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THE BIGGER PICTURE Malaria is among the most severe threats to human health worldwide. There were
228 million cases worldwide in 2021, of which �95% occurred in Africa. Early and precise diagnosis can
reduce transmission and prevent deaths. Accordingly, accurate and affordable systems for rapid detection
of malaria parasites are urgently required. Several artificial intelligence systems that employ deep learning
models to detectmalaria parasites have been reported, but clinical diagnosis remains challenging. Here, we
developed an artificial intelligence-based object detection system for malaria diagnosis. This system em-
ploys a deep learning algorithm for detection of Plasmodia in thin-blood-smear images with a prospective
clinical validation accuracy of 98.44%, comparable to that of microscopists. Our model shows clinically
acceptable malaria parasite detection and could aid in malaria diagnosis in resource-limited regions, espe-
cially areas lacking experienced parasitologists and equipment.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Malaria is a significant public health concern, with�95%of cases occurring in Africa, but accurate and timely
diagnosis is problematic in remote and low-income areas. Here, we developed an artificial intelligence-based
object detection system for malaria diagnosis (AIDMAN). In this system, the YOLOv5 model is used to detect
cells in a thin blood smear. An attentional aligner model (AAM) is then applied for cellular classification that
consists of multi-scale features, a local context aligner, and multi-scale attention. Finally, a convolutional
neural network classifier is applied for diagnosis using blood-smear images, reducing interference caused
by false positive cells. The results demonstrate that AIDMAN handles interference well, with a diagnostic ac-
curacy of 98.62% for cells and 97% for blood-smear images. The prospective clinical validation accuracy of
98.44% is comparable to that of microscopists. AIDMAN shows clinically acceptable detection of malaria
parasites and could aid malaria diagnosis, especially in areas lacking experienced parasitologists and
equipment.
INTRODUCTION

Malaria is among themost severe threats to human health world-

wide. Approximately 200 million new cases of malaria and
This is an open access article under the CC BY-N
400,000 malaria-related deaths are reported globally each

year.1–6 For instance, there were 247 million cases of malaria

and 619,000 deaths worldwide in 2021, of which�95% of cases

occurred in Africa.1,2 Early and precise diagnosis of malaria can
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reduce transmission and prevent deaths. Accordingly, accurate

and affordable systems for rapid detection ofmalaria parasites in

blood samples are urgently required.

Malaria is conventionally diagnosed by microscopy examina-

tion of blood smears, rapid diagnostic tests (RDTs), or polymer-

ase chain reaction (PCR)-based methods, all of which are indis-

pensable for current malaria control strategies.7–15 The cost and

complexity of PCR-based methods have prevented their wide-

spread use in areas where malaria is common.16–19 Malaria

RDTs are effective diagnostic tools as they do not require trained

experts or complex PCR equipment, and they can diagnose

within 15–30 min. However, according to theWorld Health Orga-

nization (WHO) and others, malaria RDTs suffer from several

shortcomings including low specificity, inability to quantify para-

site density, sensitivity to heat and humidity, and higher costs

compared with microscopy-basedmethods.15,20,21 In particular,

histidine-rich protein 2 (HRP2) antigen-based RDTs are most

effective for detection of Plasmodium falciparum, but the issue

of false negative RDT results due to target gene deletions re-

mains unresolved.22,23

The use of microscopy images of blood smears to detect ma-

laria parasites is inexpensive, rapid, and universal. Although it

can be limited by poor image resolution and misidentification

of impurities, traditional microscopy examination of blood

smears is currently the gold standard for malaria diagnosis

worldwide. Nevertheless, the requirements for experienced

and skilled microscopists as well as effective quality control

and quality assurance systems remain a crucial challenge for

malaria diagnosis, especially in Africa.24,25 Several artificial intel-

ligence (AI) systems that employ deep learning models to detect

malaria parasites have been reported recently.26–37 One group

trained a model based on convolutional neural networks

(CNNs) using 1,034 infected-cell images and 1,531 non-in-

fected-cell images obtained from the University of Alabama.26

This model achieved a diagnostic accuracy of 95%. Liang

et al. employed 27,000 blood-cell images at three different mag-

nifications to train a model that detected Plasmodia with an ac-

curacy of 98.08%.28 Khan et al. achieved 97.98% accuracy us-

ing a CNN that employs split-transform-merge and channel

squeezing-boosting principles.34 However, these methods typi-

cally suffer from two limitations. Firstly, the datasets used are not

universal, and they contain an insufficient number of blood cells

and few morphological types of malaria parasites.26,29 The most

commonly used dataset is the National Institute of Health (NIH)

Malaria Dataset maintained by the National Library of Medicine.

