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Abstract

Clostridium perfringens is the causative agent of clostridial myonecrosis or gas gangrene and produces many different
extracellular toxins and enzymes, including the cysteine protease a-clostripain. Mutation of the a-clostripain structural gene,
ccp, alters the turnover of secreted extracellular proteins in C. perfringens, but the role of a-clostripain in disease
pathogenesis is not known. We insertionally inactivated the ccp gene C. perfringens strain 13 using TargeTron technology,
constructing a strain that was no longer proteolytic on skim milk agar. Quantitative protease assays confirmed the absence
of extracellular protease activity, which was restored by complementation with the wild-type ccp gene. The role of a-
clostripain in virulence was assessed by analysing the isogenic wild-type, mutant and complemented strains in a mouse
myonecrosis model. The results showed that although a-clostripain was the major extracellular protease, mutation of the
ccp gene did not alter either the progression or the development of disease. These results do not rule out the possibility
that this extracellular enzyme may still have a role in the early stages of the disease process.
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Introduction

Clostridium perfringens type A is a Gram positive, spore forming

anaerobic bacterium and is the causative agent of several

human diseases, including gas gangrene or clostridial myone-

crosis [1–5]. This syndrome is characterised by rapid tissue

necrosis, a paucity of polymorphonucleocytes (PMNs) in the

infected tissues and vascular leukostasis [1,4,6,7]. C. perfringens

type A produces two major extracellular toxins, a-toxin, which

is essential for disease [1], and perfringolysin O, which has been

shown to function synergistically with a-toxin to mediate disease

progression [6,7].

The extracellular cysteine protease a-clostripain was first

discovered in Clostridium histolyticum [8–10] and a homologue was

later identified in C. perfringens [11–14]. Both the C. perfringens and

C. histolyticum a-clostripain proteins exist as heterodimeric

polypeptides, consisting of a heavy chain and a light chain, which

are held together by strong, non-covalent forces [8,9,15]. They are

encoded by a single gene that contains a region encoding a

nonapeptide linker [15], the polypeptide precursor is cleaved after

secretion. Functionally, a-clostripains are arginine-specific endo-

peptidases that require calcium and reducing conditions for

optimal in vitro activity [12,13,16]. They are classified as members

of the C11 peptidase superfamily, which also includes gingipains

and legumains [12], and are grouped based on their structural and

functional similarity rather than their sequence similarity.

Other members of the C11 peptidase family include the

gingipains HrgpA and RgpB from Porphyromonas gingivalis. These

cysteine proteases play key roles during the infectious process [17–

20]. They cleave important components of the innate immune

system, thereby activating receptors that allow platelet aggregation

[20], and cleave receptors on oral epithelial cells [19]. They also

inactivate TNF-a and facilitate immune evasion [18] as well as

disrupting the host cytokine response, inactivating IL-6 [17,21].

Similarly, the cysteine protease SpeB from Streptococcus pyogenes has

been shown to be important for disease and can inhibit

immunoglobulin-mediated opsonisation and phagocytosis [22,23]

and can cleave and degrade human fibronection, vitronectin, and

the C3 component of the complement system [24].

The role of C. perfringens a-clostripain in disease is not known.

Previous workers [25] have made a single crossover mutation in

the C. perfringens strain 13 a-clostripain gene, which has been

designated as ccp [14] or clp [25]. Their results provided evidence

that a-clostripain was required for the processing of secreted

proteins since disruption of the ccp gene led to an increase in the

levels of extracellular proteins [25]. In addition, a-clostripain

production is positively and directly regulated by the VirSR two-

component signal transduction system [14,26], which also

regulates perfringolysin O, a-toxin and collagenase production

in C. perfringens. Recent in vivo studies have shown that when

injected into the dorsal skin of mice, purified a-clostripain

increases intravascular permeability in a dose-dependent manner
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[16], suggesting that a-clostripain may be responsible for the tissue

swelling observed in clostridial myonecrosis [16]. In summary, it

has been postulated that a-clostripain has the potential to affect

the levels of active extracellular toxins and enzymes in the region

surrounding C. perfringens cells and may therefore affect disease

progression and virulence [13].

