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Background
Biomedical annotations aim to categorize the knowledge contained in unstructured 
form in scientific articles and are at the core of many biomedical databases, such as 
MEDLINE’s Medical Subject Headings (MeSH) or UniProt’s literature-based data. While 
annotations have been widely used for many applications, the relation between annota-
tions and the citation network has been underexplored.

Delbecque and Zweigenbaum [1] already pointed at the value of an article’s listed ref-
erences by using them—among other article features—to automatically suggest MeSH 
term annotations for the article. Their analysis was based on full-text Journal of the 
American Medical Association (JAMA) articles published between the years 1998 and 
2008. Perhaps due to lack of accessibility to normalized citation information, other stud-
ies in automatic annotation did not explore further the citation network for this task [2].

Recently, however, there has been a large increase in the availability of normalized 
citation information thanks to the Initiative for Open Citations (I4OC), which was 
established in 2017 [3]. The I4OC provides an open dataset of machine-readable refer-
ences belonging to publications and which have been mapped to digital object identifiers 
(DOIs) to facilitate processing. The I4OC estimated that 59% of all Crossref citations 
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had already become open by December 2020 (https​://i4oc.org/#about​; website checked 
on January 14, 2021). This surge in availability has enabled the large-scale use of citation 
information for the analysis of biomedical articles. Leveraging such data, for example, 
Rodriguez-Esteban [4] pointed out that terms with ambiguous meaning are typically not 
ambiguous within the network of articles directly connected by citations.

Through a quantitative assessment using several large and small annotation datasets, 
this study explores the relation of the citation network and biomedical annotations by 
measuring the degree to which articles tend to share annotations with their citation 
neighbors.

Results
The information retrieval metrics precision and recall were used to measure the degree 
of annotation sharing between a MEDLINE article and its citation neighbors in several 
large annotation datasets (gene2pubmed, UniProt, MeSH and dbSNP). Recall, in this 
case, was the percentage of annotations in an article that appeared at least once in a 
neighbor. Precision was the percentage of unique annotations in the neighborhood 
that also appeared in the article. More intuitively, precision represented how frequently 
annotations in an article’s neighborhood were shared by the article. Recall went in the 
other direction: it represented how frequently annotations in an article were shared by 
its neighborhood. Together, precision and recall, define the overlap between an article’s 
annotations and those of its neighborhood.

Results showed that recall and precision depended on the number of existing anno-
tated neighbors. For example, in gene2pubmed, average recall for articles with 3 anno-
tated neighbors was 75% and increased with the number of annotated neighbors, 
reaching 95% with 20 annotated neighbors (arbitrary cut-off). The same could be 
observed with other datasets (Fig. 1). For example, with 3 annotated neighbors, average 
recall was 75% for UniProt, 49% for MeSH and 31% for dbSNP. For comparison, a rand-
omized network of citations only led to average recall values < 1% for all datasets.

Precision ran in the opposite direction to recall. In the case of gene2pubmed, average 
precision was 46% for records with 1 annotated neighbor and decreased thereafter with 
the number of annotated neighbors. For Uniprot, MeSH and dbSNP average precision 
was 47%, 26% and 16%, respectively.

The metrics of recall and precision do not take advantage of annotation frequency 
information because they are based on unique annotations. Intuitively, however, annota-
tions that appear more frequently in an article’s citation neighborhood should be more 
likely to be shared with the article. To test this hypothesis, neighborhood annotations 
can be ranked by annotation frequency and the quality of the ranking can be meas-
ured with a metric such as mean average precision (MAP). In the best-case scenario 
(MAP = 1), the most-frequent neighborhood annotations comprise the article’s actual 
annotations.