Unlike clinical images of blood cells typically collected in Africa,

those in the NIH dataset have few overlapping cells and dye im-

purities. Secondly, some models focus on individual red blood

cells (RBCs) for detection rather than complete thin-blood-

smear images, which limits their clinical application.29–31 There

have also been attempts to detect malaria parasites using

blood-smear images.38,39 For example, Loh et al. used the

Mask R-CNN deep learning model to segment, classify, and

count Plasmodium falciparum-infected RBCs,38 while Koirala

et al. developed a custom deep learning architecture (YOLO-

mp) to detect malaria parasites in thick-blood-smear micro-

scopy images that achieved an average accuracy of 94.07%.39

Herein, we developed an AI-based object detection system for

malaria diagnosis (AIDMAN; Figure 1). This system employs a
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deep learning algorithm for detection of Plasmodia in thin-blood-

smear images to facilitate malaria diagnosis. The YOLOv5 object

detectionmodel40 and theTransformermodel41,42werecombined

to perform an entire process from image analysis to malaria diag-

nosis. For each blood-smear image, a heatmap of the most char-

acteristic cells is generated and used for diagnosis, reducing inter-

ference caused by false positive cells. Finally, the system was

verified by application to clinically diagnosed patients.

RESULTS

Malaria detection of patches
We took 150 images fromSmartMalariaNET andobtained 35,489

patches by performing data splitting at the image level. Table S1

shows distribution details for the datasets. Some samples of in-

fected and uninfected images are shown in Figure S1. Compared

with the counting results for manual detection by trained

microscopists, YOLOv5 performed well for cell detection using

the dataset, with an average precision value of 90.8% (Figure

2A illustrates the cell detection process by YOLOv5). The dataset

for classification of cells contains 5,654 patches from 1,822 thin-

blood-smear images. Three trained microscopists classified the

patches. Patcheswith malaria parasites were defined as positive

samples, while those without malaria parasites were defined as

negative samples. The dataset includes images containing impu-

rities and aperture effects. Table S2 summarizes the cell classifi-

cation datasets. The datasets were randomly divided into a

training set of 3,393 patches, a verification set of 1,131 patches,

and a testing set of 1,130 patches.

A local context aligner that uses the encoding process of Trans-

former was introduced into the attentional aligner model (AAM),

and the multi-head attention mechanism allows the network to

capture more features. Therefore, we optimized the model by

changing the number of heads. With head number = 2, all indica-

tors for the model were highest, as shown in Table 1. In the AAM

feature extractor, features from different scales make different

contributions to the identification of malaria. We explored the

optimal feature extractor by varying the number of scales from 1

to 5. No more than five different scales were tested because the

size of the input (643 64 pixels) restricts the features of the scale.

When the feature extractor was operated at five different scales

(head number = 2), interference was reduced, and more parasites

were correctly identified, with all indicators for the model at their

highest values, as shown in Table 1. The accuracy, precision,

sensitivity, specificity, F1 score, and area under the receiver oper-

ating characteristic curve (AUC) values were 98.62%, 98.62%,

98.62%,98.62%,98.62%,and99.92%, respectively. The receiver

operating curve (ROC) for the AAM is shown in Figure 2B.

Malaria diagnosis from thin-blood-smear images
Although the AAM performed well for malaria detection from sin-

gle patches, it was still prone to false positives in overall diagnosis

because there are farmore negative cells than positive cells in one

thin-blood-smear image, which leads to misdiagnosis. The accu-

racy of the AAM in malaria diagnosis of whole images from thin

blood smears was 87.10%, with a false positive rate of 19.02%.

We then explored diagnosis of the overall thin-blood-smear im-

age using a dichotomous CNNmodel based on the AAM. Accord-

ing to patch scores, a heatmap was generated from the top



      Diagnosis of
blood-smear imagesA B C D
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Figure 1. Schematic of AIDMAN developed in this study

(A–D) (A–D) consists of four modules: (A) data collection, (B) detection of image sections, (C) classification of malaria parasites in the patches, and (D) malaria

diagnosis of blood-smear images.

(E) Network structure diagram of AAM for cellular classification.

(F) Module structure diagram for the local context aligner. P and N represent the positive and negative samples, respectively.
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patches (1, 4, 9, 16, 25, 36), and these heatmapswere stitched into

a new image, as shown in Figure 2C. Table S3 shows the distribu-

tion of the datasets used to classify the blood-smear images. The

dataset for diagnosis of thin blood smears contains 496 images

comprising a training set of 297 images, a verification set of 99 im-

ages, anda testing set of 100 images. Asshown inTable 1,weight-

ings from AAM were used to mosaic the heatmaps for the 25

patches with the highest scores to obtain a heatmap for each

blood-smear image. For classification blood-smear images, the

accuracy, precision, sensitivity, specificity, F1 score, and AUC

values were 97%, 97.13%, 97%, 94.18%, 96.96%, and 98.84%,

respectively. The ROC curve of the CNN is shown in Figure 2D.

Inaddition,wecompared thediagnosticperformanceof images

reconstructed from 25 patches in the original thin-blood-smear

image or from the generated heatmaps. The indicator values of

the reconstructedheatmapas input to theCNNmodelwerehigher

than those of the original blood smear (accuracy, precision, sensi-

tivity, specificity, F1 score, and AUC values were 93%, 93.02%,

93%, 89.26%, 92.92%, and 92.47%, respectively).

Prospective clinical validation of AIDMAN
Clinical validation of AIDMAN was based on 64 patients with thin

blood smears at the Sierra Leone-China Friendship Hospital

whose images were not previously used to develop the model.

