA1I gene was the mostly highly rewired node among pre-symptomatic
and symptomatic HD network. Furthermore, we identified AF198444 to be common between the
rewired genes and DEGs of symptomatic HD. CNTN6, DEK, LTN1, MST4, ZFYVE16, CEP135, DCAKD,
MAP4K3, NUPL1 and RBM15 between the DEGs of pre-symptomatic and DEGs of symptomatic HD
and CACNA1I, DNAJB14, EPS8L3, HSDL2, SNRPD3, SOX12, ACLY, ATF2, BAG5, ERBB4, FOCAD,
GRAMD1C, LIN7C, MIR22, MTHFR, NABP1, NRG2, OTC, PRAMEF12, SLC30A10, STAG2 and Y16709
between the rewired genes and DEGs of pre-symptomatic HD. The proteins encoded by these
genes are involved in various biological pathways such as phosphatidylinositol-4,5-bisphosphate
3-kinase activity, cAMP response element-binding protein binding, protein tyrosine kinase activity,
voltage-gated calcium channel activity, ubiquitin protein ligase activity, adenosine triphosphate
(ATP) binding, and protein serine/threonine kinase. Additionally, prominent molecular pathways
for each HD stage were then obtained, and metabolites related to each pathway for both disease
stages were identified. The transforming growth factor beta (TGF-β) signaling (pre-symptomatic
and symptomatic stages of the disease), calcium (Ca2+) signaling (pre-symptomatic), dopaminergic
synapse pathway (symptomatic HD patients) and Hippo signaling (pre-symptomatic) pathways
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were identified. The in silico metabolites we identified include Ca2+, inositol 1,4,5-trisphosphate,
sphingosine 1-phosphate, dopamine, homovanillate and L-tyrosine. The genes, pathways and
metabolites identified for each HD stage can provide a better understanding of the mechanisms that
become altered in each disease stage. Our results can guide the development of therapies that may
target the altered genes and metabolites of the perturbed pathways, leading to an improvement in
clinical symptoms and hopefully a delay in the age of onset.

Keywords: huntington’s disease; systems bioinformatics; pathways; metabolites; gene co-expression;
network biology; differentially expressed genes; network rewiring

1. Introduction

Huntington’s disease (HD), which was first described in 1872 by Dr. George Huntington [1], is a
rare, progressive and devastating neurodegenerative disease with autosomal dominant inheritance [2].
The medium spiny neurons of the basal ganglia of the central nervous system play a role in executive
function, behavior and motor control as well as undergo neuronal degeneration [3].

HD is caused by a CAG trinucleotide repeat on the huntingtin (HTT) gene that is located on exon
1 of chromosome 4. The huntingtin protein (HTT) is encoded by the HTT gene [4]. The HTT gene
is located in a repeated DNA fragment that consists of cytosine-adenine-guanine (CAG) which is
repeated multiple times repeat [4].

The number of CAG repeats is the main predictor for age of onset and disease severity in HD [3].
In healthy individuals, the CAG trinucleotide is repeated normally between 10–35 times [3]. Individuals
that have between 36–39 CAG repeats may or may not develop HD, meaning that there is reduced
penetrance. However, individuals with 40 or more CAG repeats will always develop the signs and
symptoms of HD [3].

The typical age of onset for HD is approximately 40 years, and the average life expectancy is
17 years after symptom onset [5,6]. Clinical characteristics include: (i) movement impairment such as
chorea, (ii) an involuntary twitching movement and incoordination, (iii) cognitive impairment such as
lapse in short-term memory and (iv) behavioral impairment such as depression, personality changes
and psychosis. As the disease progresses, the involuntary movements become more prominent [5].
Clinical characteristics of HD patients are evaluated using the Unified Huntington’s Disease Rating
Scale (UHDRS), which evaluates (i) motor function, (ii) cognition, (iii) behavior and (iv) functional
abilities [5].

HD is a monogenetic and incurable disease and at the same time its molecular manifestations
remain highly complex and involve multiple cellular processes, genes, and metabolites, which needs
to be investigated to understand HD pathology. Systems bioinformatics (SB) allows the integration of
different biological omics data to better understand the biological pathways, mechanisms, genes and
metabolites involved in HD and lead to possible therapeutic treatments and biomarker discovery.

SB is an interdisciplinary field which combines the research fields of systems biology and
bioinformatics. SB allows the integration of biological data across the omics categories such a genomics,
transcriptomics, proteomics, metabolomics, lipidomics, epigenomics and several types of omics data [7].

A major approach in this direction is the generation and construction of biological networks
representing each level of omics data and their integration in a layered network that permits the
exchange of information between and within the layers. The goal is to reveal synergistic relationships
among numerous factors rather than explore each entity individually. This data integration approach
results in the construction of highly complex molecular interaction networks. The biological data,
obtained through large-scale omics analysis can provide a better understanding into biological
mechanisms and pathways and how a dysfunction in these mechanisms and pathways can cause the
disease [7]. Furthermore, the emerging importance of biological network-based approaches, allows for
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potential biological and clinical applications by suggesting an intuitive and trustworthy approach to
explore the biological and molecular complexity of a disease of interest [8].

The metabolome is defined as the complete set of small chemical molecules found within a
biological samples (urine, cerebrospinal fluid (CSF), serum, plasma), tissues and cells. Changes
and interactions in gene and protein expression and the environment are directly revealed in the
metabolome making it more chemically and physically complex than the genome, transcriptome and
proteome. Metabolites are affected by the upstream influence of the genome, proteome, environmental
and lifestyle factors, as well as medication and underlying diseases [9].

Metabolomics is an omics category focused in the study of metabolites. Metabolites are defined
as small biological and low molecular weight (<1500 Da) compounds, they are the end-products of
metabolism [10]. There are two categories of metabolites, the primary metabolites which are directly
involved in the growth, reproduction and development of the cell these include amino acids, sugars
and lipids and the secondary metabolites which are indirectly involved in the growth, reproduction
and development of the cell such as drugs. The investigation of metabolites allows the identification of
metabolic pathways that become activated or dysfunctional in patients. Identification of such disease
specific metabolites can eventually result in HD biomarkers [10].

The purpose of this work is to shed light on the DEGs between pre-symptomatic (before the onset
of symptoms) and symptomatic HD patients and to identify the biological pathways and metabolites
which appear to be altered between the pre-symptomatic and symptomatic stages. The pathways
and metabolites that are present or aberrant in each of the two disease stages provide further insight
into HD phenoconversion and into how these elements become dysfunctional, contributing to disease
onset and severity.

The aim of our work is to identify the genes, biological pathways and metabolites for
pre-symptomatic and symptomatic HD patients and observe how alterations in genes, pathways and
metabolites change as HD patients progress from the pre-symptomatic to the symptomatic stage of the
disease. Furthermore, our work provides insight towards the development of therapeutics, aiming to
delay the age of onset and potentially help decrease disease severity and symptoms.

2. Results

2.1. Differentially Expressed Genes in Pre-Symptomatic and Symptomatic HD Patients

The top 150 over and top 150 under expressed genes, therefore a total of 300 genes were identified
respectively for each group of HD patients. The DEGs for the pre-symptomatic and symptomatic
HD patients, in comparison to controls, are shown in Table S1 and Table S2 respectively. DEGs that
are highlighted through our pipeline and have also been already associated with HD based on the
bibliography, are highlighted in Table S3. Specifically, we annotate their role in pathophysiological
mechanisms such as neuro-inflammation, apoptosis, anti-oxidants and Ca2+ dysregulation that are
involved in HD.

2.2. Gene Co-Expression Networks of Pre-Symptomatic and Symptomatic HD Patients

The gene co-expression networks containing the DEGs for controls versus pre-symptomatic and
versus symptomatic HD patients are illustrated in (Figure 1). Blue nodes represent the genes present
in pre-symptomatic HD patients, orange nodes represent genes present in symptomatic HD patients
and green nodes represent genes found in both the pre-symptomatic and symptomatic HD patients.
Similarly, blue, orange and green edge colour represent co-expressions observed in pre-symptomatic,
symptomatic and both HD stages respectively. Additionally, network topology analysis revealed a
more tightly connected co-expression network for the pre-symptomatic HD patients compared to
the symptomatic, as shown by the differences in the degree, betweenness, coreness and closeness
distributions in Figure 1b–e.
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Figure 1. Network topological analysis of the gene co-expression. (a) Gene co-expression networks 
for controls versus pre-symptomatic and controls versus symptomatic HD. Blue nodes represent: the 
genes involved in pre-symptomatic HD, orange nodes represent: the genes involved in the 
symptomatic HD stage and green nodes represent the genes which appear in both HD networks. Edge 
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Figure 1. Network topological analysis of the gene co-expression. (a) Gene co-expression networks for
controls versus pre-symptomatic and controls versus symptomatic HD. Blue nodes represent: the genes
involved in pre-symptomatic HD, orange nodes represent: the genes involved in the symptomatic
HD stage and green nodes represent the genes which appear in both HD networks. Edge colour
represents co-expression in the respective groups (either or both HD stages) while edge thickness
represents co-occurrence score (b–e) Distribution of the calculated centralities for the pre-symptomatic
and symptomatic HD networks, i.e., (b) Degree (c) Betweenness (d) Coreness and (e) Closeness.