The objective of this study was to determine if a-clostripain was

essential for disease. Accordingly, the ccp gene was insertionally

inactivated, the mutation complemented with the wild-type ccp

gene and the resultant panel of isogenic strains analysed for total

protease activity, extracellular toxin production and virulence in

the mouse myonecrosis model. The results showed that although

a-clostripain is the major protease produced by C. perfringens it is

not essential for disease.

Results

a-clostripain is the major protease produced by
C. perfringens

To assess the role of a-clostripain in the pathogenesis of C.

perfringens-mediated myonecrosis, the a-clostripain structural gene,

ccp, in the strain 13 derivative, JIR325, was insertionally

inactivated using TargeTron technology [27]. Primers were

designed using the Sigma Aldrich website (http://www.sigma-

genosys.com/targetron/) to allow for re-targeting of the 1.8 kb

group II intron, using the vector pJIR3562 [27], to a site 210

nucleotides downstream of the ccp start codon, thereby disrupting

the gene. Potential mutants were selected based on the presence of

an active erm(B) erythromycin resistance cassette located within the

integrated group II intron and then screened for the absence of

zones of precipitation on skim milk agar. Two independent ccp

mutants were isolated and their genotype confirmed by Southern

hybridisation. The results showed that a ccp-specific probe

hybridised with a 3.9 kb HindIII fragment in DNA from the

wild-type strain and a 5.7 kb fragment in the mutants, as expected

since these derivatives contained a 1.8 kb insertion within the ccp

gene (data not shown). The 5.7 kb fragment also hybridised with

an erm(B)-specific probe. The plasmid pJIR3680, which contains

the full-length ccp gene with its natural promoter, was used to

complement the ccp mutation.

Quantitative protease assays showed that the ccp mutant

carrying the vector plasmid pJIR750 had no detectible protease

activity when compared to the wild-type strain (Fig. 1). Protease

activity was restored to wild-type levels when pJIR3680 was used

to complement the ccp mutation. These data indicate that a-

clostripain is the major extracellular protease produced by

derivatives of C. perfringens strain 13.

Disruption of ccp does not affect a-toxin and
perfringolysin O production or hemoglobin degradation

Previous studies have shown that a-clostripain is involved in the

processing and degradation of extracellular proteins produced by

C. perfringens [25]. Therefore, we used quantitative toxin assays to

determine if the ccp mutation altered the levels of the two major

extracellular toxins, a-toxin and perfringolysin O. No significant

differences in a-toxin (Fig. 2A) or perfringolysin O activity (Fig. 2B)

were observed in supernatants derived from exponential growth

phase cultures of wild-type strain, the ccp mutant carrying the

vector plasmid or the complemented mutant. These results

strongly suggest that a-clostripain is not involved in the processing

or degradation of either of these two major toxins.

Acquisition of iron from iron-rich proteins like hemoglobin is

one of the major factors that influence the progression and

establishment of many bacterial infections [28]. The cysteine

Figure 1. The ccp mutant has no detectable protease activity.
Culture supernatants (n = 4) isolated at 3.5 h from the wild-type strain
JIR325 (WT), a ccp mutant carrying the vector plasmid pJIR750 M(v)
(JIR12503), and the ccp mutant carrying the ccp+ complementation
plasmid pJIR3680, M(ccp+) (JIR12501) were assayed for protease activity
as previously described [26] and results expressed as the rate of azo-dye
release/minute/mg protein. Error bars indicate S.E.M (*** p,0.0001)
using a two-tailed unpaired student’s t-test comparing the WT and
M(v).
doi:10.1371/journal.pone.0022762.g001

Figure 2. a-toxin and perfringolysin O activity in culture
supernatants of isogenic strains. Mid-exponential phase culture
supernatants from the wild-type strain (WT), a ccp mutant carrying the
vector plasmid pJIR750, M(v), and the ccp mutant carrying the ccp+

complementation plasmid pJIR3680, M(ccp+), were either concentrated
5-fold or used undiluted to assay for a-toxin (A) or perfringolysin O
activity (B), respectively (n = 3). Error bars represent S.E.M.
doi:10.1371/journal.pone.0022762.g002
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protease falcipain-3 from Plasmodium falciparum, for example, has