Images of thin blood smears were acquired using different mi-

croscopes at multiple magnifications. Microscopy diagnosis of
thin blood smears was performed by three experts, each with

more than 5 years of experience. Detection accuracies of

microscopy examination, malaria RDTs, and AIDMAN were

compared, and the results are shown in Table 2 and Table S4.

Microscopists accurately identified 34 infected blood smears

(positive) and 30 non-infected blood smears (negative). Malaria

RDTs returned 32 positive and 2 negative results for the 34 pos-

itive samples (Figures 3A and S2) and 29 negative and 1 positive

results for the 30 negative samples (Figures 3B and S3). AIDMAN

yielded 33 positive and 1 negative results for the 34 positive sam-

ples (Figure 3A) and correct results for all 30 negative samples

(Figure 3B). Thus, the detection accuracy of AIDMAN (98.44%)

was comparable with that of microscopists.

DISCUSSION

In this study, we developed an AI-based object detection system

capable of rapid and simple malaria diagnosis in remote and low-

income areas. The framework was designed, from dataset selec-

tion to algorithm development, with clinical applicability in mind

and to contribute to the field of AI-aidedmalaria diagnosis. Specif-

ically, YOLOv5 was combined with Transformer to achieve an all-

in-one operation fromcell segmentation tomalaria diagnosis. As a

result, AIDMAN handles interference such as image background

artifacts, cell overlap, dye impurities, and aperture effects

extremely well, achieving accuracies of 98.62% for cells and
Patterns 4, 100806, September 8, 2023 3



Table 1. Quantitative classification results

Classification of cells

Heads ACC PRE SENS SPE F1 AUC

2 98.62 98.62 98.62 98.62 98.62 99.92

4 93.16 93.22 93.16 93.18 93.16 98.72

8 95.55 95.60 95.55 95.56 95.55 99.43

Scales ACC PRE SENS SPE F1 AUC

1 97.77 97.37 98.22 97.32 97.79 99.85

2 98.31 98.31 98.31 98.31 98.31 99.91

3 98.20 98.20 98.20 98.20 98.20 99.89

4 98.59 98.59 98.59 98.59 98.59 99.87

5 98.62 98.62 98.62 98.62 98.62 99.92

Malaria diagnosis of thin-blood-smear images

Patches ACC PRE SENS SPE F1 AUC

1 89.00 89.38 89.00 88.633 89.10 94.70

4 92.00 91.96 92.00 88.75 92.94 97.64

9 94.00 94.00 94.00 92.63 94.00 97.28

16 94.00 93.99 94.00 91.20 93.95 98.31

25 97.00 97.13 97.00 94.18 96.96 98.84

36 91.00 91.34 91.00 91.09 91.09 97.77
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97% for blood-smear images. For malaria diagnosis using thin-

blood-smear images, AIDMAN was evaluated in terms of accu-

racy, precision, sensitivity, specificity, F1 score, and AUC,

achieving values of 97%, 97.13%, 97%, 94.18%, 96.96%, and

98.84%, respectively. Additionally, the performance of the

AI algorithm was compared with that of malaria RDTs and

microscopy examination in a clinical context. In prospective

clinical validation, AIDMAN achieved a diagnostic accuracy

of 98.44%, similar to that of microscopists. Thus, it may be

extremely valuable for the diagnosis of malaria in Africa.

Previous research on the detection ofmalaria parasites byma-

chine learning relied on expensive slide microscopes to scan

blood smears and used images acquired from expensive digital

cameras to train the deep learning model.43–46 Clearly, this is not

a practical approach for low-resource and/or remote settings,

such as those encountered in West Africa. However, integration

of smartphones with AI models for malaria diagnosis presents a

potential solution.45 AI-aided diagnosis solutions reduce reliance

on microscopists and may thus be more suitable for successful

deployment in the field. We are currently attempting to develop

AIDMAN for smartphones. This involves training the model and

predictions on mobile devices or offline training of the model

and then importing it to mobile devices for prediction. Several

AI systems for smartphone-based malaria parasite detection

have been reported.47–49 For instance, Yang et al. implemented

a deep learning application for smartphones to detect malaria

parasites in thick-smear images,47 and Yu et al. developed an

Android application for detecting malaria parasites in blood

smears, providing greater flexibility than traditional parasite

detection methods.49 Automated malaria parasite detection on

smartphones is a promising alternative to traditional malaria

diagnosis, especially in resource-limited areas. Finally, malaria

diagnosis might be just one element of a suite of diagnostic

web tests that could be run on this type of system. Several other
4 Patterns 4, 100806, September 8, 2023
applications could be performed simultaneously using the same

images, for instance, cell counting or detection of other hemo-

parasite-caused conditions such as trypanosomiasis, babesi-

osis, and microfilaria.50–54

The present study has some limitations. Our datasets were es-

tablished using data from a limited number of patients; hence, the

generalizability of the algorithm remains to be determined. In addi-

tion, AIDMAN only detects malaria parasites in thin-blood-smear

images in which malaria parasites maintain their original

morphology, making it difficult to identify different species and

life cycle stages. Thick blood smears involve a larger volume of

blood and a larger number of malaria parasites per blood volume

than thin blood smears; hence, malaria detection using thick

blood smears must also be considered as a means for clinical

diagnosis.55,56 In future studies, we will endeavor to obtain more

blood smears fromdifferent countries and clinical settings to intro-

duce variability into our dataset and thereby test the generaliz-

ability of AIDMAN. Regarding best practice, we recommend addi-

tional tuning and validation prior to deployment in any new setting,

followed by pilot field validation. In addition, the clinical workflow

design needs to be improved through consultation with local

health workers and subsequent pilot field validation. Furthermore,

once deployed, the performance of the algorithm should be

tracked and optimized by periodically testing it against results ob-

tained by microscopists and then recalibrating the model.
EXPERIMENTAL PROCEDURES

