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Abstract: One of the big problems of today’s manufacturing companies is the risks of the assembly
line unexpected cessation. Although planned and well-performed maintenance will significantly
reduce many of these risks, there are still anomalies that cannot be resolved within standard mainte-
nance approaches. In our paper, we aim to solve the problem of accidental carrier bearings damage
on an assembly conveyor. Sometimes the bearing of one of the carrier wheels is seized, causing the
conveyor, and of course the whole assembly process, to halt. Applying standard approaches in this
case does not bring any visible improvement. Therefore, it is necessary to propose and implement
a unique approach that incorporates Industrial Internet of Things (IIoT) devices, neural networks,
and sound analysis, for the purpose of predicting anomalies. This proposal uses the mentioned
approaches in such a way that the gradual integration eliminates the disadvantages of individual
approaches while highlighting and preserving the benefits of our solution. As a result, we have
created and deployed a smart system that is able to detect and predict arising anomalies and achieve
significant reduction in unexpected production cessation.

Keywords: anomaly detection; industrial internet of things; industry 4.0; neural network; predictive
maintenance; smart system; sound analysis

1. Introduction

Dynamic developments in informatics and intelligent technologies have led to the
fourth industrial revolution. The ideas of this concept have been promoted in industry,
but the leading innovators include the automotive industry and companies that primarily
exploit the potential of automation and robotics.

The basic components of the Industry 4.0 concept include, among others, Indus-
trial Internet of Things (IIoT), wireless and intelligent sensors, big data, and artificial
intelligence [1–3].

The development of advanced sensors allow the collection of huge amounts of data
in real time, their processing and storing, followed by the analysis and discovering of
new knowledge that can be used to predict the future behavior of industrial systems,
including the identification and prediction of various anomalies.

This principle is also widely used in the process of production equipment maintenance
and has led to the acceleration of a special concept called Maintenance 4.0 [4,5]. Accord-
ing to [6], it is important that the maintenance department has the tools and techniques
at its disposal to ensure the ability to respond reliably to problems. The use of intelligent
approaches such as IIoT, dig data, or artificial intelligence can effectively detect where
faults occur. At present, it is no longer a problem to predict the behavior of individual
systems in the production process. Therefore, it is not difficult to effectively plan preventive
maintenance, thus minimizing arising failures.

One of the main tasks here is data which is actually information coming from the
production process. Most of the equipment in current production lines are able to produce
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important information that can later be analyzed and the gained knowledge used more
effectively. Using this knowledge, the standard preventive maintenance changes to predic-
tive. This approach, often called Maintenance 4.0, can then more effectively address issues
that arise, including those that are unknown in advance.

The basic elements of Maintenance 4.0 are defined in [7,8]. From our point of view,
the area of predictive maintenance and trigger-based maintenance is particularly important.
Predictive maintenance (PdM) is one of the key components of Maintenance 4.0. By its
consistent use in manufacturing companies, it is possible to achieve a significant increase
in the life of individual devices as well as a reduction in planned downtime, but especially
unplanned ones [9,10].

According to [11], one of the key components of PdM is anomaly detection. Its prin-
ciple is that it looks for anomalies in data or processes so that it can inform maintenance
staff in advance of an emerging problem. The fact is that a large number of anomalies in
the manufacturing process remains undetected and hidden from conventional detection
techniques [12].

For this reason, it is not only possible to use standard tools and techniques, but it
is necessary to focus on the development of unique approaches that can solve the prob-
lem [13–15]. It is always associated with a specific production process and specific problems
that need to be solved in this way.

Our contribution is focused on solving issues that are associated with the production
process in the automotive industry. Specifically, it is a conveyor used in the assembly pro-
cess. The key issues that out paper addresses are:

• Assembly conveyor is a single point of failure that can cause assembly process cessation,
• Bearing failure can occur any time on the assembly line despite the standard preven-

tive maintenance,
• Decrease the production downtime using the predictive maintenance approaches.

The assembly process is one of the most important processes in car production.
Any problems that arise have a much greater impact on the flow of production than
other processes. Any cessation of production, due to a problem in the assembly process,
is quantified at such amounts of money that it does not leave any production manager calm.

The conveyor is the backbone of the assembly process. Its trouble-free operation
significantly affects the continuity of production. From time to time however, the bearing of
one of the carrier wheels seize and thus the conveyor and, of course, production is stopped.
The identification of a given stuck bearing in the wheel and its subsequent replacement
often causes a couple of hour’s production outage.