been shown to degrade human hemoglobin, which is a key

mechanism of nutrient acquisition [29,30]. More recently, the

extracellular protease LepA from Pseudomonas aeruginosa also was

shown to degrade hemoglobin, thereby enabling the bacterium to

acquire peptides and heme, and was found to contribute to the

growth and virulence of this bacterium, cooperatively with PlcH, a

haemolytic phospholipase C [31]. Therefore, we decided to assess

the ability of a-clostripain to degrade human hemoglobin, which

may be an important nutrient source for C. perfringens cells in

infected host tissues. We developed a heme release assay to

measure the cleavage and release of human hemoglobin. Briefly,

human hemoglobin was mixed in equal quantities with culture

supernatants from the isogenic wild-type, ccp mutant and

complemented strains. Incubation with trypsin, which was used

as a positive control, showed that heme was released under these

physiological conditions. By contrast, no difference in the level of

hemoglobin degradation was observed between the wild-type, the

ccp mutant and the complemented strains (Fig. 3), suggesting that

a-clostripain is not be involved in hemoglobin degradation under

these conditions.

a-clostripain does not affect the host cell cytotoxicity of
culture supernatants

C. histolyticum a-clostripain has been shown to induce cell death

and cytopathic effects on tissue culture cells, even at low dilutions

[32]. Furthermore, purified HrgpA and RgpB, live P. gingivalis

cells, and filtered culture supernatants were capable of inducing

apoptosis in primary human gingivial epithelial cells unlike heat-

killed P. gingivalis cells [33]. Since previous work suggested that

mutation of the a-clostripain gene had the potential to alter the

levels of secreted C. perfringens proteins [13,34], and therefore to

potentially affect their interaction with host cells, we decided to

determine the effect of isogenic culture supernatants on host cell

survival. Differentiated DC2C12 mouse muscle cells were

incubated with filter-sterilised culture supernatants from the

wild-type, ccp mutant and complemented strains for 24 h and

cellular cytotoxicity determined using an MTT (3-(4,5-di-

methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell viability

assay (Fig. 4). Treatment with 1% Triton-X100 (v/v) was used a

positive control. The results showed that there was no statistically

significant difference in DC2C12 cell cytotoxicity upon treatment

with these culture supernatants.

a-clostripain is not essential for virulence in the mouse
myonecrosis model

Finally, the virulence of the isogenic ccp strains was assessed in

our mouse myonecrosis model. Balb/c mice were injected

intramuscularly with live, washed bacteria (109 cfu) [35,36].

Disease progression was analysed over 12 h and scored for

characteristic disease pathology, including blackening of the

footpad and the thigh, swelling of the footpad and the thigh and

limping, as before [35,36]. The results showed that mice injected

with the ccp mutant succumbed to disease at the same rate as those

infected with the wild-type or complemented strains (Fig. 5A). A

wild-type strain containing the ccp+ complementation vector was

also constructed to assess its in vivo effects. Virulence testing

revealed that although it appeared that disease onset was delayed

in this strain, the Kaplan-Meier survival curve was not statistically

different from wild type (p.0.05, Mantel-Cox test) (Fig. 5A). No

differences were seen in the other disease parameters, including

blackening of the thigh, footpad or limping, in all of the tested

strains (data not shown).

Histopathological analysis of muscle tissues from mice infected

with the isogenic panel of strains showed that all of these strains

displayed the same pathological characteristics associated with

normal C. perfringens disease [7], including vascular leukostasis and

necrosis of the infected muscle tissues (Fig. 5B). Taken together,

the results show that mutation of the a-clostripain gene does not

affect the progression or development of clostridial myonecrosis in

the mouse model.

Discussion

The ability of bacterial cells to survive within the host is

dependent upon numerous interrelated factors, including the

ability of the organism to both evade the host immune response

Figure 3. Hydrolysis of hemoglobin. Culture supernatants from
mid-exponential phase cultures of the isogenic strains described in
Fig. 1 were used to assay for hemoglobin (Hb) hydrolysis. Culture
supernatants (n = 4) were mixed with equal volumes of human
hemoglobin (1 mg/ml) and incubated for 24 h. Trypsin (0.5%) was
used as a positive control. Hemoglobin was precipitated using 3% TCA
and the absorbance of the supernatants analysed at 410 nm. The
results are shown relative to the amount of hemoglobin hydrolysed by
trypsin after 24 h. Error bars indicate S.E.M.
doi:10.1371/journal.pone.0022762.g003