Resource availability
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Further information and resources should be directed to the lead contact, Yue

Teng (yueteng@sklpb.org).

Materials availability
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Figure 2. Performance of AIDMAN

(A) Detection of cells for patches in the image taken by a smartphone (top) and the image enlarged by a smartphone (bottom). The original, label, and result images

predicted using YOLOv5 are shown.

(B) ROC used to evaluate AAM performance for classifying the presence or absence of malaria parasites in cells.

(C) Generation of datasets for the stratification of blood smears. After AAM, a score for each patch is obtained; the 25 patches with the highest scores are sorted

according to score; a heatmap is obtained using the AAM and reassembled into a larger map.

(D) ROC used to evaluate CNN performance for classification of blood smears to diagnose malaria.
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Data and code availability

Datasets for AIDMAN steps 1–3 have been deposited to Figshare: [https://

doi.org/10.6084/m9.figshare.22679839].63

The SmartMalariaNET dataset has been deposited to Figshare: [https://

doi.org/10.6084/m9.figshare.22679860].62

The source code underlying this article has been deposited to Zenodo:

[https://doi.org/10.5281/zenodo.7972493].64
Method details

Our proposed AIDMAN system for automatic diagnosis of malaria is schema-

tized in Figures 1A–1F. The process comprises modules for dataset collection,

detection of image sections, classification of cells, and diagnosis of blood-

smear images. For the first module, a smartphone camera was placed on

the eyepiece of a microscope and used to obtain blood-smear images, as

shown in Figure 1A. For the second module, shown in Figure 1B, the inputs

were these smartphone images, which showed either infected or non-infected

RBCs. After pre-processing, sections of images clearly showing individual or

overlapping RBCs were identified and saved as ‘‘patches.’’ As shown in Fig-

ure 1C, these patches were inputs for the third module, which assigned

each a score reflecting the probability of parasites in patches. Finally, in the

fourth module, the input was a heatmap image constructed from the 25

patches with the highest score, and the output was a decision on whether

the entire blood-smear image contained malaria parasites, as shown in

Figure 1D.

AAM

The AAM was developed on the Keras platform based on Transformer and

U-Net architectures.41,57,58 It comprises a feature extractor, local context

aligner, and multi-scale attention modules, as shown in Figure 1E. The custom
AAMperformed well at extracting information about malaria parasites from im-

ages and distinguishing parasites from dye impurity and aperture effects.

Feature extractors

Different feature layers handle different types of information; higher feature layers

are more concerned with global information, while lower feature layers are more

concerned with local features. The malaria parasite is identified by a purple ring

inside the cellwith one or two dark purple nuclei inside the ring. In our system, the

feature extractor operates at different scales. For lower scales, fine nuclei can be

extracted; for intermediate scales, purple rings can be extracted; and for higher

scales, cell features can be extracted. We then utilized up-sampling in U-Net to

make the images from the different feature layers the same size.57

X = ½X1;X2;X3;X4;X5� (Equation 1)

Local context aligner

Using the encoding process of Transformer (Figure 1F), we used high-scale fea-

tures to aggregate low-scale features and thereby distinguish malaria parasites

and impurity artifacts. Before multi-head attention, position coding is required.

Here, we improved the position-coding method according to the characteristics

of malaria parasites (i.e., their ring structure). As well as horizontal position cod-

ing, vertical encoding (grid position encoding) was also performed. For each po-

sition (i, j), we calculated position encoding using the following formulae:

Pi;j =
h
P

ðHÞ
i ;P

ðVÞ
j

i
(Equation 2)

P
ðHÞ
i =

8><
>:

sin
�
0:5 � i

.�
10; 000

i
d

�
; if i is even

cos
�
0:5 � ði � 1Þ

.�
10; 000

i�1
d

�
; if i is odd

(Equation 3)
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Table 2. Comparison of the accuracies of different malaria

diagnosis methods

Detection method

No. patients

Total Accuracy, %Positive Negative

Microscopic

examination

positive 34 0 34 100

negative 0 30 30

RDTs positive 32 1 33 95.31

negative 2 29 31

AIDMAN positive 33 0 33 98.44

negative 1 30 31
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P
ðVÞ
j =

8><
>:

sin
�
0:5 � j

.�
10;000

j
d

�
; if j is even

cos
�
0:5 � ðj � 1Þ

.�
10; 000

j� 1
d

�
; if j is odd

(Equation 4)

where P
ðHÞ
i and P

ðVÞ
j represent the horizontal and vertical position encod-

ings, respectively; d represents the dimension; and i and j denote the po-

sition in the image. A new variable is obtained by summing the features ob-

tained from the feature extraction module and the grid position encoding as

follows:

X = X +P: (Equation 5)

For the local context aligner, the input to the multi-head attention layer

consisted of features at two different scales and included the grid position

encoding. For multi-head attention, the input was divided into multiple heads

to form multiple subspaces, which allowed the model to process information

concerned with the differences between malaria parasites and impurities.