Despite well-planned and implemented preventive maintenance, this anomaly, this prob-
lem, occurs at random intervals and causes a problem that must be solved differently than
the standard and known approach.

The proposed platform intends to provide an early notification of possible carriers
bearing failure, which will allow one to perform preventive maintenance. This prevents
assembly line cessation, avoids unwanted downtime in production, and associated finan-
cial losses.

2. Literature Review

One of the primary directions of the literature review is relevant for this study. It in-
cludes predictive maintenance as a special part of Maintenance 4.0, and also involves
approaches related to anomaly detection.

According to [16,17], Maintenance 4.0 involves a holistic view on maintenance as
a whole and describes the process focused on data collection, processing in the form of
analysis, evaluation, and defines the rules and steps that should be created.

In this document [18], the authors designed the architecture of a predictive mainte-
nance system, based on the Industry 4.0 concept and implemented an analytical tool to
predict production equipment failures. In the study [19], the architecture was designed in
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the context of Maintenance 4.0, taking into account the use of large amounts of data and
their subsequent analysis using data mining techniques and methods.

In these articles, the authors focused on the proposal of progressive approaches,
which used new methods and technologies, such as the use of cyber-physical systems,
artificial intelligence, or supervisory control systems in the architecture design ensuring
more efficient implementation of the maintenance process.

The production processes generate a large amount of data. In order to obtain an
overview of its behavior, it is necessary to collect, store, and then analyze available data.
IoT devices are suitable for collecting process data, as described in [20]. Data collected from
any process is possible to use for further analysis. Common statistical methods can be used
to analyze the standard behavior of processes. However, if anomalies appear during the
process, representing abnormal deviations from the standard state, it is necessary to also
use methods and techniques from the field of machine learning, such as support vector
machine, artificial neural networks, or k-nearest neighbor. Their use is described by the
authors in [21–25]. The results of the performed analyzes can be used for early warning of
anomaly [26], classification [27], but also for the reduction of false alarms [28].

In addition to standard behavior, anomalies sometimes occur during manufacturing
processes that cannot be clearly identified with standard approaches. To identify them,
it is necessary to use methods and techniques of machine learning. Based on the previous
cited articles and on the practical experience, it can be stated that the most frequently used
approaches include mainly neural networks.

Predictive maintenance according to [29] can be described as a continuous process of
verifying the functionality of individual components so as to signal in advance the deterio-
ration of the technical condition of the equipment. Papers [30,31] present an overview of
the use of machine learning methods in the field of predictive maintenance and also point
to the issue of the correct choice of a particular method.

Article [32] presents the results of the proposed predictive maintenance, using mea-
surements on sensors. The prediction module itself is based on the long short-term memory
network and takes into account the requirements of the operators. The authors in [33]
focused on building predictive maintenance in the field of railway transport and wind en-
ergy, for which they proposed the necessary system requirement specifications, which they
then mapped to the capabilities of big data streaming technology.

The survey [34] discusses the individual benefits but also the limitations of predictive
maintenance. The authors state that the using of artificial intelligence is increasingly replac-
ing standard approaches. The study in [35] deals with the field of predictive maintenance
and draws attention to the challenges related to implementation, but also to the problems
associated with it.

In this paper [8], the authors present the possibility of involving intelligent technolo-
gies such as smart sensors and smart devices, big data analytics, IoT, augmented reality,
and virtual reality.

At present, companies emphasize the continuity of production and reduction of
downtime caused by equipment failures. This can be achieved by applying the approaches
offered by the Industry 4.0 concept. These include predictive maintenance. The trend of the
cited articles clearly leads to the need for approaches that use intelligent devices, and are
able to record and monitor the status of production equipment. It is possible to perform
analyzes on the obtained data by methods of artificial intelligence and these will enable the
identification of the possible non-standard behavior of the devices, which are subsequently
eliminated by performing their maintenance.

3. Preliminaries
3.1. Current State

Our proposal focuses on the predictive maintenance of conveyors on the assembly
line in the automotive industry. The assembly conveyer is used to transport car bodies
during the entire assembly process. It consists of 59 carriers that move along a closed
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track with a length of approximately 1250 m. This track is leaded on two height levels,
with four carrier’s lifts used to move carriers between them. The track contains places that
can be used to temporary decommission carriers for maintenance or due to a failure on the
assembly line.