Int. J. Mol. Sci. 2020, 21, 7414 5 of 25

2.3. Network Rewiring between Gene Co-Expression Networks of Pre-Symptomatic and Symptomatic HD
Patients Using DyNet

The gene co-expression networks for the pre-symptomatic and symptomatic HD networks were
used to identify the most re-wired nodes between the pre-symptomatic and symptomatic HD networks
using the DyNet Cytoscape plug-in [11]. The central reference network is an overlapping visualization
view consisting of the pre-symptomatic and symptomatic HD networks as illustrated in (Figure 2).
The most highly re-wired node identified based on the Dn (DyNet re-wiring) score as seen in (Figure 2)
and drawn as a square node, was the calcium voltage-gated channel subunit alpha 1 I (CACNA1I). In our
data we identified the CACANA1I gene to be significant with a p-value of 1.96E-05 and logFC 2.744 in
pre-symptomatic HD patients. The CACNA1I gene encodes the protein CACNA1I, which is a member of
a sub-family of Ca2+ channels. The following voltage-gated Ca2+ channel is involved in Ca2+ signalling
in neurons [https://www.genecards.org/], [12], and Supplementary Table S4 shows the presence or
absence of genes indicated by true or false in the pre-symptomatic and symptomatic networks.
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Figure 2. Central reference network of the pre-symptomatic and symptomatic HD network using the
Cytoscape plug-in DyNet. Dark red nodes: Most highly re-wired nodes, Medium red: Highly re-wired
nodes, Light red: Least most re-wired nodes and White nodes: No re-wiring. The square node indicates
the CACNA1I gene, which was the most highly re-wired node based on the DyNet re-wiring score.

A Venn diagram [https://bioinfogp.cnb.csic.es/tools/venny/], was used to identify, the DEGs and
rewired genes common between the pre-symptomatic and symptomatic HD stages. The Venn Figure 3,
identified, the AF198444 gene to be common between the rewired genes and DEGs symptomatic
HD. Ten common genes such as CNTN6, DEK, LTN1, MST4, ZFYVE16, CEP135, DCAKD, MAP4K3,
NUPL1 and RBM15 were identified between the DEGs for pre-symptomatic and DEGs for symptomatic
HD. Some of the biological functions identified for the above-mentioned genes, include ubiquitin
protein ligase activity, ATP binding, adenyl ribonucleotide, protein serine/threonine kinase activity,

https://www.genecards.org/
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purine ribonucleotide triphosphate binding, ubiquitin-protein transferase activity, protein kinase
activity and RNA binding (Table S5). Additionally, twenty-two common genes such as CACNA1I,
DNAJB14, EPS8L3, HSDL2, SNRPD3, SOX12, ACLY, ATF2, BAG5, ERBB4, FOCAD, GRAMD1C, LIN7C,
MIR22, MTHFR, NABP1, NRG2, OTC, PRAMEF12, SLC30A10, STAG2 and Y16709 were identified
between the rewired and DEGs of pre-symptomatic. Some of the biological pathways identified
include, phosphatidylinositol-4,5-bisphosphate 3-kinase activity, phosphatidylinositol bisphosphate
kinase activity, cyclic adenosine monophosphate (cAMP) response element binding protein binding,
protein tyrosine kinase activity, voltage-gated ion channel activity involved in regulation of postsynaptic
membrane potential, voltage-gated calcium channel activity, manganese ion transmembrane transporter
activity and numerous additional pathways in Table S6. Furthermore, from our studied we identified the
genes of SP3 and PCNP from the DEGs symptomatic HD and CAPZA1 from the DEGs pre-symptomatic
HD. The following three genes, were previous identified by [13] as biomarkers for HD.
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Figure 3. Venn diagram of rewired genes and DEGs of pre-symptomatic and symptomatic HD.
Venn diagram illustrates the number of common genes between the rewired genes and DEGs of the
two HD stages.

The DEGs and re-wired genes obtained from DyNet were separately used as input for enrichment
analysis in the EnrichR web-tool [14] for pre-symptomatic and symptomatic HD cases as well as the
rewired network, to identify the common enriched pathways and genes among the co-expression
networks and the re-wired HD network. The common pathways between the pre-symptomatic,
symptomatic HD networks and the re-wired network were selected based on the top ranking score.

Some of the common pathways identified between the pre-symptomatic and the re-wired network
include: glycosaminoglycan degradation, citrate acid cycle, ErbB signaling pathway, adherens junctions,
Ca2+ signalling and arginine biosynthesis. Common pathways identified between the symptomatic
and the rewired network include the endocytosis and proteasome pathways.
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2.4. PathwayConnector Clustering of Pathways Identifed for Pre-Symptomatic and Symptomatic HD Patients

We further identified the HD- related pathways for the pre-symptomatic and symptomatic
HD stages using PathwayConnector [15]. The pathways for each stage are shown in Table S7 and
Table S8 respectively.

After enrichment analysis, mapping onto the Kyoto Encyclopedia of Genes and Genomes (KEEG)
reference network and the construction of the complementary pathway-to-pathway networks for the
pre-symptomatic and symptomatic HD stages, clustering was then implemented to group the final set
of HD-related pathways into clusters.

6 clusters were recognized for the pre-symptomatic HD stage and 3 clusters for the symptomatic
HD stage, clustering of pathways is based on the network property of edge-betweenness which defined
as the number of shortest paths which go through an edge in a network [16]. The clusters are indicated
by the different coloured circles and backgrounds for the pre-symptomatic and symptomatic stages
respectively Figure 4.
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Figure 4. Cluster of connected pathways for pre-symptomatic and symptomatic HD using
PathwayConnector (a) Clusters of pathways in the pre-symptomatic HD stage. There is a total
of six clusters, each shaded in a different color. (b) Three clusters of pathways in the symptomatic
HD stage.

2.5. GeneTrail3 for the Identification of Pathways by Analysing the DEGs for Pre-Symptomatic and
Symptomatic HD Patients

The pathways identified by GeneTrial3 for pre-symptomatic and symptomatic HD from each
selected biological database are sorted based on the adjusted p-value [17]. The top-15 pathways for
pre-symptomatic and symptomatic HD are shown in Tables 1 and 2 respectively.

Table 1. The top-15 ranked pathways obtained from GeneTrial3 for pre-symptomatic HD
using WikiPathways.

Rank Pathway Name p-Value

1 Transforming growth factor-beta (TGF)-beta signaling 0.00235
2 Codeine and morphine metabolism 0.00878
3 Focal adhesion 0.00878
4 PI3K-Akt signaling 0.00878
5 Small cell lung cancer 0.01354
6 Methylene tetrahydrofolate reductase (MTHFR) deficiency 0.02864
7 Chromosomal and microsatellite instability in colorectal cancer 0.03138
8 Development and heterogeneity of the innate lymphoid cell (ILC) family 0.03138

9 Oligodendrocyte specification and differentiation(including remyelination), leading to
myelin components for central nervous system (CNS) 0.03138

10 Pregnane X receptor pathway 0.03138
11 Ciliary landscape 0.03437
12 Ectoderm differentiation 0.03437
13 Sleep regulation 0.03667
14 22q11.2 deletion syndrome 0.03806
15 Mesodermal commitment pathway 0.03806
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Table 2. The top-15 ranked pathways obtained from GeneTrial3 for symptomatic HD
using WikiPathways.

Rank Pathway Name p-Value

1 Small cell lung cancer 0.00028
2 Adipogenesis 0.00100
3 Pregnane X receptor pathway 0.00368
4 Spinal cord injury 0.00374
5 Aryl hydrocarbon receptor netpath 0.00993
6 Integrated breast cancer pathway 0.00993
7 Phosphodiesterases in neuronal function 0.00993
8 Sudden infant death syndrome (SIDS) susceptibility pathways 0.00993
9 Hippo–Yap signaling 0.01068
10 Nuclear receptors meta-pathway 0.01068
11 Pathways affected in adenoid cystic carcinoma 0.01565
12 Non-small cell lung cancer 0.02004
13 Chromosomal and microsatellite instability in colorectal cancer 0.02053
14 Circadian rhythm-related genes 0.02117
15 Ciliary landscape 0.02573

2.6. PathWalks for the Analysis of Over and Under Expressed Genes for Pre-Symptomatic and Symptomatic
HD Patients

The results obtained from PathWalks [18] for each HD stage include (i) a list of ranked pathways
(which are the most visited by the random walker) and (ii) a list of ranked edges (the most frequently
traversed edges). The score indicates the times a respective pathway or edge was accessed by the
random walker.

Odds ratio (OR) analysis was performed for both HD patient groups and for each individual
HD patient group. A pathway with an OR of one and above is considered to be significant as the
walker did not pass by the pathway by random or by chance whereas a pathway with an OR of
below 1, the pathway is not considered to be significant as illustrated in Table S9, Table S10 and
Table S11 respectively.

The top pathways obtained from the odd ratio analysis can be seen in Figure 5 for pre-symptomatic
and symptomatic HD patients respectively.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 10 of 26 
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additional metabolites are exclusive in symptomatic HD. Tables S14 and S15 illustrates the exclusive 
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respective metabolites for pre-symptomatic and symptomatic HD respectively and Table S18 
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Figure 5. PathWalks derived pathway to pathway networks and odds ratio analysis for
(a) pre-symptomatic versus symptomatic HD, (b) pre-symptomatic HD, (c) symptomatic HD. In each
network the node size represents the odds ratio (OR) score in 4 bins. The top 20 pathways w.r.t to OR
are shown in colour, while the remaining nodes are shown in grey. Edges represent walker transitions
between pathways. Colour shading shows the identified communities of highly connected pathways
w.r.t to PathWalks scores.