The lower-dimensional receptive field feature was used to project keys

(K) and values (V), and the higher-dimensional receptive field feature was

used to project queries (Q). We used different linear maps for queries,

keys, and values, which have dimensions of dq, dk , and dv , respectively,

h times. We then performed the self-attention process in parallel on each

of the projected versions of queries, keys, and values, yielding dmodel-dimen-

sional output values. These were concatenated and once again projected,

resulting in the final values. The multi-head attention mechanism allows the

model to consider information from different representation subspaces in

different positions.

MultiHeadðQ;K;VÞ = Concatðhead1;.; headhÞWo

where headi = self � attention
�
QWQ

i ;KW
K
i ;VW

V
i

� (Equation 6)

K = V = Xi (Equation 7)

Q =

�
Xi+1 if i < 5
X0 if i = 5

(Equation 8)

where WQ
i ˛Rdmodel3dq , WK

i ˛Rdmodel3dk , WV
i ˛Rdmodel3dv , and WO ˛Rhdv3dmodel .

In our model, h = 2.We used two parallel attention heads. For each head, the

formula dk = dv = dmodel

h = 64 was used. Because of the reduction in the size of

each head, the total computational cost was similar to that for a single atten-

tion head for all dimensions. For multi-head attention, self-attention was used,

and the input was composed of query Q, key K, and value V. The weight of

values was obtained using the following formula42,59–61:

self � attentionðQ;K;VÞ = softmax

 
QKTffiffiffiffiffi
dk

p
!
V : (Equation 9)

Multi-scale attention

Multi-scale features play different roles in malaria diagnosis. Hence, we devel-

oped a multi-scale attention module to strengthen the discriminating features

and aggregate the extracted features, formulated as follows61:
6 Patterns 4, 100806, September 8, 2023
Y = multi � headðQ;K;VÞ; (Equation 10)

fðYiÞ = tan h ðW$Yi + BÞ$U; and (Equation 11)

AttðYiÞ =
exp ðfðYiÞÞPL
j = 1 exp ðfðYiÞÞ

; (Equation 12)

where Y denotes the output of the alignment by the local context aligner; W

and U are trainable parameters; L is the number of features at different scales;

and AttðYiÞ serves as the feature map attention. Using the above formula, we

calculated the multi-scale attention weight value. Since cells have a variety of

shapes and sizes, malaria parasites can occupy many different places within a

cell. Therefore, we assigned different attention weights to the characteristics of

different malaria parasites and impurities. Thus, when the inputs were different

patches, different features at the same location would have different attention

weights according to Equation 8. Multi-scale attention mechanisms allow

analysis to be performed from a global perspective alongside an in-depth

and detailed analysis of certain smaller components. Thus, the final classifica-

tion results are based on aggregated features from multiple scales.

Generation of patches

A patch is a sub-image of individual RBCs (or overlapping cells that cannot be

distinguished into individual cells) detected in a thin-blood-smear image by a

target detection model, and a thin-blood-smear image usually contains multi-

ple patches. These patches may show malaria parasites or impurities. Herein,

we use the YOLOv5 target detectionmodel to generate patches,40 the input for

which is a blood-smear image taken using a smartphone, and the output is the

patch showing a cell image. YOLOv5 can detect cells of different colors,

shapes, and sizes. The images in Figure 2A are original views taken by a smart-

phone and enlarged views of cell regions, illustrating how YOLOv5 detects cell

patches. The green circles in Figure 2A represent the detection of intact cells.

Even for unlabeled parts of images during the annotation process, YOLOv5

can still detect cells for the prediction. The yellow circles in Figure 2A represent

failure to detect incomplete cells.

Each blood smear can generate 250�350 patches showing cells, with fluc-

tuations in the number of cells identified depending on how the blood smears

were performed. Here, we segment patches from a blood smear to reduce the

impact of differences relating to cells, image background, and dye impurities.

From these sub-images, a smartphone-acquired patch dataset was created

andmanually annotated by amajority vote of three experts, each with >5 years

of experience in microscopy diagnosis of malaria. Some negative samples did

contain other objects, such as staining and impurity artifacts. Cells in a blood

smear have different sizes, hence the pixel sizes of patches vary, and patches

were subsequently resized to 643 64 pixels to meet the input requirements of

the different classification algorithms employed.

Malaria diagnosis of thin-blood-smear images

Using the above steps, we could determine whether a malaria parasite was

present in a particular patch. However, due to its sensitivity to the influence

of impurities, such as dye and aperture effects, the AAM was prone to false

positive diagnosis of thin-blood-smear images. Therefore, we added this

step to reduce the false positive rate. A dataset was created for the classifica-

tion of entire blood smears. Figure 2C shows part of the data build process for

the stratification of blood smears using the 25 top patches as an example.