MAP values for gene2pubmed annotations increased with the number of annotated 
neighbors (Fig. 1) and reached 0.80 with 20 annotated neighbors, indicating that approx-
imately 80% of the results at the top of the annotation ranking were shared between an 
article and its neighborhood. For MeSH, the MAP achieved was 0.53, while for dbSNP 
and UniProt it reached 0.28 and 0.69, respectively.

https://i4oc.org/#about
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Obviously, MEDLINE articles for which no annotated neighbors were available could 
not be analyzed with this method, whether due to lack of annotation or of citation data. 
Only 14% of all MEDLINE records had at least one connection to a record annotated 
by gene2pubmed and 10% had two or more. Thus, the neighborhood of all annotated 
gene2pubmed articles covered only a selected fraction of MEDLINE. One way to reach 
articles not directly connected to annotated articles is to consider articles that are two 
steps away in the citation network. In fact, 44% of all MEDLINE had at least a connec-
tion to a first- or second-degree neighbor annotated in gene2pubmed and 40% had at 
least two connections. For UniProt, 31% of MEDLINE had at least one annotated neigh-
bor and 26% had at least two. For dbSNP, it was 33% and 27%, respectively. Including 
second-degree neighbors in computing the MAP led to lower scores (Fig. 1), yet values 
still reached 0.53 in gene2pubmed, 0.27 in MeSH, 0.22 in dbSNP, and 0.64 in UniProt.

Performing this analysis over the entire MEDLINE does not reflect, however, how it 
applies in practice because the subset of articles that are the focus of annotation (e.g. 
articles that could be annotated with gene names in the case of gene2pubmed) is likely 
to be clustered within the citation network to some extent. A practical example can be 
demonstrated using the BioCreative II gene normalization (BC2GN) challenge dataset 

Fig. 1  Recall, precision and mean average precision (MAP) for the gene2pubmed (first row), dbSNP (second 
row), MeSH (third row) and UniProt (fourth row) datasets for first-degree neighbors with annotations (first 
column), including second-degree neighbors with annotations (second column), and randomized network 
(third column)
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[5]. The BC2GN challenge was a competition of algorithms for automatic prediction 
of NCBI Gene ID annotations in MEDLINE abstracts that used a gold standard of 531 
annotated abstracts. To analyze this dataset, annotation neighbors of the BC2GN arti-
cles are considered to be neighboring articles with potential gene2pubmed annotations.

With our citation and annotation data, the BC2GN gold standard abstracts had a 
median number of 59 total connections and a median of 16 connections to neighbors 
with gene2pubmed annotations. Based on those neighboring annotations, 58% of the 
BC2GN records had 100% annotation recall. Moreover, 70% of all BC2GN annotations 
appeared in at least one neighbor’s gene2pubmed annotations, which means an over-
all corpus-wide 70% annotation recall (Fig.  2). Using a randomized citation network, 
instead, 0% of the records had 100% annotation recall and corpus-wide annotation recall 
was < 1%.

Figure 3 shows the average recall, precision and MAP for BC2GN abstracts based on 
the number of annotated neighbors. As can be seen, recall and MAP generally increased 
with the number of annotated neighbors, while precision decreased. These numbers are 
consistent with the results already presented for the previous datasets. It is important to 
note that BC2GN and gene2pubmed annotations were made independently from each 
other and under different guidelines. Thus, results could have been higher if only anno-
tations from a single source had been considered.

A hurdle for this analysis was the dearth of connections available for some BC2GN 
abstracts. For example, no connections were available for 85 abstracts (16%). An increase 
in the number of connections, however, would be expected to lead to higher recall 

Fig. 2  a Recall for BC2GN annotations based on the number of annotated neighbors. A sigmoidal function 
fit (R2 = 0.61) with 95% confidence intervals is shown alongside (dotted lines). The sigmoidal function was 
chosen because it is a monotonic function that is bounded within a range. b Including second-degree 
neighbors (sigmoidal function fit with R2 = 0.85). c For the randomized network

Fig. 3  Recall, precision and MAP for the BC2GN dataset: a for first-degree neighbors with annotations, b 
including second-degree neighbors with annotations, and c for the randomized network. Values shown are 
noisy due to the low number of samples associated to each data point
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(Fig. 2). In fact, we can extrapolate that approximately 76% recall could be achieved if 
all BC2GN articles had exactly 5 annotated neighbors. Extending the citation neigh-
borhood of the BC2GN articles to include second-degree neighbors led to 82% of the 
abstracts reaching 100% recall and a corpus-wide 87% annotation recall. This was associ-
ated to a concomitant large increase in connections: the median number of annotated 
neighbors jumped to 1095 and the median total number of connections to 5532. How-
ever, 54 abstracts (10%) still had no connections.