The carrier consists of a transport platform which is used for transporting prefabri-
cated car bodies along a defined railway track. The individual carriers are controlled by
their own Programmable Logic Controller (PLC), which cooperates with the company’s
Manufacturing Execution System (MES) deployed in the assembly hall. This system
provides, among other functions, data on the positions of the individual carriers. The car-
rier position, however, is not obtained directly from the carrier itself, but is identified only
by the scanning gates.

One of the main problems that the company faces during the assembly process is the
cessation of the carrier (as a part of conveyor), which can ultimately lead to the cessation
of the entire assembly process. For this reason, our proposed predictive maintenance
approach aims to reduce production outages caused by problems with carriers.

The most common problems of carrier cessations are caused by the jamming or seizing
of a wheel bearing, which carries the entire weight of the transport platform including
the car body and workers who perform the assembly process. It should be noted that
the transported car body already contains most of the car’s components, such as engine,
gearbox, steering subsystem, interior equipment, and so on. The platform is further
stabilized by a guide bearing, which keeps it on a railway track, serving to lead it along a
specified path in the assembly hall.

The main carrier wheels are connected to the supporting frame of the transport plat-
form using the bearing. The most common problem that occurs is a wheel bearing failure
caused by the jammed bearing, due to wheel misalignment, dirt contamination, insuffi-
cient lubrication, etc. The consequence of this failure is an increasing bearing temperature
to the level of its destruction, which is verified by people from maintenance. Therefore,
the temperature increasing can be used as pre-fail parameter to predict the wheel bear-
ing failure. This failure is also accompanied by a whistling sound, which can be heard from
a certain frequency in the assembly hall.

The company MES system contains only approximate information about the location
of individual carriers, the task of maintenance crew is therefore to visually identify the
damaged carrier. After its correct identification, it is necessary to tow the carrier to the
nearest service point and replace the damaged bearing, usually together with the wheel.
Time required to tow the carrier to the location is given by its distance to the nearest
available service location and the time required for the replacement itself. The total time re-
quired to eliminate the fault varies from 30 min to 150 min. The consequence of the bearing
failure is the cessation of the assembly conveyor behind a given damaged carrier which
can lead (and from time to time leads) to a complete cessation of the assembly process.

Other data that could be used for predictive maintenance are not found in the company
MES system, given that the PLC focuses only on the control of the carrier’s movement
along a predefined path.

For using in predictive maintenance, we decided to measure the temperature of an
individual carrier wheel bearings, which should be a sufficient parameter to detect well
in advance an emerging problem in the monitored bearing. Providing timely information
about a potential bearing problem will give the maintenance crew additional time to inspect
the carrier itself.

If the maintenance crew evaluates that the identified problem can cause a wheel
bearing jam, they will have enough time to prepare for the replacement and to park the
carrier in a suitable position at the service location where the replacement will take place.
The bearing and carrier wheel replacement, carried out in this way, can usually take place
during the planned break of the assembly line workers, which does not cause the cessation
of the entire assembly process.
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3.2. IoT Sensors Architecture

One of the important prerequisites for the implementation of predictive maintenance
was the availability of data from the assembly conveyor line, necessary for the detection of
anomalies and evaluation of error conditions.

The collection of temperature data from the assembly carrier, was performed fol-
lowing multiple approaches. To evaluate usability of the Industrial Internet of Things
(IIoT) technologies in the selected automotive environment, it was decided to build IIoT
infrastructure for the data collection that will future proof the modern production envi-
ronment [36]. This data collection approach will be further supplemented by stationary
temperature measurements, on identified points on the assembly conveyor path.

The design and implementation of IIoT network has focused on the reliability of
the network in the assembly hall environment. Therefore, we decided to implement a
private IIoT network based on LoRaWAN (Long Range Wide Area Network) technol-
ogy. This technology was selected after being based on the plant’s recommendations for
adopting wireless network technologies.

To achieve sufficient signal coverage on the whole assembly conveyor path, we in-
stalled two Kerlink Wirnet Stations [37] operating on the 868 MHz ISM band as our IIoT
gateways. These gateways are suitable for operation in an industrial environment and are
based on a standard Linux operating system environment and were integrated into the
plant’s infrastructure using a common Ethernet connection.

It should be noted that although the area we are covering is a single assembly hall,
and the maximum ranges are on the lower end of all used device specifications, two IIoT
gateway devices were required to obtain optimal coverage of the whole assembly line and
to minimize data loss. This is mainly due to the underground passages that the assembly
conveyor is using during travel. Using only one gateway, we detected periodical data losses
from the IIoT devices. The insufficient coverage on various spots using only one device
was confirmed by the Adeunis ARF8123AA [38]—a field-testing device for LoRaWAN.