First, to determine whether a blood smear contains malaria parasites, it was

divided into multiple patches. Second, each patch was fed into the trained

AAM and scored. Third, patches were sorted according to scores, a heatmap

was generated from the highest-scoring patches, and these heatmaps were

stitched into a 320 3 320 3 3 image as shown in Figure 2C. By repeating

the above steps, multiple combined heatmaps were generated, and the cate-

gories to which these heatmaps belonged were identified. Finally, a dichoto-

mous CNN model was trained with the data generated above, and the model

was used to complete sample diagnosis.

Performance optimization and evaluation

Once the model is trained, new test samples can be processed quickly.

The average processing time for each blood smear was 1 s using a



Figure 3. Three expert microscopists diagnosed images of infected and non-infected thin blood smears to validate the results of RDTs and

AIDMAN
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workstation comprising an NVIDIA RTX 3090 GPU (24 GB), 64 GB RAM,

and an Intel Core i9-10900K CPU (3.70 GHz). Six widely used metrics, ac-

curacy (ACC), sensitivity (SENS), precision (PRE), specificity (SPE), F1

score (F1), and the AUC, were employed to evaluate the performance of

the system. We utilized average precision (AP) to determine image section

metrics as follows:

ACC =
TP+TN

TP+TN+FP+FN
(Equation 13)

SENS =
TP

TP+FN
(Equation 14)
PRE =
TP

TP+FP
(Equation 15)

SPE =
TN

TN+FP
(Equation 16)

PRE =
TP

TP+FP
(Equation 17)

F1 = 23
PRE3SENS

PRE+SENS
(Equation 18)
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AUC =

P
i˛positiveclassranki �

Mð1+MÞ
2

M3N
(Equation 19)

where P and N denote the number of positive and negative samples, respec-

tively; TP is the number of true positives; FP is the number of false positives; TN

is the number of true negatives; FN is the number of false negatives; andM and

N are the number of positive and negative samples, respectively.

Dataset used for performance evaluation

We used SmartMalariaNET (Figshare: https://doi.org/10.6084/m9.figshare.

22679839) to evaluate the performance of AIDMAN.62 SmartMalariaNET con-

tains Giemsa-stained thin-blood-smear slides taken by smartphones at the Si-

erra Leone-China Friendship Hospital and the Rokupa Government Hospital.

The overall dataset contains three datasets that are used to train and test

models for detection of patches showing cells, cell classification, and malaria

diagnosis from thin-blood-smear images. In the present study, we used 1,822

thin-blood-smear images from 140 patients. Thin-blood-smear images were

taken by smartphone cameras attached to the eyepiece of a microscope,

which does not require directly obtaining relevant information from patients

or subjects. Therefore, this work does not compromise personal privacy,

and it satisfies the conditions for exemption from informed consent and ethical

review.
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7. Dı́az, G., González, F.A., and Romero, E. (2009). A semi-automaticmethod

for quantification and classification of erythrocytes infected with malaria

parasites in microscopic images. J. Biomed. Inf. 42, 296–307.

8. Ohrt, C., Sutamihardja, M.A., Sutamihardja, M.A., Tang, D., and Kain, K.C.

(2002). Impact of microscopy error on estimates of protective efficacy in

malaria-prevention trials. J. Infect. Dis. 186, 540–546.

9. Ruberto, C.D., Dempster, A., Khan, S., and Jarra, B. (2001). Morphological

Image Processing for Evaluating Malaria Disease (Springer), pp. 739–748.

10. Alam, M.S., Mohon, A.N., Mustafa, S., Khan, W.A., Islam, N., Karim, M.J.,

Khanum, H., Sullivan, D.J., and Haque, R. (2011). Real-time PCR assay

and rapid diagnostic tests for the diagnosis of clinically suspected malaria

patients in Bangladesh. Malar. J. 10, 175–179.

11. Masanja, I.M., McMorrow,M.L., Maganga,M.B., Sumari, D., Udhayakumar,

V., McElroy, P.D., Kachur, S.P., and Lucchi, N.W. (2015). Quality assurance

of malaria rapid diagnostic tests used for routine patient care in rural

Tanzania: microscopy versus real-time polymerase chain reaction. Malar.

J. 14, 85–87.

12. Wongsrichanalai, C., Barcus, M.J., Muth, S., Sutamihardja, A., and

Wernsdorfer, W.H. (2007). A review of malaria diagnostic tools: microscopy

and rapid diagnostic test (RDT). Defining and Defeating the Intolerable

Burden of Malaria III: Progress and Perspectives: Supplement to Volume

776 (of American Journal of Tropical Medicine and Hygiene).

13. Ranasinghe, S., Ansumana, R., Lamin, J.M., Bockarie, A.S., Bangura, U.,

Buanie, J.A.G., Stenger, D.A., and Jacobsen, K.H. (2015). Attitudes toward

home-based malaria testing in rural and urban Sierra Leone. Malar. J.

