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ABSTRACT
The ability to recognize and use a variety of tools is an intriguing human cognitive function. Multiple
neuroimaging studies have investigated neural activations with various types of tool-related tasks.
In the present paper, we reviewed tool-related neural activations reported in 70 contrasts from 56
neuroimaging studies and performed a series of activation likelihood estimation (ALE) meta-
analyses to identify tool-related cortical circuits dedicated either to general tool knowledge or to
task-specific processes. The results indicate the following: (a) Common, task-general processing
regions for tools are located in the left inferior parietal lobule (IPL) and ventral premotor cortex;
and (b) task-specific regions are located in superior parietal lobule (SPL) and dorsal premotor
area for imagining/executing actions with tools and in bilateral occipito-temporal cortex for
recognizing/naming tools. The roles of these regions in task-general and task-specific activities
are discussed with reference to evidence from neuropsychology, experimental psychology and
other neuroimaging studies.

ARTICLE HISTORY
Received 4 May 2016
Accepted 9 May 2016

KEYWORDS
Tool; tool-use; action;
semantic representation;
meta-analysis

Introduction

A remarkable feature of human behaviour is the fre-
quent use of various tools to aid actions. The
number of objects with which we interact in daily
life undoubtedly far exceeds that of other species.
Unlike some other species, we do not simply make
use of nearby available objects. Instead, we store con-
ceptual and linguistic knowledge about frequently
used objects for their efficient use. One can easily
pick up scissors to cut a piece of paper or use a
stapler to attach several notes to prepare for a
meeting. In the physical absence of tools, we can
borrow the appropriate tool by referring to it by
name. Such stable interactions with objects in every-
day life could not have emerged if we had no concep-
tual, linguistic, or practical knowledge about the
objects we frequently use. Yet, we do not fully under-
stand how knowledge and processes related to tools
are implemented in our cognitive system or their
neural basis.

Case studies in the neurological literature have pro-
vided crucial insights. At least two lines of research

shed light on tool-relevant cognitive behaviour in
humans: (a) investigations of tool recognition and (b)
descriptions of action deficits involving tools. Some
neurological patients present with a category-specific
perceptual deficits for tools (Hillis & Caramazza, 1991;
Laiacona & Capitani, 2001; Warrington & McCarthy,
1987). Such patients cannot recognize tools as accu-
rately as they can recognize other categories of
objects, such as living things (animals and plants).
This stands in contrast to cases of the opposite
(animal < tool) dissociation (Basso, Capitani, & Laia-
cona, 1988; Capitani, Laiacona, Mahon, & Caramazza,
2003; de Renzi & Lucchelli, 1994; Farah, McMullen, &
Meyer, 1991; Hart & Gordon, 1992; Warrington & Shal-
lice, 1984). These types of category-specific semantic
deficits indicate that some crucial aspect of tool
knowledge is anatomically distinct from that of other
categories. Another line of evidence about human
tool knowledge comes from studies of apraxic
patients, who cannot use familiar tools despite
having no physical difficulty in moving their body
parts and having an intact ability to identify the
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tools (Buxbaum & Saffran, 2002; Buxbaum, Veramonti,
& Schwartz, 2000; Gonzalez Rothi & Heilman, 1997;
Rosci, Chiesa, Laiacona, & Capitani, 2003). This inability
to interact with tools tends to follow lesions in the left
parietal lobe and premotor areas, indicating that these
areas underpin information about tool-related move-
ments (Barde, Buxbaum, & Moll, 2007; Boronat et al.,
2005; Canessa et al., 2008; Goldenberg, 2009).

Motivated by these reports, researchers have used
positron emission tomography (PET) or functional
magnetic resonance imaging (fMRI) to explore the
neural basis of tool cognition. In the domain of per-
ceptual recognition, these attempts have succeeded
in identifying a set of neural regions that exhibit cat-
egory-selective neural responses for tools. Martin,
Wiggs, Ungerleider, and Haxby (1996) compared
neural responses to pictures of tools and animals
while participants engaged in viewing and naming
these items. This study found that the left middle tem-
poral gyrus and a medial portion of the occipito-tem-
poral cortex were activated to a greater extent for
tools than for animals (Martin et al., 1996). Other
studies exploring the category specificity of neural
responses in various visuo-perceptual tasks involving
familiar objects have amassed consistent evidence
that the medial occipito-temporal cortex is more acti-
vated in response to tools than to other categories of
objects (Chao, Haxby, & Martin, 1999; Devlin et al.,
2002; Downing, Chan, Peelen, Dodds, & Kanwisher,
2006). In addition, neuroimaging studies on the cat-
egory specificity of brain activation frequently reported
activations in left frontal, temporal, and parietal regions
in response to presentation of tools (Damasio, Grabow-
ski, Tranel, Hichwa, & Damasio, 1996; Johnson-Frey
et al., 2003; Martin et al., 1996; Perani et al., 1995).
However, the involvement of the medial occipito-tem-
poral cortex in tool identification has not been consist-
ently reported in neuroimaging studies related to
object perception. Several studies using the same per-
ceptual tasks have not reported any significant acti-
vation peaks in the occipito-temporal cortex but tend
to highlight the role of frontal and parietal lobe acti-
vations in tool perception (Chao & Martin, 2000;
Gerlach, Law, Gade, & Paulson, 2000; Grafton, Fadiga,
Arbib, & Rizzolatti, 1997; Handy, Grafton, Shroff, Ketay,
& Gazzaniga, 2003). It has also been reported that
naming tools and naming animals activate distinct
areas in the brain, with left middle temporal areas,
the inferior parietal lobule, and the premotor area

more active when naming tools while animal category
evoked higher activation than tools in left lateral-occipi-
tal cortex (LOC; Chouinard & Goodale, 2010).