2.7. Metabolites Identified and Related to HD Using KEGG

Metabolites are the intermediate end-products of metabolism, using KEGG compound [19] we
identified the metabolites relevant to each pathway for the pre-symptomatic and symptomatic HD
stages. Following enrichment analysis for the identification of pathways related to pre-symptomatic
and symptomatic HD using PathwayConnector [15] the Venny tool [https://bioinfogp.cnb.csic.es/tools/
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venny/] was used to identify the pathways that were exclusive in the pre-symptomatic and symptomatic
HD stages. A total of 40 and 37 exclusive pathways were identified for the pre-symptomatic and
symptomatic HD stages, respectively.

KEGG was utilized for the identification of metabolites for each exclusive pathway in the
pre-symptomatic and symptomatic HD stages. The exclusive pathways and the number of metabolites
identified for each pathway are shown in Tables S12 and S13.

Venny [https://bioinfogp.cnb.csic.es/tools/venny/] was used to identify the metabolites which are
exclusive in the pre-symptomatic and symptomatic HD stages. A total of 709 and 502 metabolites
were identified exclusively for pre-symptomatic and symptomatic HD respectively, and 87 common
shared metabolites were identified between the two stages as illustrated in Figure 5. Some of the
common metabolites identified include pyruvate, Ca2+, glucose 6-phosphate, K+, Na+, glutamate,
prostaglandin and several additional metabolites.

Some of the exclusive metabolites are ascorbic acid, glycine, retinol, succinic acid and
2-hydroxyestradiol and various additional metabolites are exclusive in pre-symptomatic HD whereas,
long- chain fatty acids such as arachidonic acid, fructose, quinolinate, eicosonoic acid and several
additional metabolites are exclusive in symptomatic HD. Tables S14 and S15 illustrates the exclusive
metabolites for each HD stage and Tables S16 and S17 illustrates the exclusive pathways and their
respective metabolites for pre-symptomatic and symptomatic HD respectively and Table S18 illustrates
the common pathways between the multi-source integration approach and the pre-symptomatic and
symptomatic HD.

The common metabolites that are shared between the two stages were excluded, as we aimed
to identify exclusive-only metabolites specific for each HD stage. These exclusive metabolites could
potentially be (i) important HD drug targets or (ii) biomarkers to distinguish the two stages. Therefore,
the exclusive metabolites present for each HD stage were then used as input into Cytoscape to construct
a new pathway-metabolite network with pathways and the exclusive metabolites only as illustrated in
(Figure 6).
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Figure 6. Pathway-metabolite network with pathways and the common and exclusive metabolites
for pre-symptomatic and symptomatic HD (a) Pathways and common and exclusive metabolites
for pre-symptomatic HD (b) Pathways and exclusive metabolites for symptomatic HD. The top
pathways are shown in colour. Green nodes represent the number of exclusive metabolites for either
the pre-symptomatic or symptomatic HD stage. Blue nodes represent the common metabolites in
both HD stages. The node size represents the number of common metabolites and smaller nodes
represent; the smaller the number of metabolites and larger nodes, the greater the number of metabolites.
Edge width represents the number of common metabolites across the pathways.

3. Discussion

While HD is a progressive, autosomal dominant inherited disease triggered by CAG repeat
expansion in the HTT gene, the molecular mechanisms and the pathology of HD remains highly
complex and consisting of multiple biological and cellular processes and mechanisms [5].

Through the utilization of multiple bioinformatics tools such as PathwayConnector [15],
GeneTrail3 [17] and PathWalks [18] we were able to highlight both pathways and communities
of pathways (based on ranked edges in the pathway-pathway network) in both pre-symptomatic and
symptomatic HD patients.

Some of the HD related pathways were consistent across the different tools utilized in this work.
The TGF-βpathway was identified to be present in both the pre-symptomatic HD and symptomatic

HD. The above-mentioned pathway was identified by PathwayConnector, GeneTrail3 and PathWalks
tools. The TGF family of genes includes a group of polypeptides that are structurally and functionally
related, the TGF family includes TGF-β1, TGF-β2, TGF-β3 and bone morphogenetic proteins (BMPs) [17].
TGF-βs have a number of biological roles within the cell, such as cell proliferation, differentiation, cell
migration, cell survival and apoptosis [17]. TGF-βs, are involved in both physiological and pathological
processes within the Central Nervous System (CNS). The up-regulated TGF-β1 has been associated
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with CNS injury and neurodegeneration [17]. Dysregulation of TGF-β signaling is possibly involved
in the HD pathology [18].

A previous study, identified a decrease in the amount of circulating TGF-β1 in pre-symptomatic
HD patients while the levels of TGF-β1 in symptomatic HD patients was found to be increased.
Furthermore, the levels of TGF-β1 in cortical neurons was identified to be decreased in post-mortem
brain tissue from both pre-symptomatic and symptomatic HD patients and in HD mouse models [20].
The same study, investigated that SMAD7, an antagonist of TGF-β signaling, is significantly reduced in
striatal cell lines expressing mHTT and in iPSC derived neural progenitors cells (NPCs), an event that
may possibly explain the increase in TGF-β signaling in HD neurons [20]. However, further studies are
required to clarify the molecular link between the TGF-β family signaling pathways and HD pathology.

The Ca2+ signaling pathway was identified for the pre-symptomatic HD patients and for the
re-wired network. The Ca2+ signaling pathway was identified by both PathwayConnector and
PathWalks. Additionally, based on the DyNet re-wiring score, the CACNA1I gene seems to play a
role in the early stages of HD. A dysregulation in CACNA1I may affect Ca2+ signaling in neuronal
cells. The CACNA1I gene encodes for the pore forming subunit of the Ca2+ voltage gated channel.
The expression profile of CACNA1I protein, includes the brain, thyroid, spleen, small intestine
and adrenal gland. The CACNA1I protein, is highly expressed in brain regions of the cerebral
cortex, cerebellum, cerebellar hemisphere and Brodmann area 9 and also a high expression in the
kidneys. No expression was identified for the thyroid and spleen and a low expression of CACNA1I
was identified in the small intestine. The following protein is member of the sub-family of Ca2+

channels [12,21]. The CACNA1I channel is characterized by a lower activation and inactivation in
comparison to other Ca2+ channels. Voltage gated Ca2+ channels are located in the membrane of
most excitable cells and allow Ca2+ influx in response to depolarization, they play a role in regulating
intracellular processes such as secretion, neurotransmission and gene expression. Alterations in the
CACNA1I, have been associated with autism, schizophrenia epilepsy [12,21]. In neurodegeneration,
alternations and dysregulation of Ca2+ signaling and homeostasis have been implicated Alzheimer’s
disease (AD), Parkinson’s disease (PD) and HD. However, there are to no studies investigating the
effect of CACNA1I on various neurodegenerative diseases, including HD. Further research in required
to investigate the role of CACNA1I not only in neurodegenerative diseases but also in HD. Ca2+

dysregulation is known to be one of the pathophysiological mechanisms involved in HD.
Some of the metabolites identified through KEGG [19] include, Ca2+, inositol 1,4,5-trisphosphate,

sphingosine 1-phosphate and several additional metabolites.
Ca2+ signalling pathway is involved in numerous physiological roles within the cell such as

neuronal transmission, neurogenesis, synaptic plasticity and muscle contraction [21]. However,
dysregulation of Ca2+ has been associated with other neurodegenerative diseases such as AD and PD,
and it is believed that Ca2+ dysregulation is one of the contributing pathophysiological mechanisms
for HD [22]. A number of studies, using HD animal models demonstrated that disruptions of Ca2+

signalling, result in alterations in the buffering capacity of Ca2+ binding proteins, in abnormal function of
Ca2+ channels mainly those involved in glutamate excitotoxicity and in disruption of the mitochondrial
Ca2+ handling system [22,23]. Ca2+ disruption is caused by the direct interaction of mHTT with
calcium-binding proteins (CBP) such as parvalbumin, calmodulin, calbindin, hypocalcin, ryanodine
receptor type 1, inositol trisphosphate receptor (InsP3R1) and different subunits of voltage-gated
calcium channels (VGCCs) which result to an increase in the Ca2+ concentration and dysfunction of
CBP proteins [22].

Furthermore, dysregulation of the Ca2+ signaling observed in HD, occurs at the transcriptional
level as the mHTT fragments alter the expression of genes involved in Ca2+ homeostasis in both
HD patients and animal models. Genomics studies conducted in HD animal models revealed a
significant difference in the mRNA levels of genes encoding for proteins involved in the intracellular
Ca2+ regulation and CBPs mentioned above [22].
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The DEGS and re-wired genes are common between the pre-symptomatic and symptomatic HD
stages. The AF198444 is a long non-coding RNA and it is involved in cisplatin resistance. Cisplatin is
given as a chemotherapy medication to treat numerous cancers such as ovarian, cervical, breast, bladder,
head, neck and lung cancer [https://go.drugbank.com]. This gene, was identified between re-wired
and DEGs symptomatic HD. CNTN6 is an anchored glycosylphosphatidylinositol neuronal membrane
protein, it may possibly be involved in the formation and development of axonal connections in the
developing nervous system [12]. ZFYVE16, encodes for the endosomal protein that is part of the
FYVE zinc finger protein family. The encoded protein is responsible for membrane trafficking in the
endosome and it acts as a scaffolding protein in the TGF-β signaling pathway [12].