14, 80–89.

14. Mouatcho, J.C., and Goldring, J.P.D. (2013). Malaria rapid diagnostic

tests: challenges and prospects. J. Med. Microbiol. 62, 1491–1505.

15. Obeagu, E.I., Chijioke, U., and Ekelozie, I. (2018). Malaria rapid diagnostic

test (RDTs). Ann. Clin. Lab. Res. 6.

16. Valkiunas, G., Iezhova, T.A., Krizanauskiene, A., Palinauskas, V., Sehgal,

R.N.M., and Bensch, S. (2008). A comparative analysis of microscopy

and PCR-based detection methods for blood parasites. J. Parasitol. 94,

1395–1401. https://doi.org/10.1645/ge-1570.1.

17. Yin, J., Li, M., Yan, H., and Zhou, S. (2018). Considerations on PCR-based

methods for malaria diagnosis in China malaria diagnosis reference labo-

ratory network. Biosci. Trends 12, 510–514. https://doi.org/10.5582/bst.

2018.01198.

18. Ramakers, C., Ruijter, J.M., Deprez, R.H.L., and Moorman, A.F.M. (2003).

Assumption-free analysis of quantitative real-time polymerase chain reac-

tion (PCR) data. Neurosci. Lett. 339, 62–66.

19. Snounou, G., Viriyakosol, S., Jarra, W., Thaithong, S., and Brown, K.N.

(1993). Identification of the four human malaria parasite species in field

samples by the polymerase chain reaction and detection of a high preva-

lence of mixed infections. Mol. Biochem. Parasitol. 58, 283–292.

20. Boyce, M.R., and O’Meara, W.P. (2017). Use of malaria RDTs in various

health contexts across sub-Saharan Africa: a systematic review. BMC

Publ. Health 17, 470–515.

21. World Health Organization (2018). Malaria Rapid Diagnostic Test

Performance.

22. Poti, K.E., Sullivan, D.J., Dondorp, A.M., andWoodrow, C.J. (2020). HRP2:

Transforming Malaria Diagnosis, but with Caveats. Trends Parasitol. 36,

112–126. https://doi.org/10.1016/j.pt.2019.12.004.

23. Bosco,A.B.,Nankabirwa, J.I.,Yeka,A.,Nsobya,S.,Gresty,K., Anderson,K.,

Mbaka, P., Prosser, C., Smith, D., Opigo, J., et al. (2020). Limitations of rapid

diagnostic tests inmalaria surveys in areaswith varied transmission intensity

in Uganda 2017-2019: Implications for selection and use of HRP2 RDTs.

PLoS One 15, e0244457. https://doi.org/10.1371/journal.pone.0244457.

24. Mathison, B.A., and Pritt, B.S. (2017). Update on malaria diagnostics and

test utilization. J. Clin. Microbiol. 55, 2009–2017.

https://doi.org/10.6084/m9.figshare.22679839
https://doi.org/10.6084/m9.figshare.22679839
https://doi.org/10.1016/j.patter.2023.100806
https://doi.org/10.1016/j.patter.2023.100806
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref1
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref1
https://www.who.int/publications/i/item/9789240064898
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref3
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref3
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref3
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref3
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref4
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref4
https://doi.org/10.1126/science.aav5427
https://doi.org/10.1126/science.aav5427
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref6
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref6
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref7
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref7
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref7
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref8
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref8
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref8
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref9
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref9
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref10
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref10
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref10
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref10
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref11
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref11
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref11
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref11
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref11
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref12
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref12
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref12
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref12
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref12
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref13
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref13
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref13
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref13
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref14
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref14
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref15
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref15
https://doi.org/10.1645/ge-1570.1
https://doi.org/10.5582/bst.2018.01198
https://doi.org/10.5582/bst.2018.01198
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref18
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref18
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref18
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref19
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref19
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref19
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref19
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref20
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref20
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref20
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref21
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref21
https://doi.org/10.1016/j.pt.2019.12.004
https://doi.org/10.1371/journal.pone.0244457
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref24
http://refhub.elsevier.com/S2666-3899(23)00161-7/sref24


ll
OPEN ACCESSArticle
25. Yitbarek, T., Nega, D., Tasew, G., Taye, B., and Desta, K. (2016).

Performance Evaluation of Malaria Microscopists at Defense Health

Facilities in Addis Ababa and Its Surrounding Areas, Ethiopia. PLoS One

11, e0166170. https://doi.org/10.1371/journal.pone.0166170.

26. Olugboja, A., and Wang, Z. (2017). Malaria Parasite Detection Using

Different Machine Learning Classifier (IEEE)), pp. 246–250.

27. Pattanaik, P., Mittal, M., Khan, M.Z., and Panda, S. (2020). Malaria detec-

tion using deep residual networks with mobile microscopy. Journal of King

Saud University-Computer and Information Sciences.