Despite the physical restrictions on body move-
ments imposed in MRI or PET settings, several neuroi-
maging studies have been able to identify action-
related cortical regions that were activated when par-
ticipants manipulated or imagined using tools.
Grafton, Fadiga, Arbib, and Rizzolatti (1996) reported
that the imaginary grasping of familiar objects
increased activation in the bilateral frontal and parietal
areas. Indeed, the left temporoparietal junction (TPJ)
exhibited the most prominent activation. In a more
recent study, Wadsworth and Kana (2011) asked par-
ticipants to observe photographs of familiar tools
and imagine that they were using them. They reported
that imaginary tool use evoked distributed activation
in frontal, occipital, and ventral temporal cortices,
with the most prominent activation in the left TPJ
(Wadsworth & Kana, 2011). Similar activation patterns
in the left parietal cortex, extending from the TPJ to
the inferior parietal lobule (IPL) and/or angular gyrus
(AG) have been reported with imaginary tool-use ges-
tures (Creem-Regehr & Lee, 2005) or conceptual judg-
ments about tool-use actions (Bohlhalter et al., 2009;
Boronat et al., 2005; Canessa et al., 2008). These
studies have led to the conclusion that the left parietal
lobe is crucial for storing and retrieving the body
movements necessary for proper object use.

In summary, past neuroimaging studies indicate
that different tool-related cognitive processes recruit
a variable set of partially overlapping neural structures,
and, as such, it is difficult to draw a clear picture of the
roles that each region supports. Because individual
studies use different cognitive tasks, such as recog-
nition of tools, naming, tool manipulation, or imagin-
ing tool-use actions, it is especially hard to clarify
whether activated areas contribute to task-general
processing (e.g., the concept of tools) or task-specific
processing (perceiving, naming, or reacting to the
stimulus). Several attempts have been made to
locate convergent brain areas in tool-related neuroi-
maging studies. Johnson-Frey’s (2004) seminal
review of the neuroimaging studies of human tool-
use ability emphasized differentiable roles of posterior
temporal and fronto-parietal regions for tool concepts
and associated action representations. From slightly a
different perspective, Stout and Chaminade (2007)
argued that rostral and caudal intraparietal sulcus
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(IPS) are evolutionary key areas for complex tool-use
and tool-making behaviours. In a quantitative evalu-
ation of the tool-related neuroimaging reports, Lewis
(2006) collated reports from 31 neuroimaging
studies pertaining to tools and showed comprehen-
sive composite maps of reported activity for tool
viewing, naming, hearing tool sounds, and making
tool-use actions. This meta-analysis highlighted
several key areas including dorsolateral and ventral
premotor cortices (DLPMC, vPMC), inferior and
middle frontal gyri (IFG, MFG), inferior parietal lobule
(IPL), posterior middle temporal gyrus (pMTG), and
fusiform cortex (FC). However, there are several meth-
odological issues in this form of meta-analysis. A com-
posite mapping of multiple regions derived from the
same group of studies makes it easy to see where
the convergence is higher in a particular area than in
others. However, with composite mapping, it is
impossible to conclude whether the observed set of
reported foci is statistically significant. Because of
the limited number of anatomically separable areas
in the brain, it is always possible that mere random
selection of reported regions will yield some degree
of convergence. Objective measures to quantitatively
analyse a mass of neuroimaging reports using the
reported foci (peaks of activation, which are reported
in majority of neuroimaging papers) have been pro-
posed. Multi-level kernel density analysis (MKDA)
and activation likelihood estimation (ALE) are cur-
rently the most popular and frequently used measures
of meta-analysis. Both use kernel density estimation
but with different assumptions: uniform or Gaussian
distribution of the probability of the locations of
local maxima around the reported coordinates. The
basic idea of the MKDA method, proposed by Wager
and colleagues (Wager, Phan, Liberzon, & Tayor,
2003), is to assign each voxel with the number of
studies that reported at least one activation peak
within a specified (usually 10-mm) radius. This pro-
vides an automatic way to derive an activation consist-
ency map. Although this framework is a valid
alternative to subjective grouping of activated
regions, the assumption of uniform probability
density of the kernel used in MKDA is not representa-
tive. An activation peak is actually the average location
of repetitive observations, which vary across different
subjects, normalization procedures, experimental set-
tings, and so on. Thus, the probability of the “true”
existence of the activation peak is not distributed