Figure 4. Cytotoxicity of isogenic strains. Differentiated C2C12
cells were stimulated for 24 h at 37uC in 5% CO2 with filtered mid-
exponential phase culture supernatants (n = 3) from the isogenic strains
described in Fig. 1. Cell viability then was assessed using an MTT assay.
Culture medium was used as negative control and 1% Triton-X100 (v/v)
was used a positive control. Error bars represent S.E.M.
doi:10.1371/journal.pone.0022762.g004

a-Clostripain is Not Essential for Myonecrosis
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and acquire nutrients that allow its replication and survival. It was

previously shown that when purified a-clostripain from C.

perfringens was injected intradermally into mice there was an

increase in vascular permeability [16], thereby implying that a-

clostripain may play a role in the pathogenesis of clostridial

myonecrosis. This study used only purified a-clostripain and did

not consider the concentration of a-clostripain within an infected

lesion or its potential interactions with other bacterial and host

factors. These findings were in contrast to previous studies, which

have shown that an important characteristic of clostridial

myonecrosis is an absence of vascular permeability due to the

formation of platelet-leucocyte and platelet-platelet aggregates

within the vasculature and the up-regulation of adhesion

molecules on endothelial cells, leading to an occlusion of blood

flow into infected regions. [4,37–40]. Studies using an in vivo

microvascular perfusion model also have shown that treatment of

mouse cremaster muscle tissue with culture supernatants from

wild-type C. perfringens strains led to a decreased functional

capillary density [40], which was reversed when cells were pre-

treated with anti-Gr-1, a granulocyte-specific antibody, and anti-

platelet serum [40]. These data confirmed the importance of

neutrophil-platelet aggregates in blocking vascular perfusion

during C. perfringens infection.

Using a mouse myonecrosis infection model, we have now

shown that a-clostripain is not essential for C. perfringens-mediated

disease. Mice infected with an a-clostripain mutant did not show

any alteration in disease progression or in the development of

vascular leukostasis, a hallmark of C. perfringens infection (Fig. 5).

Mutation of the ccp gene also had no affect on bacterial growth or

on the extracellular level of the two major toxins, a-toxin and

perfringolysin O (Fig. 2), which are implicated in clostridial

myonecrosis [1,7]. In agreement with previous studies [41] our

results provide good evidence that a-clostripain is the major

protease produced by C. perfringens strain 13 (Fig. 1). Other

bacterial cysteine proteases, which unlike a-clostripain have been

shown to be essential for virulence, also are involved in influencing

the levels of other virulence factors, many of which have non-

redundant functions. For example, mutation of both P. gingivalis

Figure 5. Kaplan-Meier survival curve and histopathology of infected mice. (A) Kaplan-Meier survival curve. Female Balb/c mice were
inoculated into the right hind thigh muscle with the strains indicated (n = 15). Mice were then observed and scored for signs of disease over 12 h.
Legend: N Wild-type (WT), %M(v), mM(ccp+), . Wild-type (ccp+). (p.0.05 using log-rank Mantel-Cox test comparing wild type with mutant and
complemented strains) (B) Histopathological analysis (hemotoxylin and eosin stain) of muscle tissue isolated from mice infected with the strains
indicated. Tissues showed the development of the characteristic signs of disease. M-muscle tissue, Nr M- necrotic muscle, Lk Bv- leukostatic blood
vessel, Cp- C. perfringens.
doi:10.1371/journal.pone.0022762.g005
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gingipains not only reduces total cysteine protease activity, but also

affects the growth and expression of cell surface structures such as

fimbriae and vesicles, both of which are thought to assist in

colonization and evasion of the immune response [42–44].

Like a-clostripain other potential C. perfringens-encoded spread-

ing factors, such as collagenase and two different sialidases, are not

to be essential for disease in the mouse myonecrosis model [3,45].

These enzymes may still have a role during infection. The

breakdown of host tissues is important for the release of nutrients

such as amino acids, sugars and essential minerals such as

sequestered iron, which are required for the growth of C. perfringens

cells in the lesion. We previously postulated that the sialidases

secreted by C. perfringens may still serve such a function even

though they are not essential for virulence [45]. Accordingly, we

tested the ability of a-clostripain to hydrolyse human hemoglobin

since other bacterial proteases can catalyze the release of heme

from hemoglobin. Although some hemoglobin degradation was

observed, there was no significant difference between the wild-type

strain and the ccp mutant, suggesting that a-clostripain does not

play a major role in hemoglobin hydrolysis.