28. Liang, Z., Powell, A., Ersoy, I., Poostchi, M., Silamut, K., Palaniappan, K.,

Guo, P., Hossain, M.A., Sameer, A., and Maude, R.J. (2016). CNN-Based

Image Analysis for Malaria Diagnosis (IEEE)), pp. 493–496.

29. Fatima, T., and Farid, M.S. (2020). Automatic detection of Plasmodium

parasites from microscopic blood images. J. Parasit. Dis. 44, 69–78.

30. Kashtriya, V., Doegar, A., Gupta, V., and Kashtriya, P. (2019). Identifying

malaria infection in red blood cells using optimized stepincrease convolu-

tional neural network model. Int. J. Innovative Technol. Explor. Eng. 8,

813–818.

31. Masud, M., Alhumyani, H., Alshamrani, S.S., Cheikhrouhou, O., Ibrahim,

S., Muhammad, G., Hossain, M.S., and Shorfuzzaman, M. (2020).

Leveraging deep learning techniques for malaria parasite detection using

mobile application. Wireless Commun. Mobile Comput. 2020.

32. Rajaraman, S., Antani, S.K., Poostchi, M., Silamut, K., Hossain, M.A.,

Maude, R.J., Jaeger, S., and Thoma, G.R. (2018). Pre-trained convolu-

tional neural networks as feature extractors toward improved malaria

parasite detection in thin blood smear images. PeerJ 6, e4568. https://

doi.org/10.7717/peerj.4568.

33. Li, D., and Ma, Z. (2022). Residual attention learning network and SVM for

malaria parasite detection. Multimed. Tool. Appl. 81, 10935–10960.

34. Khan, S.H., Shah, N.S., Nuzhat, R., Majid, A., Alquhayz, H., and Khan, A.

(2022). Malaria parasite classification framework using a novel channel

squeezed and boosted CNN. Microscopy 71, 271–282.

35. Huq, A., and Pervin, M.T. (2020). Robust Deep Neural Network Model for

Identification of Malaria Parasites in Cell Images, pp. 1456–1459. 5-7

June 2020.

36. Kumar, A., Sarkar, S., and Pradhan, C. (2020). Malaria Disease Detection

Using CNN Technique with SGD, RMSprop and ADAM Optimizers. In

Deep Learning Techniques for Biomedical and Health Informatics, S.

Dash, B.R. Acharya, M. Mittal, A. Abraham, and A. Kelemen, eds.

(Springer International Publishing), pp. 211–230. https://doi.org/10.1007/

978-3-030-33966-1_11.

37. Shewajo, F.A., and Fante, K.A. (2023). Tile-based microscopic image pro-

cessing for malaria screening using a deep learning approach. BMC Med.

Imag. 23, 39. https://doi.org/10.1186/s12880-023-00993-9.

38. Loh, D.R., Yong,W.X., Yapeter, J., Subburaj, K., and Chandramohanadas,

R. (2021). A deep learning approach to the screening of malaria infection:

Automated and rapid cell counting, object detection and instance seg-

mentation using Mask R-CNN. Comput. Med. Imag. Graph. 88, 101845.

https://doi.org/10.1016/j.compmedimag.2020.101845.

39. Koirala, A., Jha, M., Bodapati, S., Mishra, A., Chetty, G., Sahu, P.K.,

Mohanty, S., Padhan, T.K., Mattoo, J., and Hukkoo, A. (2022). Deep

Learning for Real-Time Malaria Parasite Detection and Counting Using

YOLO-mp. IEEE Access 10, 102157–102172.

40. YOLOv5 (2020). https://github.com/ultralytics/yolov5.

41. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,

A.N., Kaiser, q., and Polosukhin, I. (2017). Attention is all you need. Adv.

Neural Inf. Process. Syst. 30.

42. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X.,

Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., and Gelly, S.

(2020). An image is worth 16x16words: transformers for image recognition

at scale. Preprint at arXiv. https://doi.org/10.48550/arXiv.2010.11929.

43. Poostchi, M., Silamut, K., Maude, R.J., Jaeger, S., and Thoma, G. (2018).

Image analysis and machine learning for detecting malaria. Transl. Res.

194, 36–55.
44. Kuo, P.-C., Cheng, H.-Y., Chen, P.-F., Liu, Y.-L., Kang, M., Kuo, M.-C.,

Hsu, S.-F., Lu, H.-J., Hong, S., Su, C.-H., et al. (2020). Assessment of

expert-level automated detection of Plasmodium falciparum in digitized

thin blood smear images. JAMA Netw. Open 3, e200206.

45. Saeed,M.A., and Jabbar, A. (2018). Smart diagnosis’’ of parasitic diseases

by use of smartphones. J. Clin. Microbiol. 56. e01469-17-e01417.

46. Vijayalakshmi, A., and Rajesh Kanna, B. (2020). Deep learning approach to

detect malaria from microscopic images. Multimed. Tool. Appl. 79,

15297–15317.

47. Yang, F., Poostchi, M., Yu, H., Zhou, Z., Silamut, K., Yu, J., Maude, R.J.,

Jaeger, S., and Antani, S. (2020). Deep learning for smartphone-based

malaria parasite detection in thick blood smears. IEEE J. Biomed. Health

Inform. 24, 1427–1438.
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