uniformly around the reported focus, but can be con-
sidered as distributing in a bell-shaped Gaussian func-
tion. The ALE meta-analysis, proposed by Turkeltaub
and colleagues (Turkeltaub, Eden, Jones, & Zeffiro,
2002), assumes that the probability of the true exist-
ence of a given peak activation is distributed in Gaus-
sian form across the nearby voxels and calculates the
sum of the probability value (ALE value) derived from
all reported foci in a dataset. After Monte-Carlo simu-
lation to determine a null distribution of ALE values
and a threshold value for the ALE statistic (i.e., permu-
tations of the location of foci in the dataset and calcu-
lating the ALE values in the same manner), one can
infer at which voxels the observed ALE value
exceeds the hypothetical maximum ALE value that
could emerge by chance. The advantage of using
this method for meta-analysis in neuroimaging is
that it also provides a way to contrast between two
groups of studies. In a subtraction (contrast) ALE
meta-analysis, two ALE maps from the two datasets
are subtracted from each other, and the resultant
map of the difference of ALE values is thresholded
by essentially the same Monte-Carlo procedure (Eickh-
off, Bzdok, Laird, Kurth, & Fox, 2012, for details). The
foci in each dataset are relocated randomly, and the
ALE difference maps are generated in the same way.

The parametric, coordinate-based ALE method has
been increasingly used in recent reviews to synthesize
and clarify large data sets. For example, Gerlach (2007)
analysed the results of 20 functional neuroimaging
studies, in which tool and animal items were presented
to participants and showed that no area was consist-
ently activated by one category more than the other.
Chouinard and Goodale (2010) suggested that the
variability of cognitive tasks included in Gerlach’s
study (naming, object decision, passive viewing,
shape/identity matching of objects, classification,
picture–identity matching, and semantic categoriz-
ation) might have led to the inconsistent results. There-
fore, they subsequently analysed only the experiments
that required “naming” of the visually presented items.
Employing this strategy, their meta-analysis succeeded
in mapping separate category-specific activation areas
for animals and tools. While naming tools generally acti-
vated motor regions in frontal lobe, as well as posterior
middle temporal gyrus in left hemisphere, naming
animals showed greater activation in left medial and
ventral frontal regions, lateral occipital cortex, and bilat-
eral posterior fusiform gyri. It is worth noting that these
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meta-analyses also indicate that tool-related cortical
activation may depend on particular task requirements.
This was the core target of our study. Specifically, we
utilized the ALE methodology to identify both task-
specific and task-general cortical areas related to differ-
ent aspects of tool knowledge.

In this study we addressed the following questions:
(a) What neural regions are implicated in tool-related
cognition representation and processing in a task-
general manner?; and (b) which neural structures are
task-specific? To our knowledge, none of the previous
meta-analyses of tool-relevant neural activity have
addressed these questions using the recently devel-
oped ALE analysis approach (Eickhoff et al., 2009;
Eickhoff et al., 2012; Laird et al., 2005; Turkeltaub
et al., 2011). For a systematic synthesis and compari-
son of the literature, we narrowed down our interest
to three types of tool-relevant cognitive tasks: recog-
nition, naming, and action. In recognition studies, par-
ticipants were asked to view tool stimuli while being
required to do nothing or perform only perceptual,
non-linguistic tasks. In the naming studies, partici-
pants were asked to recall (silently or explicitly) the
name of the presented tool. Action studies included
experiments that asked participants to imagine the
body movements required to use each tool. These
three tasks were chosen to hold the input modality
constant to the visual domain whilst varying the task
requirements. Previous studies have examined other
modalities of input, such as hearing tool-related
sounds (see Lewis, 2006 for review) or imitating tool-
use gestures (Goldenberg, 2009 for review). We per-
formed two series of analyses. In Analysis 1, we exam-
ined the neural activation patterns estimated for all
tasks combined or each of the three different tasks
separately (recognition, naming, and action). In Analy-
sis 2, we performed subtraction ALE analyses to
differentiate process-specific neural activities. The
analyses revealed high similarity between the two
perceptual tasks (recognition and naming) while the
action task showed a distinct pattern on neural acti-
vation. Therefore, in addition to the above two ana-
lyses, we ran another series of analyses to examine
the commonality and differences between the percep-
tual (recognition and naming) and motor (action
retrieval) groups of tasks, using both the standard
and subtraction ALE methods (described as Analysis
3 below).

Method

Study selection

We used the ISI Web of Knowledge (www.
isiknowledge.com) to search for relevant studies. The
combination of the following three conditions was
used to detect candidate papers: including [“fMRI”
OR “PET”], [“tool” OR “object”] combined with [“recog-
nition”, “recognising”, “observation”, “observing”, “per-
ception”, “perceiving”, “viewing”, “naming”, “using”,
“categorisation”, or “use”] appearing in the title or
abstract. The papers were further examined in terms
of the following inclusion and exclusion criteria: (a)
The studies were published in peer-reviewed journals
(in English) between 1995 and 2014; (b) the studies
reported data obtained via functional neuroimaging
with neurologically intact participants using fMRI or
PET; (c) one or more conditions reported in the
study involved the presentation of familiar tools in
the visual domain; (d) the studies reported the coordi-
nates of the local maxima under the tool-presentation
condition in either Montreal Neurological Institute
(MNI) space (Collins, Neelin, Peters, & Evans, 1994;
Evans et al., 1993) or Talairach space (Talairach & Tour-
noux, 1988); (e) the studies did not focus on sex differ-
ences, development, aging, neurological disorders, or
other subject-oriented factors. As a result, 56 studies
involving 70 contrasts with 474 foci altogether were
chosen for the present series of meta-analyses.