These genes, were identified to common between the rewired, DEGs of pre-symptomatic and DEGs
of symptomatic. The pathways of ubiquitin protein ligase activity, ATP binding, adenyl ribonucleotide,
protein serine/threonine kinase activity, purine ribonucleotide triphosphate binding, ubiquitin-protein
transferase activity, protein kinase activity and RNA binding were identified from the DEGS that are
common between the rewired, DEGs of pre-symptomatic and DEGs of symptomatic HD.

The ubiquitin-proteasome system (UPS) is a highly dynamic and vital intracellular molecular
machinery for the biological process of protein degradation and maintenance of protein homeostasis [24].
It plays a role in cell cycle, cell differentiation, stress signaling, inflammatory response and it has a
role in cell fate and cell specification [24]. UPS facilitates the degradation of misfolded proteins and
the removal of damaged soluble proteins. The mechanism of action of the UPS is a two-step process
involving (1) ubiquitination and (2) proteolytic degradation of polyubiquitinated [24]. In HD, it has
been suggested that mHTT can impair the UPS either by saturating the system, or by providing excess
protein or by directly inhibiting the UPS [25]. One study identified a decrease in proteasome activity
in HD brains, however the exact mechanism of UPS dysfunction remains unknown. The mHTT is
not degraded but accumulates and forms insoluble intracellular aggregates. The mHTT aggregates
are unable to be removed by the UPS and therefore, alter the normal functioning and efficiency of the
UPS [24].

An additional pathway identifed is the protein serine/threonine kinase activity, this is a kinase
enzyme that phosphorylates the OH group of serine or threonine [26]. There are various such as
protein kinase A and C, which are second messengers, MAPKs which regulate cellular functions such
as gene expression, mitosis, differentiation, cell survival and apoptosis, Raf kinases, that stimulate
growth of cells and several additional serine/threonine family of kinases. A previous study, identified
that MAPK11 and huntingtin interacting protein 1 (HIP3K) as positive modulators of mHTT levels
in cells and in vivo. These kinase regulate mHTT via their kinase activity therefore, suggesting that
inhibition of these kinase may be used as possible therapeutic treatment [27]. Furthermore, the kinases
effect on the HTT levels are mHTT-dependent. Therefore, providing a feedback loop by which mHTT
increases its own levels resulting in mHTT accumulation and disease progression. MAPK11 knockout,
was identified to, significantly rescue disease-relevant behavioral phenotypes in a knock-in HD mouse
model [27]. The CACNA1I, was previously discussed and identified as the most highly rewired node
using DyNet.

DNAJB14, acts as a co-chaperone with heat shock proteins (HSPA8/Hsc70); it plays a role in
promoting protein folding and trafficking and preventing protein aggregation [12]. ATP citrate
lyase (ACLY), is an ATP citrate lyase enzyme and it is responsible for the synthesis of cytosolic
acetyl-Co-enzyme A (CoA) in many tissues. The enzyme, catalyzes the formation of acetyl-CoA and
oxaloacetate from citrate and CoA. The product, acetyl-CoA, is involved in a number of biological
pathways such as and cholesterogenesis. In neuronal cells, ACLY may play a role in the biosynthesis
of the neurotransmitter acetylcholine [12]. BAG5 is an anti-apoptotic protein that interacts with
numerous apoptosis and growth-related proteins including B-cell lymphoma 2 (BCL-2), Raf kinase,
steroid hormone receptors and growth factor receptors [12]. Some of the above-mentioned genes were
observed in the re-wired and DEGs of pre-symptomatic HD genes.

https://go.drugbank.com
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The pathways of phosphatidylinositol bisphosphate kinase activity, cyclic adenosine
monophosphate (cAMP) response element binding protein, tyrosine kinase and voltage-gated ion
channels have a vital functional role in the regulation of the postsynaptic membrane potential.
Phosphatidylinositol bisphosphate kinase activity is a lipid second messenger with a number of
biological functions such as signal transduction, vesicle trafficking, adhesion, and [28]. There are limited
studies, on the effect of phosphatidylinositol bisphosphate kinase activity on HD. A previous study,
investigated the in vitro knock down or pharmacological inhibition of the PIP4K isoform, PIP4K2C
the study observed a reduction in mHTT aggregates by increasing autophagy. Therefore, proposing
that the kinase could be a potential therapeutic target for HD treatment [28]. The cAMP response
element binding protein was also identified, the cAMP-response element binding protein (CREB) is
an intracellular protein responsible for the regulation of genes that are vital in DA neurons. DA was
observed to effect CREB phosphorylation via the G protein-coupled receptors [29]. Dysfunctional
CREB has been hypothesized to lead to neuronal cell death in HD. A previous study, observed the
upregulation of CRE-dependent transcription in the striatum, hippocampus and cortex of the R6/2 HD
mouse model. Additionally, an increase in cAMP response element binding protein phosphorylation
and an increase in the levels of CREB-regulated gene product, such as the CCAAT//enhancer binding
protein β, was also observed in the HD mouse model [30].

The dopaminergic synapse pathway was identified in symptomatic HD patients. This pathway
was common between PathwayConnector and PathWalks. Some of the identified metabolites include
dopamine, homovanillate, L-tyrosine, Ca2+ and diacylglycerol. Dopamine (DA) plays a role in
controlling movement, behavior and addiction [31]. Alternations in DA balance in the striatum,
result in neurodegenerative diseases such as PD and HD. Changes in DA brain content and receptor
number contributes to movement behavioral and cognitive impairments observed in HD patients [31].
During the early hyperkinetic HD stage, the DA levels are increased and expression of DA receptors
is decreased in contrast to the late akinetic HD stage, were DA levels are significantly reduced [31].
One study, using a positron emission tomography (PET), observed a decrease in striatal D1 and D2
DA receptor density in advanced HD patients but also in asymptomatic HD patients. This further
indicates that the DA signaling is dysregulated in the early HD stages [31]. Striatal and cortical loss of
DA receptors in pre-symptomatic and early symptomatic HD stage, was correlated with early cognitive
decline, which may possibly reflect altered synaptic plasticity leading to the impairment of attention,
executive function, learning and memory [31].

Homovanillate also known as homovanillic acid (HVA), is a catecholamine metabolite produced
by reaction of monoamine oxidase and catechol-O-methyltransferase onto DA [32]. HVA is used for the
exposure of oxidative enzymes and it is also associated with DA concentration in the brain. Furthermore,
HVA is also used as a biological marker of metabolic stress triggered by 2-deoxy-D-glucose [33].

One study investigated the HVA levels obtained from the cerebrospinal fluid (CSF) of HD patients
and compared them to controls. The HVA concentration was identified to be decreased in the CSF of
HD patients compared to controls [34]. This decrease may possibly indicate either a decreased number
or a decreased activity of dopaminergic neurons. An additional study, investigated the levels of plasma
HVA in 116 HD patients, which consisted of 29 pre-symptomatic and 90 symptomatic HD patients and
controls [35]. There was no significant difference in the plasma HVA levels of the pre-symptomatic HD
patients compared to controls. However, the HVA levels were significantly higher in symptomatic
HD patients. This increase was positively associated with disease severity and functional capacity of
patients [35].

However, there is conflicting evidence regarding the measurement of DA and its metabolite HVA
in post-mortem HD brain tissue. Some studies have found either normal HVA levels [35,36], or normal
DA levels and reduced HVA [35,37] or reduced DA and HVA levels [34,35]. However, more research is
required to identify the presence or absence of HVA concentration in HD patients and the effects this
might have on disease progression and severity.
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The pathways of (i) ubiquinone and other terpenoid quinone biosynthesis, (ii) hippo signaling
in multiple species and (iii) phosphatidylinositol signaling, were identified as the top pathways via
the odd ratio analysis of pre-symptomatic versus symptomatic HD group, pre-symptomatic and
symptomatic HD groups respectively. Hippo signaling is involved in controlling organ size in animals,
through the regulation of cell proliferation and apoptosis, where the key signaling component is the
protein kinase Hippo (Hpo) [38]. The inhibition of Hippo results in tumorigenesis and its activation
may play a role in neurodegeneration [39].

A study investigated the role of the Hippo signaling dysregulation in human HD brains and
neuronal system cells [39]. A decrease in the nuclear Yes associated protein (YAP) was observed.
The study found, that YAP nuclear activity becomes altered in HD and this may be linked to HD
pathogenesis. Additionally, the YAP levels in the cortex of HD brain tissues and HD embryonic
stem-derived neuronal stem cells were observed to be decreased. A reduction in YAP mediates
oxidative stressed, which leads to neuronal cell death and a decrease in neuronal cell survival [39].

YAP was also identified to interact with HTT and chaperone proteins. This interaction was not
altered in the presence of mHTT. YAP also interacts with the transcriptional enhancer activator domain
(TEAD). The YAP/TEAD complex promotes transcription of pro-survival genes, which are involved in
cell survival and proliferation and inhibit apoptosis [39]. The YAP/TEAD interaction and expression of
Hippo signaling gene were identified to be altered in HD cells [39].