The clostridial mouse myonecrosis model used in this study, and

many other studies [1,3,7,45], is the only animal model currently

available that allows the consistent reproduction of virulent

disease. However, since the model involves injection of anaerobic

bacteria into healthy oxygenated tissue, an infectious dose of 109

cells is required to establish reproducible disease. This process may

mask any role that extracellular enzymes such as a-clostripain,

sialidase or collagenase may have during the early stages of the

disease process. Therefore, we cannot rule out the possibility that

a-clostripain has a role in disease pathogenesis in a natural C.

perfringens infection, where a traumatic injury usually leads to the

establishment of ischemic conditions, enabling the proliferation of

small numbers of contaminating cells in the muscle tissues leading

to a major infection and fulminant gas gangrene.

Materials and Methods

Ethics Statement
Animal experiments were approved by the Monash University

School of Biomedical Sciences B (SOBSB) Animal Ethics

Committee (Approval number: SOBSB/M/2009/16) and were

conducted in accordance with Victorian State Government

regulations. All efforts were made to ameliorate any unnecessary

suffering of animals.

Bacterial strains and growth conditions
All C. perfringens strains were derivatives of JIR325, a rifampicin and

nalidixic acid resistant derivative of strain 13 [46]. C. perfringens strains

were grown in tryptone-peptone-yeast extract glucose (TPYG) broth

supplemented with 0.375% glucose (v/v) and 0.1% sodium

thioglycolate (w/v) [47], fluid thioglycolate broth (FTG) (Difco), or

nutrient agar (2.5% Nutrient Broth (Oxoid), 0.3% yeast extract

(Oxoid), 0.1% sodium thioglycolate, 1.5% agar (Oxoid)), supple-

mented when necessary with 10 mg/ml rifampicin and 10 mg/ml

nalidixic acid for wild-type C. perfringens strains, 10 mg/ml erythro-

mycin for a-clostripain mutants or 30 mg/ml chloramphenicol for

complemented strains. Skim milk agar was made by adding 2% skim

milk powder to nutrient agar. Broth cultures were boiled for 5–

10 min prior to inoculation to render them anaerobic and agar

cultures were grown at 37uC in 10% (v/v) H2, 10% (v/v) CO2 in N2.

Molecular and genetic techniques
C. perfringens genomic [48] and plasmid DNA [49], and E. coli

plasmid DNA [50,51] were isolated as previously described.

Plasmid DNA was introduced into C. perfringens by electroporation

at 1.8 kV, 25 mF and 200 V [52]. TargeTron technology was used

to mutate the a-clostripain gene as previously described [27], using

a retargeted derivative of pJIR3562 [27]. Target sites were chosen

based on the best score provided on the Sigma Aldrich website

(http://www.sigma-genosys.com/targetron/) and primers were

designed to allow retargeting of the group II intron between

nucleotides 210 and 211 on the sense strand, at the start of the ccp

gene. C. perfringens transformants were selected on erythromycin-

containing media and were screened for the absence of proteolytic

activity on skim milk agar as well as for thiamphenicol sensitivity.

The resultant a-clostripain mutant was designated as JIR12337

and, when transformed with the plasmid vector pJIR750, as

JIR12503.

Complementation of the ccp gene
The wild-type ccp gene, including 200 base pairs upstream of the

start site to incorporate its putative promoter, were subcloned into

pCR-Blunt II TOPO (Invitrogen) to construct pJIR3679. This

plasmid and the E. coli - C. perfringens shuttle plasmid pJIR750 [53],

which carries the catP chloramphenicol resistance gene, were then

digested with BamHI (Roche) and the digested fragments mixed

and ligated with high concentration T4 DNA ligase (Roche). The

ligated mixture then was used to transform chemically competent

E. coli DH5a cells [51] and recombinants selected based on their

chloramphenicol resistance and proteolytic activity on skim milk

agar. The complementation plasmid, pJIR3680, was confirmed by

restriction analysis and sequencing and used to transform the C.

perfringens ccp mutant JIR12337 to chloramphenicol resistance [52].