A further evaluation was done with the L1000 and NLM2007 datasets, which are ref-
erence datasets for MeSH term annotation [6, 7] (Fig. 4), showing similar overall results 
though nonetheless lower recall and MAP than for the BC2GN dataset. As can be seen 
in the figure, the smaller a dataset, the noisier the results.

The analysis presented thus far was done with an undirected citation network. If the 
direction of citations had been taken into account, results would have been lower, as can 
be seen in Fig. 5 for the gene2pubmed dataset. When either citing or cited references 
were taken into consideration, results were lower than when both were considered. 
Unsurprisingly, the value of citing references increased steadily with their availability, 
while the value of cited references (those appearing in the article itself ) barely did. This 

Fig. 4  Recall, precision and MAP for MeSH term overlap analysis on the a NLM2007 and b L1000 datasets 
using first-degree neighbors with annotations. Values are noisy for small datasets, such as these, due to the 
low number of samples associated to each data point. Thus, values associated to NLM2007, with 200 articles, 
are noisier than for L1000, with 1000 articles

Fig. 5  Mean average precision (MAP) for the gene2pubmed datasets for first-degree neighbors with 
annotations: a considering citing and cited references. b Considering citing references alone, and c cited 
references alone
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demonstrates how the ranking improves as the amount of neighborhood annotation 
increases but it has limited dependency on the number of cited references.

Discussion and conclusions
Overall, this study shows that an article tends to have similar annotations to those that 
are most frequent in its citation neighborhood, as expressed by the MAP metric. High 
recall values, on the one hand, show that citation neighbors tend to include most anno-
tations present in an article. Low precision values, on the other hand, indicate that 
neighbors can include a diversity of annotations not shared by the article. As could be 
expected, annotation sharing is weaker when including articles two steps away in the 
citation network, leading to higher recall but lower precision and MAP. Additionally, 
while the recall achieved can be high, there is a remaining degree of novelty in individual 
articles with respect to their neighbors that allows for some differentiation.

The degree of annotation sharing found depended on the dataset considered, being 
highest—among the large datasets—for gene2pubmed and lowest for dbSNP. Smaller 
reference datasets showed similar properties. Thus, the degree by which the citation 
neighborhood defined the content of an article varied according to the type of annota-
tion. The difference in level of annotation sharing across datasets could be due to dif-
ferences in the cardinality of each annotation type. While the gene2pubmed dataset 
had 38,738 unique annotations, MeSH 28,993 and UniProt 18,931, the dbSNP dataset 
had 233,367. The diversity of dbSNP annotations could mean, therefore, a lower chance 
of overlap between neighboring annotations. Another factor influencing the degree of 
overlap could be annotation inconsistency, which would be more expected from annota-
tions that are subject to a larger degree of annotator discretion (i.e. MeSH).

The small datasets (BC2GN, L1000, NLM2007) were used to show the practical impli-
cations of these results with respect to limited-size datasets, which could be of the size 
of a curation task with bounded timeline and resources [8]. Thus, while the coverage of 
current annotation databases is narrow with respect to the entire MEDLINE, it is much 
denser in neighborhoods of articles that are more likely to be relevant for annotation 
tasks.