Phosphatidylinositol plays an important role in intracellular signaling in response to extracellular
signals [40]. Phosphatidylinositol undergoes a rapid turnover and is responsible for the activation
of second messengers such as diacylglycerol, inositol 1,4,5-trisphosphate, phosphatidylinositol
3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate. The phosphatidylinositol signaling
pathway plays a role in cell proliferation, survival and metabolism and in additional functions including
cell migration, endocytosis and membrane dynamics [40].

The phosphoinositide enzyme PI5P has been recently discovered and is located in the plasma
membrane, nucleus and Golgi. The possible function of PI5P in the cell, is that it may be involved in
regulating chromatin function and transcriptional regulation in the nucleus [28].

Previous studies, investigated in vitro knock-down and pharmacological inhibition of the
phosphatidylinositol 5-phosphate 4-kinase (PIP4K) isoform, phosphatidylinositol-5-phosphate 4-kinase
Type 2 gamma (PIP4K2C). The study identified a decrease in mHTT protein aggregates was observed
by increasing basal autophagy. This study suggested that the PIP4K2C kinase may be a potential
target for the treatment progressive neurodegenerative diseases such as HD [28]. However, more
research is needed to investigate and understand the phosphoinositide enzymes and their role in HD.
The HD related pathways which were identified in the pre-symptomatic and symptomatic HD patients
using PathwayConnector [15] were then compared to the HD-related pathways obtained through our
multi-source data integration approach [for more details on methods and findings see 33]. Some of
the common identified pathways between pre-symptomatic HD and symptomatic HD patients and
HD related pathways were identified from the multi-source data integration approach [41]. Some of
the common pathways include, cocaine addiction, dopaminergic synapse, pathways in cancer, and
several other pathways. The common pathways between the multi-source data integration approach
and pre-symptomatic and symptomatic HD patients are shown in Table S11.

In [13], the authors performed experimental analysis to identify genes and possible biomarkers
between pre-symptomatic and symptomatic HD patients. In that work, they utilized statistical analysis
to identify the DEGs in pre-symptomatic and symptomatic HD. However, no pathway analysis
tools were used to identify the pathways of either the DEGs or the pathways of the genes used as
biomarkers for symptomatic HD. The analysis and biomarker identification focused on symptomatic
HD and controls rather than also focusing on possible biomarkers for pre-symptomatic HD. Over the
years a number of bioinformatics tools have been developed for the analysis of large scale biological
data. Our study, utilizes different bioinformatics tools and analysis for the identification of DEGs,
pathways, network re-wiring and metabolite differences between pre-symptomatic and symptomatic
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HD. Furthermore, tools such as PathwayConnector, adds missing complementary pathways into a
network to achieve connectivity between pathway nodes. This leads to a more informative fully
connected network of the pre-symptomatic and symptomatic HD networks. DyNet was used to
identify and visualize how gene molecular interactions become altered and result in changes in their
connectivity and composition in response to cellular signals within a biological network. Our approach,
can provide insight into the genes, pathways and metabolites which become altered prior and during
HD disease onset and also a better understanding on how these pathways and genes are affected which
can lead to pharmacological intervention.

The strengths of our study include (i) identification of DEGs, pathways and exclusive metabolites
between the pre-symptomatic HD and symptomatic HD patients. However, our study is not without
its limitations, namely (i) the extremely limited number of HD datasets with blood samples, (ii) blood
samples may not sufficiently reveal neurodegeneration in the CNS and the blood samples may not
correlate with brain changes in HD, (iii) the small sample size of the dataset used, and (iv) lack of
validation of our results in a larger cohort of HD patients. Although the sample size is small, which
can have an implication in the significance and reproducibility of the results obtained, it is challenging
to find an HD dataset with a large sample size and that consists of two stages due to the rarity of HD.
While the sample size is a limitation, it can drive to findings even with an increased level of noise
and provide an initial understanding of pathways and metabolites involved in each HD stage before
replicating the findings in a larger sample. Although the sample size is small and this can have an
implication on the significance and reproducibility of the results obtained, it is challenging to find an
HD dataset with a large sample size and consisting of two stages due to the rarity of HD. While the
small sample size is a limitation, it can drive to findings even with an increased level of noise and
provide an initial understanding of the pathways and metabolites involved in each HD stage before
replicating the findings in a larger sample. Although the blood sample does not necessarily correlate
with brain changes in HD, it is an easier biological fluid to obtain from HD patients and less invasive
compared to lumber puncture to obtain cerebrospinal fluid. We expect that this work will be the basis
of future experimental validation of our results in a larger cohort study to validate both the DEGs,
pathways, metabolites and the gene expression differences of CACNA1I in a larger case-control study
of HD patients.

Our in silico analysis identified the biochemical pathways, genes and metabolites between
pre-symptomatic and symptomatic HD patients. This analysis can shed light on the genes and
pathways which become dysregulated before disease onset as well as during disease onset. Targeted
treatments regarding these genes and pathways should be further pursued. Such treatments may
potentially result in a delay in disease onset, improvement of clinical symptoms, improvement of
energy metabolism and also increase the concentration of down-regulated enzymes of HD. Our findings
are in agreement with the bibliography. Based on this work, we identified certain pathways such as
TGF-β, dopaminergic synapse and Ca2+ signaling to be dysregulated between pre-symptomatic and
symptomatic HD patients. Furthermore, we identified metabolites and their exclusive pathways for
each HD stage. The dysregulation of these metabolites can contribute to HD pathology. The CACNA1I
gene was identified to be the most highly rewired gene. Pathways and metabolites identified to
be altered or dysfunctional in the pre-symptomatic and symptomatic HD stages can be further
experimented on to allow the development of therapeutics which target these genes, pathways and
metabolites. This can lead in a delay in the age of onset as well as in a decrease of disease severity and
symptom onset in HD patients.

4. Materials and Methods

An HD dataset was obtained from GEO, which was used to identify the DEGs and construct gene
co-expression networks for each HD stage. Network visualization of gene co-expression and exclusive
pathway-metabolite networks was performed using Cytoscape. Network re-wiring was performed,
to identify the mostly highly re-wired node among the two HD stages. Molecular pathways, were
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investigated using PathwayConnector, GeneTrial3 and PathWalks. KEGG was used to identify the
exclusive metabolites for each pathway identified using PathwayConnector. The workflow we applied
is illustrated in Figure 7.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 19 of 26 
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4.1. Data

A transcriptomics dataset “Human blood expression for Huntington’s disease versus controls”
(GSE1751), was obtained from Gene Expression Omnibus [42]. The aforementioned dataset consists
of 31 samples, 5 pre-symptomatic, 12 symptomatic HD patients (7 males and 5 females) and
14 healthy controls. No further information was provided on the number of males and females
for 5 pre-symptomatic HD patients and healthy controls.

No additional information such as demographics or clinical information about the samples and the
patients were provided in [13]. Neurological status of HD patients was determined using the Unified
Huntington’s Disease Rating Scale (UHDRS), which was performed by an experienced neurologist.
Symptomatic patients were in stages I or II of HD, based on the total functional capacity scores (TFC)
of 7–12 [13].

GEO [42] and Repositive [https://repositive.io] were extensively searched for additional datasets,
with the criteria (i) to consist of two HD stages and (ii) the biological fluid being blood. However,
this was the only dataset found, fitting these criteria. Details on the collection of peripheral blood
samples from both cases and controls are in detail in [13].

4.2. Differential Expression and Gene Co-Expression Analysis

The linear models for microarray data (Limma) is an R package that allows for the analysis of gene
expression data obtained from experiments such as microarrays and RNA-seq. The Limma R package
is used to identify the differential expressed genes (DEGs) between cases vs. controls or treated vs.
non-treated individuals [43]. Limma using the adjusted p-value was also performed, as illustrated in
Tables S19 and S20 for pre-symptomatic and symptomatic respectively.

https://repositive.io
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Parmigene is an R package that performs parallel estimation of mutual information it is based on
estimates from the k-nearest neighbor’s distances and uses algorithms for the reconstruction of gene
regulatory networks [44]. The input files used for the parmigene R script include the intensities matrix
and top ids for each of the two disease stages. The output obtained is a clr file for controls versus
pre-symptomatic and controls versus symptomatic patients.

Graph network analysis was performed using Igraph [45]. An edgelist for controls versus
pre-symptomatic and controls versus symptomatic HD patients was obtained.

There was a total of 1615 DEGs for pre-symptomatic HD and 3683 DEGs for symptomatic HD.
A total of 300 DEGs (top 150 over and top150 under-expressed genes with p-value < 0.05), were selected
to be analysed further for each HD stage, to avoid noise within our networks and to extract meaningful
information from the pre-symptomatic and symptomatic HD network. A further cut-off threshold was
applied to the final edgelists for both controls versus HD stages. The weights from the final edgelist
were converted to a log function (log (weight)). Therefore, genes and their weights of above 1 and more
were used as input into Cytoscape for the construction of gene co-expression networks for controls
versus pre-symptomatic and controls versus symptomatic HD patients.

4.3. Network Visualization and Analysis

Gene co-expression networks were constructed and visualized using R’s package igraph [45],
for each HD disease stage. The network shown in Figure 2 was visualized in Cytoscape [46] using the
edge lists obtained from igraph. A gene co-expression network is an undirected network, consisting of
nodes and edges. Each node represents a gene, a pair or group of nodes is connected to an edge if there
is a meaningful co-expression relationship between the nodes. Co-expressed networks are of biological
significance since the co-expressed genes maybe be controlled by either the same transcriptional
regulatory factors, or they be functionally related or they may be part of the same biological pathways
and mechanisms or protein complexes [47].