The experiments reported in the selected studies
were classified into three groups based on type of
task. Studies were placed in the “recognition” group
if they asked participants either to observe photos or
pictures of objects or to perform some kind of non-
verbal task that required attending to and recognizing
visual stimuli (e.g., same–different judgment, one-
back task, or superordinate categorization). Twenty-
eight experiments (178 foci) met this criterion.
Studies were placed into the “naming” group when
the task was to name presented objects silently
(covert naming) or explicitly (overt naming). Eighteen
experiments (103 foci) fitted the inclusion criterion for
this category. Experiments with tasks that required
retrieval of tool-use actions were placed in the
“action-retrieval” group. Twenty-four experiments
(193 foci) were categorized into this group. These
studies involved tasks that required the retrieval of
learnt actions associated with common tools, such as
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planning/imagining/executing tool-use behaviour or
judging the similarity between paired tools in terms
of their associated actions. To facilitate the random-
effect approach of ALE analysis (Eickhoff et al., 2009),
a few datasets were combined before analysis. The
dataset of three contrasts from Damasio’s report
(Damasio et al., 1996) and two contrasts from Inoue’s
report (Inoue et al., 2001) were combined, respect-
ively, as each of them are from the same exper-
iments/subjects (and they in fact reported very
similar sets of coordinates). The details of studies
and experiments included in the current ALE meta-
analysis are listed in Supplementary Table 1.

ALE analysis

We used activation likelihood estimation analysis (ALE)
to investigate neural structures that are common and
unique to the three types of cognitive processes
associated with tools. Two sets of ALE meta-analyses
were performed using GingerALE 2.3.5 (Eickhoff
et al., 2009; Laird et al., 2005; available at http://
brainmap.org/ale/). We primarily followed the ALE
procedures proposed by Laird et al. (2005) and Eickh-
off et al. (2009). The full-width-half-maximum (FWHM)
value for spatial smoothing, based on the number of
participants recruited for each study (Eickhoff et al.,
2009), ranged from 8.94 to 12.00. A false discovery
rate (FDR) of .05 was used to correct p values for mul-
tiple comparisons. In calculating conjunction map of
multiple tasks, we used square (for two-task conjunc-
tion) or cube root (for three-task conjunction) of the
FDR to ensure the equivalent sensitivity at each
voxel to the individual analyses. Only the voxels
having significantly higher ALE value in all the inter-
ested analyses were regarded significant in the con-
junction mapping. We also applied the minor
correction to the ALE calculation method proposed
by Turkeltaub et al. (2011) to minimize potential
biases caused by within-experiment or within-
subject effects (non-additive calculation of ALE value
at each voxel, by taking the maximum ALE statistics
from multiple values convoluted from nearby acti-
vation foci from the same experiment). This correction
was introduced to prevent the disproportionate
influence of studies that report greater number of
foci with lenient thresholding. Thresholds for ALE
statistics were determined with the permutation pro-
cedure proposed by Eickhoff et al. (2012). Ten

thousand permutations of randomizing locations of
foci within the cortex were performed to calculate
the distribution of activation likelihood under null
hypothesis. The areas associated with significant
values of activation likelihood were mapped onto an
MNI template using MRIcron (http://www.nitrc.org/
projects/mricron).

Analysis 1 involved a series of ALE analyses
intended to identify process-general activation areas
shared by the three types of experiments. We initially
conducted an ALE analysis on all 474 peaks extracted
from the 70 tool-related experiments from 56 papers.
The three analyses were then performed separately on
the three task-related subsets of the data. Analysis 2
involved a series of formal subtraction analyses
using GingerALE Version 2.3.5 to examine differences
among the three maps. We performed subtractions
between recognition and naming, recognition and
action, and naming and action. To ensure sensitivity
in the analysis, we used uncorrected p = .01 and
minimum cluster threshold of 200 mm³ in all the sub-
traction analyses. These analyses revealed high overall
similarity between the two “tool identification” tasks:
recognition and naming. The only difference was
observed in the left Broca45 (the details are described
in the next section). Contrasts to action task revealed
almost identical patterns of significant clusters. Given
such similarity in activation patterns, and judging by
the fundamental commonality in the requirement of
the tasks (both asking identification of familiar
objects), we also performed analysis on the identifi-
cation task group (recognition + naming combined)
and compared it with the motor task group (action)
to identify credible neuroanatomical commonalities
and distinctions between the perceptual and motor
tasks (Analysis 3).