A corollary to these findings is that annotations in an article’s citation neighborhood 
can be considered as features for automatic, semi-automatic or manual annotation 
methods—in the latter case with reasonable curation overhead [8]—for multiple types of 
annotations. It is interesting to note that web hyperlinks, which can be considered analo-
gous to article citations, have already been used to annotate web document metadata 
under an approach called “metadata propagation” (e.g. [9–12]).

Delbecque and Zweigenbaum [1] already showed the utility of first-degree annotation 
neighborhoods to create features for machine learning by using a limited dataset (JAMA 
articles from 1998 to 2008) and one annotation type (MeSH). This study goes further 
in exploring annotation neighborhoods for first and second degree neighbors for differ-
ent types of annotations (MeSH, dbSNP, UniProt, gene2pubmed) with a much larger set 
of publications and citations (MEDLINE and I4OC). Moreover, Delbecque and Zwei-
genbaum [1] did not explore how database annotation coverage and completeness could 
affect the utility of annotation neighborhoods.
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While the goal of this study was not to develop a state-of-the-art document anno-
tation algorithm based on citations, it can be of interest to compare the results pre-
sented here to those from other annotation methods, which are typically specialized 
in one annotation type alone. This is not a straightforward task because annotation 
predictions are not typically ranked and, therefore, the MAP is not used. One area 
in which MAP values have been used, however, is annotation of MeSH terms. The 
results reported here for MeSH annotations were above those from the Medical Text 
Indexer [from the National Library of Medicine (NLM)] for articles with 10 annotated 
neighbors or more (Fig. 4). Results were lower, however, than that of the more com-
plex and specialized algorithms developed by [6, 13].

One could envision leveraging the findings of this study with an annotation data-
base growing its article coverage simply by “following” selected article citations in 
order to cover a network of interconnected articles. Alternatively, selected highly-
connected articles could be annotated as initial “seeds” of an annotation database, 
thereby facilitating the annotation of other articles connected to them. This would 
be an analogous strategy to that already adopted in protein structure resolution, in 
which key unique protein structures are manually selected for curation to maximize 
the reach of homology modeling [14]. Broadly speaking, using existing annotations 
to preliminary annotate articles could be considered a type of “annotation transfer,” 
in analogy to the prediction strategy for protein-coding DNA sequences by which 
newly-sequenced organisms are tentatively annotated based on knowledge from simi-
lar, already-characterized proteins from other organisms [15].

Limitations of this approach are based on the need for sufficient annotations and 
citation data for it to be effective. The latter particularly for articles that have never or 
seldom been cited because best results are achieved with the help of citing annotated 
articles. On the other hand, an advantage of the approach is that the context provided 
by neighborhood articles with similar annotations could be used to aid the work of 
manual annotators, in particular to increase consistency across articles within the 
same niche—or even to correct existing annotations based on inconsistency within 
neighborhoods.

While the datasets explored concerned single-concept annotations, other types of 
annotations (e.g. protein–protein interactions) could be explored if enough data were 
available. Existing citation data is abundant but still incomplete. Its availability, however, 
should increase with time, as more normalized citation data becomes available thanks 
to the Initiative for Open Citations (I4OC). One avenue of further exploration could be 
to use text similarity metrics instead of citations to determine which publications are 
most likely to share annotations with a publication of interest. Citation practice, after all, 
can be subject to a considerable degree of arbitrariness and field-specific biases [16, 17]. 
Textual similarity, particularly of full text content, could address such issues while still 
remain an approach that is simple to implement and interpret.

Finally, this study presents further quantitative evidence of topic specialization 
within the networks of articles connected by citations—e.g. scientific fields—and 
highlights the importance of connectivity to define the knowledge that is contained 
within documents, in this case by showing that neighborhoods of articles “collec-
tively” define the content of the articles to which they are connected.
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Methods
This analysis considers scientific articles as the nodes of a network connected by cita-
tions, which are treated as undirected connections. Thus, each node is an article whose 
first-degree neighbors are other articles that cite it or that are cited by it. Second-degree 
neighbors are nodes that are two steps away in the network. The second-degree network 
comprises here both first-degree and second-degree neighbors.