Network topology is defined as the way in which nodes and edges are arranged within the
network. Network topology analysis, can help in the identification of relevant sub-structures within the
network. There are different network metrics such as betweenness, centrality and closeness that can be
applied to understand node relationships in a network. Network topology metrics that were calculated
for the pre-symptomatic and symptomatic HD gene co-expression networks are described below.

The degree indicates the number of a node’s neighbors. The pre-symptomatic HD network has a
degree value close to 7.5 and the relative density is 1 and the symptomatic is 5 and the relative density
is 1. Betweenness is defined as the measure of centrality within a network based on the shortest
paths. The relative density in both networks is close to 1. The coreness, measures the importance of a
node to disseminate information through the network. Furthermore, the node with more connections
to its neighbors are located in the core of the network are more powerful. The pre-symptomatic
HD network has a coreness value of 3 × 10−4 compared to 1 × 10−4 the symptomatic HD network,
indicating that the pre-symptomatic HD network is more interlinked. Closeness, measures how short
the shortest paths are from a node to all nodes in the network, the relative density is close to 1 for both
the pre-symptomatic and symptomatic HD networks.

4.4. Network Re-Wiring

The network rewiring approach allows for the identification and visualization of how molecular
interaction networks change in their connectivity and composition in response to cellular signals
DyNet is a Cytoscape plug-in that performs network re-wiring [11].

DynNet allows for the visualization and analysis of large scale multi-state dynamics molecular
interaction networks. There are two modes of analysis, (i) the pairwise mode, compares two networks
only and the (ii) multiple comparison mode: compares two or more networks. Each analysis mode
assists in the visualization of node and edge variations based on either their presence, absence or the
value of selected numeric attribute, for example node abundance and edge weight across the biological
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networks. When comparing numeric attributes between the two biological networks in the pairwise
mode, DyNet calculates the log2 fold change of the numeric attribute [11]. When comparing two or
more networks, the following approach is applied to obtain the node and edge rewiring: the normal
variance for the numeric attribute is calculated across all the networks, this then gives a score for the
most rewired nodes in the central reference network, which consists of all the input networks you
used a input [11]. The most re-wired nodes can be visualized as a dark red whereas nodes that are
less re-wired are shown as light pink and nodes with no re-wiring are shown as white in the central
reference network. The Dn score is known as the rewiring metric and it identifies the most rewired
nodes in a network [11].

The gene co-expression networks for the pre-symptomatic and symptomatic HD stages were used
as input in the DyNet Cytoscape [11,46] plug-in, to identify the most re-wired nodes, between the
pre-symptomatic and symptomatic HD networks. The multiple comparison mode was used for the
analysis between the two HD stage networks.

4.5. Investigation of Molecular Pathways Related to HD

4.5.1. PathwayConnector for Complementary Pathway-To-Pathway Networks

PathwayConnector is a web-based tool developed by our group, which allows for the generation
and construction of complementary pathway-to-pathway networks, based on the reference pathway
network of either KEGG [19] or REACTOME [48] databases for pathway mapping and clustering of
pathways. PathwayConnector [15] was used for the identification of HD-related pathways present in the
pre-symptomatic and symptomatic HD stages. The top up and down regulated genes identified through
Limma, for the pre-symptomatic and symptomatic stages were used as input into PathwayConnector.
The output obtained is a cluster of complementary pathways, related to HD.

4.5.2. GeneTrial3 for the Identification of Biological Processes and Pathways

GeneTrail3 is an open source, web application that provides functional analysis for the
identification, analysis and visualization of dysregulated biological processes; [17]. The GeneTrail3 tool
provides a comprehensive collection of biological processes and signaling pathways for 12 organisms
that can be analyzed, either through (i) over-representation analysis (ORA) which compares a reference
set of genes to a test set and (ii) gene set enrichment analysis (GSEA), which scores a sorted list of
genes [17]. GeneTrial3 was used for the analysis of the top 150 over and 150 under expressed gene
lists obtained through Limma for pre-symptomatic and symptomatic HD. The following biological
databases and categories were selected (i) Gene Ontology (GO) biological processes, cellular components,
molecular function, (ii) KEGG pathways, (iii) Reactome pathways, (iv) Wikipathways, (v) BioCartia
pathways, (vi) HumanCyc and (vii) Consensus PathDB-HumanCyc and the reference set selected was
all supported genes. The results obtained, include pathway names for each of the databases selected,
the number of hits from our gene list, an expected score and an adjusted p-value.

4.5.3. PathWalks Highlighting Pathway Communities

PathWalks is an approach, where a random walker, walks across a pathway-to-pathway network
with the help a gene network which was constructed by integrating multi-source information regarding
a disease of interest [18]. The two main networks required by PathWalks is (i) a multi-source integration,
which is the synthetic gene network that represents integrated information such as gene co-expression,
miRNA and physical interactions obtained from biological database and (ii) pathway-to-pathway
network. The walker performs random walks on the gene-to-gene network and the nodes visited by
the walker indicates the walker’s destination on the pathway-to-pathway network [18].

The top 150 over and 150 under expressed genes for pre-symptomatic and symptomatic HD
stages, obtained through Limma were used as input into the PathWalks. The results generated for each
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HD stage include (i) pathways ranked w.r.t. the count of their respective visits, (ii) edgelists ranked
w.r.t. to the count of walker transitions between the respective connected pathways.

The visit counts per pathway were adjusted for the effect of network topology where larger and
highly connected pathways are favored against smaller ones. Specifically, using an odds ratio (OR)
analysis we defined the ratios between the resulting visit counts when the DEGs of interest where
used as an input to PathWalks (guided), to the corresponding counts of a run without any gene input
(non-guided). The OR is given by:

OR =
PG

i /
(
1− PG

i

)
PU

i /
(
1− PU

i

)
PG/U

i =
FG/U

i

FG/U
t

i ∈ {1, 2 . . . n}

where indices G and U correspond to the guided and non-guided runs, respectively. PG/U
i is the

visiting probability of the ith pathway calculated as the ration of frequency FG/U
i over the total visits

FG/U
t to all n pathways used in the PathWalks reference network. A pathway is considered more likely

to be involved in HD for OR values greater than 1. OR values of less than 1 correspond to less relevant
pathways to HD. The obtained pathways and corresponding OR values were visualized as a network
using R’s igraph package [45].

4.6. Metabolites for HD Related Pathways

Metabolites are referred to as compounds in the KEGG database. The pathway-to-pathway
networks, constructed using PathwayConnector for pre-symptomatic and symptomatic HD stages
were then used to identify the relevant metabolites for each pathway, using the KEGG database [19].

5. Conclusions

In this work, a publicly available dataset consisting of both pre-symptomatic and symptomatic
HD patients was analyzed. The DEGs for each HD stage were identified. These genes may become
mutated during the early stages of the disease prior to symptom onset. Some of the genes are involved
in signaling pathways such as the elimination of reactive oxygen species (ROS) from the cell and
the protein folding and proteasome degradation. However, there is a limited number of studies
investigating the effect DEGs in HD and overall in neurodegenerative diseases. Our results provide
insight into: (i) the genes which become dysregulated in the pre-symptomatic and symptomatic HD
patients, (ii) the HD related pathways and (iii) the exclusive metabolites for each HD stage which
become dysregulated as the disease progresses from the pre-symptomatic to symptomatic HD stage.
However, more research needs to be conducted to understand how abnormal gene expression and
alterations in the substrates, proteins and enzymes of these pathways affect both pre-symptomatic and
symptomatic HD. A better understanding of the systematic biological changes, which are associated
with the genes, proteins and metabolites in HD is vital to provide a further understanding and
potentially study the factors involved in the disease development and progression. Furthermore,
the development of new therapeutics can target either the genes, proteins or metabolites involved in
pathways identified in both the pre-symptomatic and symptomatic HD patients. This may delay the
age of onset, improve clinical symptoms and overall improve the quality of life for HD patients.
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Abbreviations

ACLY ATP citrate lyase
AD Alzheimer’s Disease
ADORA2A Adenosine A2a receptor
BCL-2 B-cell lymphoma
BAG5 BAG Co-chaperone 5
Ca2+ Calcium cation
CACNA1E Calcium voltage-gated channel subunit alpha 1S subunit
CAG Cytosine-adenine-guanine
CASP Caspases
CBP Calcium-binding protein
CSF Cerebrospinal Fluid
COX7B Cytochrome c oxidase subunit 7B
CNS Central Nervous System
CREB cAMP response element binding protein
DA Dopamine
DEGs Differentially expressed genes
DNAJ DnaJ heat shock protein family
FDR False Discovery Rate
FOXO3 Forkhead Box O3
GEO Gene Expression Omnibus
GO Gene Ontology
HD Huntington’s disease
HIP3K Huntingtin Interacting Protein
HLADRB4 Major Histocompatibility Complex, Class II, DR Beta 4
HTT Huntingtin
HVA Homovanillate
InsP3RI Inositol Trisphosphate Receptor
IL Interleukin
iPSCs Induced Pluripotent Stem Cells
ITGA1 Integrin subunit Alpha 1
KCND2 Potassium Voltage-Gated Channel Subfamily D Member 2
KEGG Kyoto Encyclopedia of genes and genomes
MAP2 Microtubule associated protein 2
MAPK Mitogen-Activated Protein Kinase
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mtDNA Mitochondrial DNA
MTFRI Mitochondrial Fission Regulator 1
mHTT mutant huntingtin
NPCs Neural Progenitors Cells
OR Odds Ratio
OXR1 Oxidation resistance 1
PD Parkinson’s Disease
PET Positron Emission Tomography
PIP4K Phosphatidylinositol-5-Phosphate 4-Kinase
PIP4K2C Phosphatidylinositol-5-Phosphate 4-Kinase Type 2 Gamma
PolyQ Polyglutamine
RYRI Ryanodine receptor
ROS Reactive Oxygen Species
SB Systems bioinformatics
TFC Total Functional Capacity
TGF-β Transforming Growth Factor Beta
TRAF2 TNF receptor-associated factor 2
UHDRS Unified Huntington’s Disease Rating Score
UPS Ubiquitin-Proteasome system
VGCC Voltage-gated calcium channels