Results

Analysis 1: Standard ALE analysis

Figure 1A presents the results of the ALE analysis per-
formed on all 474 foci. It visualizes the areas that are
predicted to activate in association with various tool-
related tasks in general. The areas include large por-
tions of the left frontal and parietal regions, posterior
temporal, and the bilateral occipito-temporal cortices.
Specifically, large volumes of voxels with significant
activation likelihoods were observed in the left MFG/
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IFG (Brodmann area, BA9/44), left IPL extending partly
to superior parietal cortex (SPL; BA40/7), left posterior
MTG (lateral BA37), left dorsal precentral region (dorsal
BA6), left globus pallidus, bilateral occipito-temporal
cortices (medial BA37) that involve fusiform and
parahippocampal gyri, and other nine relatively
smaller clusters in left SPL, bilateral inferior temporal
cortex (IT) regions, and parts of middle to inferior
frontal gyri in both hemispheres. Figure 1B shows
the individual ALE maps for visual tool recognition,

naming, and action retrieval, separately. As a group,
these individual maps closely correspond to the
activation areas shown in the overall analysis
(Figure 1A), but indicate which type of task predomi-
nantly contributed to the significant activation in the
combined analysis.

To estimate common activation regions over differ-
ent tasks, the conjunction analyses and mapping were
also performed as described in the Method section.
The results are shown in Figure 2A. The area significant

Figure 1. (A) Estimated activation maps by activation likelihood estimation (ALE) meta-analysis on all 70 contrasts from 59 tool-relevant
studies. The false discovery rate (FDR) was set at α = .05. The calculated threshold for each voxel in this analysis was p = .00050. (B)
Activation areas rendered on the surface of the canonical brain. The FDR was set at α = .05. The calculated threshold for each voxel
in these analyses were p = .000026 for recognition (red), p = .000025 for naming (green), and p = .00014 for action (blue) analysis.
[To view this figure in colour, please see the online version of this Journal.]

Figure 2. (A) Conjunction activation areas having significant activation likelihood for two or three tasks (with modified FDR threshold
for individual task; details in Method). (B) Summary of individual and conjunction ALE analyses in the form of a Venn diagram. The areas
with significant likelihood of activation in one or multiple tool-relevant tasks are sorted by Brodmann’s labelling (BA = Brodmann area)
and classified to the corresponding territory in the diagram. SMG = supramarginal gyrus; SPL = superior parietal lobule; IT = inferior
temporal cortex; IFG = inferior frontal gyrus; MFG = middle frontal gyrus; pMTG = posterior middle temporal gyrus. [To view this
figure in colour, please see the online version of this Journal.]
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in the three-task conjunction is shown in white. This
analysis revealed that the left inferior parietal lobule
(BA40) is likely to activate in any of the three tasks.
The left posterior MTG (BA37) is shown to activate in
both recognition and naming. Anterior part of left
insula (BA13) has also shown significant likelihood of
activation in these two tasks, though the cluster size
is small (152 mm³). The left IFG/MFG (BA6) is indicated
to activate in both recognition and action. The areas
that are likely to activate in more than one task are
summarized in Figure 2B, along with the significant
areas from the individual ALE. Supplementary Table 2
lists all the coordinates and associated peak ALE
values from Analysis 1.

Analysis 2: Subtraction ALE analysis

The multiple brain slices presented in Figures 3A–3C
display the regions with significant task-related differ-
ences. The subtraction between recognition and
naming (Figure 3A) indicated that only the left pars tri-
angularis (BA45) showed greater activation for naming
than for recognition. No area was estimated to show
greater activation for recognition than for naming.
The subtraction between action and recognition
(Figure 3B) estimated that action retrieval was associ-
ated with higher activation likelihood than for recog-
nition in the left superior frontal gyrus (BA6). No area
was indicated to have higher activation likelihood
for recognition than action. The subtraction of action
and naming (Figure 3C) resulted in a pattern that
was similar to the pattern that emerged from the rec-
ognition–action comparison. The left dorsal frontal
(BA6) area is more likely to be activated for action
retrieval than for tool naming, whereas no area
showed the opposite pattern at the statistically signifi-
cant level.

Analysis 3: Common and dissociable activations
for identification and action studies

Given the relative similarity between recognition and
naming tasks, and of their differences with action
retrieval, we combined the two types of tasks into
one group (“identification”) and compared this
against the action-task data (thereby maximizing the
available statistical power to find identification-
specific regions). Figure 4 displays the result of stan-
dard ALE analysis for this combined group. The

significant activation areas for the action groups are
also shown again for comparison. The overlapping
areas are displayed in white. The largest overlap is at
the left supramarginal gyrus (SMG), which is the
rostral part of inferior parietal lobule (BA40). The
ventro-rostral part of the left precentral gyrus
(ventral BA6) is also indicated in both tasks. Figure
4C displays the areas with significant differences in
activation likelihood for identification and action.
This subtraction indicated that identification of tools
was more likely to activate bilateral occipito-temporal
cortices (BA37, with the left cluster extending into cer-
ebellum) whereas action retrieval was associated more
strongly with activation of the left dorsal premotor
(dorsal BA6) region and superior parietal lobule
(BA7), as well as the anterior cingulate gyrus (BA24).
The locations of peak activation foci provided by this
action–identification conjunction and contrast ana-
lyses are listed in Supplementary Table 3.