The focus of the analysis was on scientific articles represented by MEDLINE records 
identified by their corresponding PubMed IDs (PMIDs). MEDLINE records came from 
the MEDLINE Baseline 2021. Citations came from the I4OC’s Open Citation Index 
repository [3], and in particular from the December 2020 update, which contained 
759,516,585 citations between articles identified by a digital object identifier (DOI). 
DOI to PMID mappings were extracted from the European Bioinformatics Institute’s 
PMID-PMCID-DOI dataset [18] downloaded on January 13, 2021, which provided 
23,407,831 mappings between PMIDs and DOIs. Using these mappings, 286,515,961 
citations from the Open Citation Index were mapped from DOIs to PMIDs. Each cita-
tion was represented as a pair of PMIDs. The second-degree network comprised a total 
of 40,046,822,364 pairs of records. Citations were randomized by randomly shuffling the 
set of first PMIDs in all pairs of PMIDs.

Each node of the network was associated to annotations from four different databases 
(see dataset sizes in Table 1). Namely, two gene annotation databases (gene2pubmed, Uni-
Prot), one mutation database (dbSNP) and MeSH term annotations from the National 
Library of Medicine (NLM). Additionally, two gold standard annotation datasets for MeSH 
terms (NLM2007, L1000) and one for gene names (BioCreative II Gene Normalization 
(BC2GN)) were used. From the gene annotation datasets only human gene annotations 
were considered. gene2pubmed [19] is a dataset of gene name annotations maintained by 
the NCBI Gene database and was downloaded on January 13, 2021. UniProt data was based 
on UniProtKB [20], which was downloaded on January 13, 2021. The annotations used 
were those concerning “related publications,” which are publications associated to particu-
lar proteins. BC2GN [21] was downloaded on December 10, 2018 and comprised two files: 
the training set v1.4 with 640 annotations and the testing set v1.0 with 785 annotations. 
For Medical Subject Headings (MeSH) annotations, only those designated as “Major Topic” 
from the MEDLINE Baseline 2021 were used. The NLM2007 and L1000 gold standard 
datasets [6] of MeSH annotations contained, respectively, 200 and 1000 annotated records. 
Mutation annotations came from the dbSNP [22] b153 release downloaded on January 13, 

Table 1  Dataset sizes

Dataset Annotations PMIDs

BC2GN 1425 531

dbSNP 506,325 87,911

gene2pubmed 1,572,276 677,822

L1000 3587 1000

MeSH 95,482,280 27,175,482

NLM2007 748 200

UniProt 213,618 78,471
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2021 (unpacking of the newer b154 release led to errors). dbSNP is an archive of molecular 
variation information hosted by the National Center for Biotechnology Information (NCBI) 
with extensive literature references associated to particular variations.

The metrics used for evaluation were precision, recall and mean average precision 
(MAP). Precision is the number of true positives divided by all positives [TP/(FP + TP)] 
and recall the number of true positives divided by true positives and false negatives [TP/
(TP + FN)]. In this case, recall was the percentage of annotations in a record that appeared 
at least once in a neighboring record. Precision was the percentage of unique annotations 
in the neighborhood that also appeared in the record. Mean Average Precision (MAP) is a 
metric widely used in information retrieval to evaluate rankings. For a ranked set of predic-
tions, Average Precision (AP) is defined as:

where N is the total number of predictions, k is the prediction’s rank, P(k) is the preci-
sion of all predictions up to rank k and ΔR(k) is the change in recall between predictions 
at rank k and at rank k − 1. MAP is the average AP over all sets of predictions.

This study can be reproduced with the code available here: https​://githu​b.com/raroe​s/
annot​ation​-shari​ng-in-biome​dical​-artic​les.

Abbreviations
AP: Average precision; BC2GN: BioCreative II gene normalization; DOI: Digital object identifier; FN: False negatives; FP: 
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