References

1. Bates, G.P.; Dorsey, R.; Gusella, J.F.; Hayden, M.R.; Kay, C.; Leavitt, B.R.; Nance, M.; Ross, C.A.; Scahill, R.I.;
Wetzel, R.; et al. Huntington disease. Nat. Rev. Dis. Primers 2015, 1, 15005. [CrossRef] [PubMed]

2. Johri, A.; Beal, M.F. Antioxidants in Huntington’s disease. Biochim. Biophys. Acta—Mol. Basis Dis.
2012, 1822, 664–674. [CrossRef] [PubMed]

3. Manoharan, S.; Guillemin, G.J.; Abiramasundari, R.S.; Essa, M.M.; Akbar, M.; Akbar, M.D. The Role of
Reactive Oxygen Species in the Pathogenesis of Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s
Disease: A Mini Review. Oxid. Med. Cell. Longev. 2016, 2016, 1–15. [CrossRef] [PubMed]

4. Walker, F.O. Huntington’s disease. Semin. Neurol. 2007, 27, 143–150. [CrossRef] [PubMed]
5. Roos, R.A.C. Huntington’s disease: A clinical review. Orphanet J. Rare Dis. 2010, 5, 40. [CrossRef]
6. Tabrizi, S.J.; Langbehn, D.R.; Leavitt, B.R.; Roos, R.A.C.; Durr, A.; Craufurd, D.; Kennard, C.; Hicks, S.L.;

Fox, N.C.; Scahill, R.I.; et al. Biological and clinical manifestations of Huntington’s disease in the longitudinal
TRACK-HD study: Cross-sectional analysis of baseline data. Lancet Neurol. 2013, 8, 791–801. [CrossRef]

7. Oulas, A.; Minadakis, G.; Zachariou, M.; Sokratous, K.; Bourdakou, M.M.; Spyrou, G.M. Systems
Bioinformatics: Increasing precision of computational diagnostics and therapeutics through network-based
approaches. Brief. Bioinform. 2019, 20, 806–824. [CrossRef]

8. Fiscon, G.; Conte, F.; Farina, L.; Paci, P. Network-based approaches to explore complex biological systems
towards network medicine. Genes 2018, 9, 437. [CrossRef]

9. Nalbantoglu, S.; Abu-Asab, M.; Suy, S.; Collins, S.; Amri, H. Metabolomics-Based Biosignatures of Prostate
Cancer in Patients Following Radiotherapy. OMICS. A J. Integr. Biol. 2019, 23, 214–223. [CrossRef]

10. Alonso, A.; Marsal, S.; Julià, A. Analytical Methods in Untargeted Metabolomics: State of the Art in 2015.
Front. Bioeng. Biotechnol. 2015, 5, 23. [CrossRef]

11. Goenawan, I.H.; Bryan, K.; Lynn, D.J. DyNet: Visualization and analysis of dynamic molecular interaction
networks. Bioinformatics 2016, 32, 2713–2715. [CrossRef] [PubMed]

12. Safran, M.; Dalah, I.; Alexander, J.; Rosen, N.; Iny Stein, T.; Shmoish, M.; Nativ, N.; Bahir, I.; Doniger, T.;
Krug, H.; et al. GeneCards Version 3: The human gene integrator. Database (Oxford) 2010, 2010, 1–16.
[CrossRef] [PubMed]

13. Borovecki, F.; Lovrecic, L.; Zhou, J.; Jeong, H.; Then, F.; Rosas, H.D.; Hersch, S.M.; Hogarth, P.; Bouzou, B.;
Jensen, R.V.; et al. Genome-wide expression profiling of human blood reveals biomarkers for Huntington’s
disease. Proc. Natl. Acad. Sci. USA 2005, 102, 11023–11028. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/nrdp.2015.5
http://www.ncbi.nlm.nih.gov/pubmed/27188817
http://dx.doi.org/10.1016/j.bbadis.2011.11.014
http://www.ncbi.nlm.nih.gov/pubmed/22138129
http://dx.doi.org/10.1155/2016/8590578
http://www.ncbi.nlm.nih.gov/pubmed/28116038
http://dx.doi.org/10.1055/s-2007-971176
http://www.ncbi.nlm.nih.gov/pubmed/17390259
http://dx.doi.org/10.1186/1750-1172-5-40
http://dx.doi.org/10.1016/S1474-4422(09)70170-X
http://dx.doi.org/10.1093/bib/bbx151
http://dx.doi.org/10.3390/genes9090437
http://dx.doi.org/10.1089/omi.2019.0006
http://dx.doi.org/10.3389/fbioe.2015.00023
http://dx.doi.org/10.1093/bioinformatics/btw187
http://www.ncbi.nlm.nih.gov/pubmed/27153624
http://dx.doi.org/10.1093/database/baq020
http://www.ncbi.nlm.nih.gov/pubmed/20689021
http://dx.doi.org/10.1073/pnas.0504921102
http://www.ncbi.nlm.nih.gov/pubmed/16043692


Int. J. Mol. Sci. 2020, 21, 7414 24 of 25

14. Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.;
Jagodnik, K.M.; Lachmann, A.; et al. Enrichr: A comprehensive gene set enrichment analysis web server
2016 update. Nucleic Acids Res. 2016, 44, W90–W97. [CrossRef] [PubMed]

15. Minadakis, G.; Zachariou, M.; Oulas, A.; Spyrou, G.M. PathwayConnector: Finding complementary pathways
to enhance functional analysis. Bioinformatics 2019, 35, 889–891. [CrossRef]

16. Zachariou, M.; Minadakis, G.; Oulas, A.; Afxenti, S.; Spyrou, G.M. Integrating multi-source information on
a single network to detect disease-related clusters of molecular mechanisms. J. Proteom. 2018, 188, 15–29.
[CrossRef]

17. Backes, C.; Keller, A.; Kuentzer, J.; Kneissl, B.; Comtesse, N.; Elnakady, Y.A.; Müller, R.; Meese, E.; Lenhof, H.P.
GeneTrail-advanced gene set enrichment analysis. Nucleic Acids Res. 2007, 35, 186–192. [CrossRef]

18. Karatzas, E.; Zachariou, M.; Bourdakou, M.M.; Minadakis, G.; Oulas, A.; Kolios, G.; Delis, A.; Spyrou, G.M.
PathWalks: Identifying pathway communities using a disease-related map of integrated information.
Bioinformatics 2020. [CrossRef]

19. Kanehisa, M.; Goto, S.; Furumichi, M.; Tanabe, M.; Hirakawa, M. KEGG for representation and analysis of
molecular networks involving diseases and drugs. Nucleic Acids Res. 2009. [CrossRef]

20. Kashima, R.; Hata, A. The role of TGF-β superfamily signaling in neurological disorders. Acta Biochim.
Biophys. Sin. (Shanghai) 2018, 50, 106–120. [CrossRef]

21. Demaurex, N.; Nunes, P. The role of STIM and ORAI proteins in phagocytic immune cells. Am. J.
Physiol.—Cell Physiol. 2016, 310, C496–C508. [CrossRef] [PubMed]

22. Kolobkova, Y.; Vigont, V.; AShakygin, V.; Kaznacheyeva, E. Huntington’s Disease: Calcium Dyshomeostasis
and Pathology Models. Acta Nat. 2017, 9, 34–46. [CrossRef] [PubMed]

23. Brini, M.; Calì, T.; Ottolini, D.; Carafoli, E. Neuronal calcium signaling: Function and dysfunction. Cell. Mol.
Life Sci. 2014, 71, 2787–2814. [CrossRef] [PubMed]

24. Rao, G.; Croft, B.; Teng, C.; Awasthi, V. The ubiquitin-proteasome system in neurodegenerative disorders.
J. Drug Metab. Toxicol. 2015, 6, 139–148. [CrossRef]

25. Smith, R.; Brundin, P.; Li, J.Y. Synaptic dysfunction in Huntington’s disease: A new perspective. Cell. Mol.
Life Sci. 2005, 62, 1901–1912. [CrossRef]

26. Capra, M.; Nuciforo, P.G.; Confalonieri, S.; Quarto, M.; Bianchi, M.; Nebuloni, M.; Boldorini, R.; Pallotti, F.;
Viale, G.; Gishizky, M.L.; et al. Frequent alterations in the expression of serine/threonine kinases in human
cancers. Cancer Res. 2006, 66, 8147–8154. [CrossRef]