Discussion

This study investigated the neural basis of tool-related
knowledge and processing using an ALEmeta-analysis
of 70 functional neuroimaging contrasts. A series of
ALE analyses identified both task-general and task-
specific activation patterns. The left dorsal SMG area
(BA40) in the inferior parietal lobule was commonly
activated in all three tasks (recognition, naming, and
action), suggesting that this area codes essential tool
information or supports cognitive processes that are
shared by all these activities. A similar result and
interpretation have been reached in large-scale ALE
meta-analyses of multiple cognitive domains (Hum-
phreys & Lambon Ralph, 2015). The ALE maps for rec-
ognition and naming tasks were very similar to each
other and only differed in a small part of the inferior
frontal cortex (BA45), which might reflect the speech
production aspect of the naming task. Consequently,
action–knowledge tasks were compared to the combi-
nation of these two “tool identification” tasks. This
direct comparison revealed that tasks involving tool
identification were more likely to activate the bilateral
medial occipito-temporal areas and left LOC, whereas
manipulation tasks were more likely to activate the left
fronto-parietal cortices at the dorsal premotor cortex
and SPL, as well as anterior cingulate gyrus. Despite
the clear distinction between the perceptive (recog-
nition and naming) and motor (action) task groups,
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the conjunction analysis has shown common acti-
vation areas in the left anterior SMG (BA40; involving
the small portion revealed by three-way conjunction),

left anterior-middle IPS (BA40/7), and ventral premotor
area extending into pars opercularis (BA6/44). We
discuss the roles of these task-general and task-

Figure 3. (A) Areas with a significant activation difference between recognition and naming. (B) Areas with a significant activation
difference between action retrieval and naming. (C) Areas with a significant activation difference between action retrieval and recog-
nition. [To view this figure in colour, please see the online version of this Journal.]

Figure 4. (A, B) Areas with a significant activation likelihood for tool identification and tool-use action retrieval (overlapping regions are
shown in white). (C) Areas with a significant activation difference between action retrieval and identification. [To view this figure in
colour, please see the online version of this Journal.]
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specific activation areas in tool-relevant cognitive
activities in the following sections.

Task-general neural activity for tools:
Representation or control?

The present meta-analysis revealed that the anterior
portion of the left IPL (aSMG) region is active regard-
less of the specific task requirement that can vary
across the tool-related neuroimaging experiments.
This was confirmed both by the three-way conjunction
test (Analysis 1) and also by the combination of the
perceptual and motor task groups (Analysis 3). The
convergence of activation across different tasks
associated with tool presentation indicates that this
region contributes to common processes shared by
all of the experimental conditions involved in the
studies in question. There are at least two interpret-
ations for the roles of these areas: representing tools
or providing general cognitive resource to perform
current tasks.

One possible explanation of the contributions of
the left IPL in any tool-related task is that this area rep-
resents an essential part of the semantic represen-
tation for tools. A considerable number of
neuropsychological investigations propose that the
left IPL stores knowledge about how to manipulate
familiar tools. It is widely accepted that damage to
this area induces deficient tool use (apraxia:
Buxbaum & Saffran, 2002; Gonzalez Rothi & Heilman,
1997). A weak and transient form of this disturbance,
observed as a difficulty in recalling knowledge about
tool manipulation, has also been observed in neurolo-
gically intact participants who receive transcranial
magnetic stimulation (TMS) on their left IPL (Ishibashi,
Lambon Ralph, Saito, & Pobric, 2011). The contribution
of the IPL to tool manipulation probably goes beyond
situations that explicitly call for the retrieval of tool-use
actions. Another study using TMS on the same area
found that TMS over the left IPL induced a transient
category-specific naming deficit for manipulable
objects, corroborating the notion that the left IPL
underpins knowledge about tool manipulation
(Pobric, Jefferies, & Lambon Ralph, 2010). This engage-
ment of the IPL in the general context of tool cogni-
tion is consistent with the semantic hub-and-spoke
framework (Lambon Ralph, Sage, Jones, & Mayberry,
2010; Patterson, Nestor, & Rogers, 2007). According
to this framework, the left IPL is a part of a distributed

semantic system coordinated through a transmodal
hub and contributes as a modality-specific “spoke”,
in this case a store of skilled motor movements.

Another possible explanation for the role of the left
IPL is that this area provides a general computational
resource for the execution of various kinds of tasks,
including recognizing and processing general seman-
tic information (Cabeza, Ciaramelli, & Moscovitch,
2012; Humphreys & Lambon Ralph, 2015; Jefferies &
Lambon Ralph, 2006). Indeed, in a large-scale meta-
analysis of eight different cognitive domains, Hum-
phreys and Lambon Ralph (2015) found that the IPS
region extending to dorsal SMG was implicated
across all domains including tool manipulation
decisions, implying that this region is inherently
domain general in nature. Importantly, whilst there
was complete overlap in this core IPS region, only
the tool-related activation map extended anteriorally
and superiorly into SPL regions, consistent with the
task-specific findings in this current investigation.
Taken together, these data suggest that the core IPL
region is inherently domain general in nature and
that more task-specific patterns emerge away from
this central area, which may well reflect the differential
patterns of connectivity across these parietal subre-
gions (Cabeza et al., 2012; Garcea & Mahon, 2014;
Humphreys & Lambon Ralph, 2015).