Colonies were selected on skim milk nutrient agar supplemented

with 30 mg/ml chloramphenicol and screened for the restoration

of zones of proteolysis. The complemented strain was designated

as JIR12501. A wild-type strain containing the ccp complementa-

tion vector was also constructed by electroporation of JIR325 with

pJIR3680 and was designated as JIR12539.

Toxin and enzyme assays
Relevant strains were grown to mid-exponential phase (3.5 h) in

100 ml of TPYG broth; the strains all grew at the same rate. Cells

were removed by centrifugation at 8,500 g for 10 min at room

temperature. a-toxin assays were performed as previously

described, with activity presented as units/mg total protein [54]

and total protein determined using a BCA assay kit (Pierce).

Perfringolysin O activity was determined using a doubling-dilution

assay as previously described [27,55] with the addition of 5 mM

dithiothreitol (DTT) (Roche). The haemolytic titre was expressed

as the highest dilution that caused at least 80% haemolysis.

Protease assays were performed as previously described [26].

Briefly, culture supernatants were mixed with 5 mg/ml azocasein

(Sigma Aldrich) dissolved in 25 mM Tris-HCl buffer, pH 7.5,

supplemented with 5 mM DTT and incubated for 2 h at 37uC
with gentle rotation. The proteins were then precipitated from

solution with the addition of 3% (w/v) TCA and azocasein

hydrolysis determined by reading the absorbance of the superna-

tants at 570 nm. Protease activity was defined as the rate of azo-

dye release/per minute/mg of protein.

Hemoglobin degradation assay
Culture supernatants were mixed in equal quantities with

1 mg/ml human hemoglobin (Sigma Aldrich) in 25 mM Tris-HCl

buffer (pH 7.5), supplemented with 5 mM DTT and incubated for

24 h at 37uC. Trypsin (0.5%) (Invitrogen) was used a positive

control and medium only was used as a negative control. After

incubation, the mixtures were precipitated with 3% (w/v)
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trichloroacetic acid (TCA) and heme release determined by

measuring the absorbance of the supernatants at 410 nm.

Cell cytotoxicity assays
The mouse muscle cell line C2C12, was maintained in

Dulbecco’s Modified Eagles Medium (DMEM) (Invitrogen)

supplemented with 10 mM L-glutamine and 10% (v/v) heat

inactivated foetal bovine serum (FBS) (Sigma Aldrich). To obtain

differentiated C2C12 cells (DC2C12 cells) for subsequent

experiments, C2C12 cells (ATCC) were allowed to grow to 80

to 90% confluence and then aliquoted into 96 well microtitre

plates at 26104 cells well (26105 cells/mL) in DMEM with 2%

FBS and incubated for a further five days. The differentiated cell

monolayers then were stimulated with filter sterilised (0.4 mm)

culture supernatants from 3.5 h C. perfringens cultures for 24 h at

37uC in 5% CO2. Culture medium was used as a no stimulation

control and treatment with 1% (v/v) Triton-X100 was used as a

total cell lysis control. Cellular cytotoxicity was measured using an

MTT assay (Biocore) as per the manufacturer’s instructions.

Percentage cell death was calculated after subtracting the

absorbance from cells stimulated with medium only from the

absorbance of treated cells.

Virulence studies
Virulence trials were conducted as described previously [6,7].

Briefly, C. perfringens cultures were grown for 6 h in FTG broth and

then subcultured onto nutrient agar with appropriate antibiotic

selection. After overnight growth the cells were removed into

Dulbecco’s phosphate buffered saline (DPBS), washed in DPBS

and resuspended in three times the cell pellet volume in DPBS.

Female Balb/c mice were injected into the right hind thigh muscle

with 50 ml of this suspension (approximately 109 cfu) and

monitored every 30 min for 12 h for the characteristic signs of

disease pathology: blackening of the thigh and footpad, swelling of

the thigh and footpad and limping [6,7,56]. Mice were euthanised

when they developed significant disease pathology. Viable counts

of each C. perfringens stain were performed both pre- and post-

infection. Histopathology was performed on infected thigh tissue

collected from mice immediately following euthanasia and stored

in 10% phosphate buffered formalin. Tissues were sliced into

5 mm sections and stained with haematoxylin and eosin by

Monash University Histology Services. Stained sections were

analysed using an Olympus BX51 microscope with a DP70

camera.
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