27. Yu, M.; Fu, Y.; Liang, Y.; Song, H.; Yao, Y.; Wu, P.; Yao, Y.; Pan, Y.; Wen, X.; Ma, L.; et al. Suppression of MAPK11
or HIPK3 reduces mutant Huntingtin levels in Huntington’s disease models. Cell Res. 2017, 27, 1441–1465.
[CrossRef]

28. Raghu, P.; Joseph, A.; Krishnan, H.; Singh, P.; Saha, S. Phosphoinositides: Regulators of Nervous System
Function in Health and Disease. Front. Mol. Neurosci. 2019, 12. [CrossRef]

29. Wang, H.; Xu, J.; Lazarovici, P.; Quirion, R.; Zheng, W. cAMP Response Element-Binding Protein (CREB):
A Possible Signaling Molecule Link in the Pathophysiology of Schizophrenia. Front. Mol. Neurosci.
2018, 11, 1–14. [CrossRef]

30. Obrietan, K.; Hoyt, K.R. CRE-Mediated Transcription Is Increased in Huntington’s Disease Transgenic Mice.
J. Neurosci. 2004, 24, 791–796. [CrossRef]

31. Chen, J.Y.; Wang, E.A.; Cepeda, C.; Levine, M.S. Dopamine imbalance in Huntington’s disease: A mechanism
for the lack of behavioral flexibility. Front. Neurosci. 2013, 7, 1–14. [CrossRef] [PubMed]

32. Lambert, G.W.; Eisenhofer, G.; Jennings, G.L.; Esler, M.D. Regional homovanillic acid production in humans.
Life Sci. 1993, 53, 63–75. [CrossRef]

33. Marcelis, M.; Suckling, J.; Hofman, P.; Woodruff, P.; Bullmore, E.; van Os, J. Evidence that brain tissue volumes
are associated with HVA reactivity to metabolic stress in schizophrenia. Schizophr. Res. 2006, 86, 45–53.
[CrossRef] [PubMed]

34. Kurlan, R.; Goldblatt, D.; Zaczek, R.; Jeffries, K.; Irvine, C.; Coyle, J.; Shoulson, I. Cerebrospinal fluid
homovanillic acid and parkinsonism in Huntington’s disease. Ann. Neurol. 1988, 24, 282–284. [CrossRef]
[PubMed]

35. Markianos, M.; Panas, M.; Kalfakis, N.; Vassilopoulos, D. Plasma homovanillic acid and prolactin in
huntington’s disease. Neurochem. Res. 2009, 34, 917–922. [CrossRef]

http://dx.doi.org/10.1093/nar/gkw377
http://www.ncbi.nlm.nih.gov/pubmed/27141961
http://dx.doi.org/10.1093/bioinformatics/bty693
http://dx.doi.org/10.1016/j.jprot.2018.03.009
http://dx.doi.org/10.1093/nar/gkm323
http://dx.doi.org/10.1093/bioinformatics/btaa291
http://dx.doi.org/10.1093/nar/gkp896
http://dx.doi.org/10.1093/abbs/gmx124
http://dx.doi.org/10.1152/ajpcell.00360.2015
http://www.ncbi.nlm.nih.gov/pubmed/26764049
http://dx.doi.org/10.32607/20758251-2017-9-2-34-46
http://www.ncbi.nlm.nih.gov/pubmed/28740725
http://dx.doi.org/10.1007/s00018-013-1550-7
http://www.ncbi.nlm.nih.gov/pubmed/24442513
http://dx.doi.org/10.4172/2157-7609.1000187
http://dx.doi.org/10.1007/s00018-005-5084-5
http://dx.doi.org/10.1158/0008-5472.CAN-05-3489
http://dx.doi.org/10.1038/cr.2017.113
http://dx.doi.org/10.3389/fnmol.2019.00208
http://dx.doi.org/10.3389/fnmol.2018.00255
http://dx.doi.org/10.1523/JNEUROSCI.3493-03.2004
http://dx.doi.org/10.3389/fnins.2013.00114
http://www.ncbi.nlm.nih.gov/pubmed/23847463
http://dx.doi.org/10.1016/0024-3205(93)90612-7
http://dx.doi.org/10.1016/j.schres.2006.05.001
http://www.ncbi.nlm.nih.gov/pubmed/16806836
http://dx.doi.org/10.1002/ana.410240221
http://www.ncbi.nlm.nih.gov/pubmed/2972251
http://dx.doi.org/10.1007/s11064-008-9851-1


Int. J. Mol. Sci. 2020, 21, 7414 25 of 25

36. Reynolds, G.P.; Garrett, N.J. Striatal dopamine and homovanillic acid in Huntington’s Disease.
J. Neural Transm. 1986, 65, 151–155. [CrossRef]

37. Kish, S.J.; Shannak, K.; Hornykiewicz, O. Elevated serotonin and reduced dopamine in subregionally divided
Huntington’s disease striatum. Ann. Neurol. 1987, 22, 386–389. [CrossRef]

38. Saucedo, L.J.; Edgar, B.A. Filling out the Hippo pathway. Nat. Rev. Mol. Cell Biol. 2007, 8, 613–621. [CrossRef]
39. Mueller, K.A.; Glajch, K.E.; Huizenga, M.N.; Wilson, R.A.; Granucci, E.J.; Dios, A.M.; Tousley, A.R.; Iuliano, M.;

Weisman, E.; LaQuaglia, M.J.; et al. Hippo Signaling Pathway Dysregulation in Human Huntington’s Disease
Brain and Neuronal Stem Cells. Sci. Rep. 2018, 8, 1–13. [CrossRef]

40. Zhang, X.; Majerus, P.W. Phosphatidylinositol signalling reactions. Semin. Cell Dev. Biol. 1998, 9, 153–160.
[CrossRef]

41. Kakouri, A.C.; Christodoulou, C.C.; Zachariou, M.; Oulas, A.; Minadakis, G.; Demetriou, C.A.; Votsi, C.;
Zamba-Papanicolaou, E.; Christodoulou, K.; Spyrou, G.M. Revealing clusters of connected pathways through
multisource data integration in huntington’s disease and spastic ataxia. IEEE J. Biomed. Heal. Inform.
2019, 23, 26–37. [CrossRef] [PubMed]

42. Clough, E.; Barrett, T. The Gene Expression Omnibus database. Methods Mol. Biol. 2016, 1418, 93–110.
[PubMed]

43. Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma powers differential
expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [CrossRef]
[PubMed]

44. Sales, G.; Romualdi, C. Parmigene-a parallel R package for mutual information estimation and gene network
reconstruction. Bioinformatics 2011, 27, 1876–1877. [CrossRef] [PubMed]

45. Csárdi, G.; Nepusz, T. The igraph software package for complex network research. InterJournal Complex Syst.
2006, 1695, 1–9.

46. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T.
Cytoscape: A software Environment for integrated models of biomolecular interaction networks. Genome Res.
2003, 13, 2498–2504. [CrossRef] [PubMed]

47. Stuart, J.M.; Segal, E.; Koller, D.; Kim, S.K. A gene-coexpression network for global discovery of conserved
genetic modules. Science (80-) 2003, 302, 249–255. [CrossRef]

48. Fabregat, A.; Sidiropoulos, K.; Viteri, G.; Forner, O.; Marin-Garcia, P.; Arnau, V.; D’Eustachio, P.; Stein, L.;
Hermjakob, H. Reactome pathway analysis: A high-performance in-memory approach. BMC Bioinform.
2017, 18. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/BF01256491
http://dx.doi.org/10.1002/ana.410220318
http://dx.doi.org/10.1038/nrm2221
http://dx.doi.org/10.1038/s41598-018-29319-4
http://dx.doi.org/10.1006/scdb.1997.0220
http://dx.doi.org/10.1109/JBHI.2018.2865569
http://www.ncbi.nlm.nih.gov/pubmed/30176611
http://www.ncbi.nlm.nih.gov/pubmed/27008011
http://dx.doi.org/10.1093/nar/gkv007
http://www.ncbi.nlm.nih.gov/pubmed/25605792
http://dx.doi.org/10.1093/bioinformatics/btr274
http://www.ncbi.nlm.nih.gov/pubmed/21531770
http://dx.doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pubmed/14597658
http://dx.doi.org/10.1126/science.1087447
http://dx.doi.org/10.1186/s12859-017-1559-2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Differentially Expressed Genes in Pre-Symptomatic and Symptomatic HD Patients 
	Gene Co-Expression Networks of Pre-Symptomatic and Symptomatic HD Patients 
	Network Rewiring between Gene Co-Expression Networks of Pre-Symptomatic and Symptomatic HD Patients Using DyNet 
	PathwayConnector Clustering of Pathways Identifed for Pre-Symptomatic and Symptomatic HD Patients 
	GeneTrail3 for the Identification of Pathways by Analysing the DEGs for Pre-Symptomatic and Symptomatic HD Patients 
	PathWalks for the Analysis of Over and Under Expressed Genes for Pre-Symptomatic and Symptomatic HD Patients 
	Metabolites Identified and Related to HD Using KEGG 

	Discussion 
	Materials and Methods 
	Data 
	Differential Expression and Gene Co-Expression Analysis 
	Network Visualization and Analysis 
	Network Re-Wiring 
	Investigation of Molecular Pathways Related to HD 
	PathwayConnector for Complementary Pathway-To-Pathway Networks 
	GeneTrial3 for the Identification of Biological Processes and Pathways 
	PathWalks Highlighting Pathway Communities 

	Metabolites for HD Related Pathways 

	Conclusions 
	References