Task-specific neural activity: Tool identification
and action retrieval

Subtraction analyses in this meta-analysis revealed
contrasting areas implicated in identification (recog-
nition + naming) or action retrieval. The bilateral
medial occipito-temporal cortices (involving bilateral
BA37) were more likely to be activated by identifi-
cation than action retrieval with tools, whereas the
left dorsal premotor (dorsal BA6) and superior parietal
lobule (BA7) exhibited the opposite pattern. These
areas are contained within the widely accepted dis-
tinction between ventral and dorsal visual pathways
(Ungerleider & Mishkin, 1982). According to this
theory, information arising in the primary visual
cortex follows two distinctive pathways to allow
identification of the objects (the “what” pathway) as
well as computation of their spatial position (the
“where” pathway). This notion was extended by
Goodale and Milner (1992), who dubbed the two path-
ways the ventral “what” and dorsal “how” routes,
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reflecting the double dissociation between visual
agnosia and optic ataxia.

The notion that the ventral occipitotemporal region
is crucial for the extraction of visual information
necessary for visual object recognition is very well
established. A puzzle for current investigations is
why there are graded variations of activation for differ-
ent categories (e.g., tools, objects, animals, faces,
words) across this area (Caramazza & Mahon, 2003;
Hasson, Levy, Behrmann, Hendler, & Malach, 2002;
Mahon & Caramazza, 2009, 2011). Some researchers
have suggested that these categorical differences
arise from the functional consequences of retinotopic
mapping in the early visual pathways. (Felleman & Van
Essen, 1991; Hasson et al., 2002; Levy, Hasson, Avidan,
Hendler, & Malach, 2001). Specifically, information
from the central (foveal) visual field, which contains
high-spatial-frequency information, is projected pri-
marily to the posterior fusiform area, whereas periph-
eral (parafoveal) vision is projected laterally. The
proposed functional sequelae of this organization is
that object categories that demand extraction of fine
visual detail for recognition will tend to rely more
heavily on the neural regions that receive foveal
input (see Behrmann & Plaut, 2001 for a formal com-
putational implementation of this hypothesis). Alter-
natively, other researchers argue that this category-
sensitive neural organization is hard-wired with our
genetic expression and is not developed by the
nature of visual input associated with object recog-
nition (Mahon & Caramazza, 2009, 2011). Finally, a
more recent computational exploration has shown
that, in addition to the visual influences on the pos-
terior fusiform region that are crucial for differen-
tiation of visually similar stimuli including animate
items, more medial ventral occipitotemporal cortex
(vOT) might respond differentially to tools due to
greater connectivity of this region to praxis-related
parietal regions (Chen & Rogers, 2015).

The left posterior middle temporal gyrus (lateral
BA37/BA19) is significantly activated in the conjunc-
tion mapping between recognition and naming in
Analysis 1. In Analysis 2, it also showed significant acti-
vation likelihood in tool identification (recognition and
naming). Although the estimated activation of this
area in the subtraction analysis did not reach the
default minimum cluster size (200 mm³) used in the
ALE software, a slightly smaller cluster the size of
192 mm³ was actually indicated in the same contrast

with no cluster-size thresholding (the cluster infor-
mation is included in the Supplementary Table 3).
This area has been considered to be a crucial neural
region for representation of the non-biological, mech-
anical motions accompanying tool concepts (Beau-
champ, Lee, Haxby, & Martin, 2002, 2003; Chao et al.,
1999; Kable, Kan, Wilson, Thompson-Schill, & Chatter-
jee, 2005; Martin, Haxby, Lalonde, Wiggs, & Ungerlei-
der, 1995, 1996) and might act as an additional
contributor to the hub-and-spoke representation of
semantic knowledge. This region partially overlaps
with the human MT+ area (located in the caudal
aspects of the superior and middle temporal gyri)
that has been designated as the homologue of the
monkey MT (middle temporal). Human neuroimaging
studies have corroborated that this area responds
selectively to particular directions and speeds tra-
velled by visual targets (Amano, Wandell, & Dumoulin,
2009; Dukelow et al., 2001). Damage to this region is
known to cause an inability to perceive the motion
of visual targets, a neuropsychological condition
called akinetopsia or motion blindness (Blanke et al.,
2007; Nawrot, 2003; Rizzo, Nawrot, Sparks, &
Dawson, 2008). Accordingly, this motion-sensitive
area of the left pMTG has been proposed as a key con-
tributor to the representation of mechanical motion of
visual objects, including tools (Chao et al., 1999; Kable
et al., 2005; Martin et al., 1995, 1996). Studies con-
ducted by Beauchamp and colleagues demonstrated
that the motion-sensitive response of the pMTG not
only was evoked by the actual movement of tools
but also could be elicited, at least to some extent, by
static images of tools (Beauchamp et al., 2002, 2003).
This selective activation of pMTG to tool motions,
however, raises a question: Why does this region
show consistent activation in identification of tools
but not in use of tools? A possible answer to this ques-
tion could be that the motion property of a particular
tool extracted from its visual representation includes
multiple forms of motion that the object can exhibit,
each of which can help to different between motion-
related objects. For example, a pair of scissors has
associated movements that can be observed irrespec-
tive if the viewer is using the object (e.g., the opening
and closing of the blades), and, in addition, there are
other motion features that are integral to the manipu-
lation of the item (the atypical grip applied to this
tool). Both aspects are a part of our knowledge of scis-
sors but it is possible that their representation is
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divided across posterior temporal and dorsal parietal
regions, respectively.

While the bilateral medial occipito-temporal
regions and left posterior MTG were observed in the
identification–action subtraction analysis, the dorsal
premotor and superior parietal regions were high-
lighted in the opposite contrast (Figure 4). The
dorsal premotor region has been discussed in the
context of reaching and grasping in both human
(Grafton et al., 1996) and monkey studies (Cisek &
Kalaska, 2005; Hochermann & Wise, 1991). This is in
accordance with the current results as the action
tasks asked participants to plan/imagine or to
execute concrete physical interaction with tools.
However, how the role for this area is different from
that for ventral premotor region (activated both for
identification and action) is still debated. In a study
by Davare and colleagues (Davare, Andres, Cosnard,
Thonnard, & Oliver, 2006), transcranial magnetic
stimulation applied to dorsal or ventral premotor
area in the left hemisphere yielded temporary interfer-
ence while participants were reaching for an object
and configuring proper finger positions to hold (and
use) the object, respectively. It is possible that the
dorsal premotor area is responsible for guiding hand
and arm movements in a larger space to reach and
lift a target item, while the ventral premotor is respon-
sible for manipulating the object in hand. In the action
retrieval tasks included in this meta-analysis, the expli-
cit instruction to imagine or to execute tool-use
actions would encourage more precise action plan-
ning including picking up the presented object. This
notion is in accordance with the idea that grasping
and lifting movements are common among many
familiar tools and thus will not contribute to differen-
tiating between different tools. In contrast, finger con-
figuration and movement vary drastically among tools
and thus might contribute to fine distinction and
identification of different tools.

The parietal regions highlighted in this meta-analy-
sis are located in the superior parietal lobule (SPL) at
its posterior part. The posterior part of SPL connecting
to occipital lobe have been identified in studies of
optic ataxia (Pisella et al., 2009; Rossetti, Pisella, & Vig-
hetto, 2003), a neuropsychological condition charac-
terized by an inability to generate object-directed
actions such as reaching and grasping, in the
absence of motor, somatosensory, visual acuity, or
visual-field deficits. Recent studies have offered a

functional distinction between two parts of the parie-
tal lobe. Buxbaum and Kalénine (2010) suggested that
the bilateral IPS and dorsolateral parieto-frontal
regions contribute to rapid and visually guided com-
putation of hand movements during manipulation of
both familiar and unfamiliar objects, which they
dubbed the “dorso-dorsal pathway” following a pre-
vious electrophysiological study of the monkey brain
(Rizzolatti & Matelli, 2003). They also proposed that
the human “ventro-dorsal pathway”, including the
left IPL and superior temporal gyrus, contributed to
relatively slow and memory-based processing of
learnt movements performed in the service of the
functional use of familiar tools. This view of two differ-
ent action systems is consistent with the distinction
between optic ataxia and ideational apraxia, respect-
ively. Goldenberg and Spatt (2009) also reported evi-
dence for a crucial dorsal parietal contribution to
visually guided planning of object use. In their large-
scale investigation of lesion cases, they found that
the left IPS and surrounding cortex (close to those
identified in the current meta-analysis) were corre-
lated with the degree of participants’ deficits in
using novel and common objects. This correlation
was higher for novel than for common tool tests, indi-
cating that the area is integral for preserving compe-
tence in mechanical problem solving. Given these
results, Goldenberg and Spatt (2009) suggested that
the role of left parietal lobe is to compute the precise
spatial relationship among hands, fingers, parts of the
tool, and recipient objects. This conclusion would fit
with the present meta-analysis findings in that a
majority of the action-retrieval studies (20 of 25) expli-
citly asked participants to imagine or plan tool-use
actions whilst the remaining studies also implicitly
required action imagery by asking participants to
decide whether a specific action (e.g., pinching with
fingers) was necessary for the use of each tool (Kellen-
bach, Brett, & Patterson, 2003) or to evaluate the simi-
larity of the hand/arm movements for a pair of tools
(Boronat et al., 2005; Canessa et al., 2008). Successful
performance in these tasks is likely to require reason-
ably detailed and precise mental images of body move-
ments and their relationship with the tools in question.

Conclusion

The present meta-analysis of 70 neuroimaging contrasts
identified task-general and task-specific tool-related
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neural activations. The left anterior supramarginal gyrus
was common across identification (perceptual) and
action (motor) tasks. This area would underpin either
core representations or cognitive processes that are
required across all tool-related tasks. Identification
(naming or recognition) of tools was associated with
increased activation likelihood in the medial occipito-
temporal cortices, which probably reflects extraction
of core visual features that are crucial for tool recog-
nition. In contrast, there was heightened activation like-
lihood for action-retrieval task in the left superior
parietal lobule (SPL) and dorsal frontal gyrus, corre-
sponding to the areas within the dorso-dorsal
pathway. This circuit is integral to the precise coordi-
nation of visuospatial coding of hands, fingers, objects,
and their recipients alongside the computation and
planning of fine finger and hand movements.
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