For the temperature measurements on the assembly carriers, we utilized LoRaWAN
IoT temperature sensors Adeunis ARF8180BA [39], which possess internal as well as
external wired temperature sensors. The detailed specification of the used devices can
be found in Table 1. These devices were suitable for our deployment, since they provide
ambient temperature using the internal sensor as well as the carrier wheel temperature
using the external sensor. Due to the continuous assembly line cycle, remote configuration
and consumption optimization were required features for these devices.

Table 1. Adeunis ARF8180BA—selected technical parameters.

Name Specification

Type LoRaWAN transmitter
Radio Frequency (RF) Frequency: 863–870 MHz
Sensor Temperature
Antenna Internal
Maximum range 15,000 m
Operating temperature −20 to +75 ◦C
Power Input voltage: 3.6 V, Battery: Built-in, Li-SOCl2, Battery life: Up to 10 years

Although the wheel temperature is a relatively time stable process, the most de-
tailed sampling period of 100 frames per day was selected for the proof-of-concept phase.
Using the calculation mode of the device, which sends an average value from the mea-
surements performed over a given period of time, one year of continuous monitoring per
battery were expected. Using this configuration, we obtained data from the measurements
every 14.4 min.

The specifications of the used temperature sensors, shown in Table 2, were in compli-
ance with the initial requirements for the carrier wheel measurements.
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Table 2. Temperature sensor—selected technical parameters.

Name Specification

Internal sensor—temperature range −30 to +70 ◦C
Internal sensor—Inertia by 10 ◦C steps 90 min
External sensor—temperature range −55 to +155 ◦C
External sensor—Inertia by 10 ◦C steps 15 min
External sensor—Cable length 2 m
Resolution 0.1 ◦C
Precision ±0.1 ◦C

3.3. Stationary Sensors Architecture

Data collection from the IIoT network was further supplemented by stationary tem-
perature measurements, on identified points on the assembly conveyor path. As the
measurement points were identified, two assembly carrier lifts transfer the carriers from
the lower to upper level and carrier after continuous movement. In the identified points is
a high probability of carrier wheel temperature increasing during a bearing failure, since
the carrier is in continues movement and the bearing did not cool down.

One of these measurement points was selected in the proof-of-concept stage to perform
the stationary wheel temperature measurements as well as the motor lift parameters, such
as lift platform inclination, lift motors current consumption, temperatures, and vibrations,
which were also used for predictive maintenance purpose. The proposed measurement
infrastructure is shown in Figure 1. It shows the carrier direction of movement as well as
the temperature sensors positions and their labels. It should be noted that we will focus
solely on the carrier wheel temperature measurements for bearing failure predictions in
our paper.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 33 
 

 

Although the wheel temperature is a relatively time stable process, the most detailed 243 
sampling period of 100 frames per day was selected for the proof-of-concept phase. Using 244 
the calculation mode of the device, which sends an average value from the measurements 245 
performed over a given period of time, one year of continuous monitoring per battery 246 
were expected. Using this configuration, we obtained data from the measurements every 247 
14.4 min. 248 

The specifications of the used temperature sensors, shown in Table 2, were in com-249 
pliance with the initial requirements for the carrier wheel measurements. 250 

Table 2. Temperature sensor—selected technical parameters. 251 

Name Specification 
Internal sensor—temperature range −30 to +70 °C 
Internal sensor—Inertia by 10 °C steps 90 min 
External sensor—temperature range −55 to +155 °C 
External sensor—Inertia by 10 °C steps 15 min 
External sensor—Cable length 2 m 
Resolution 0.1 °C 
Precision ±0.1 °C 

3.3. Stationary Sensors Architecture 252 

Data collection from the IIoT network was further supplemented by stationary tem-253 
perature measurements, on identified points on the assembly conveyor path. As the meas-254 
urement points were identified, two assembly carrier lifts transfer the carriers from the 255 
lower to upper level and carrier after continuous movement. In the identified points is a 256 
high probability of carrier wheel temperature increasing during a bearing failure, since 257 
the carrier is in continues movement and the bearing did not cool down. 258 

One of these measurement points was selected in the proof-of-concept stage to per-259 
form the stationary wheel temperature measurements as well as the motor lift parameters, 260 
such as lift platform inclination, lift motors current consumption, temperatures, and vi-261 
brations, which were also used for predictive maintenance purpose. The proposed meas-262 
urement infrastructure is shown in Figure 1. It shows the carrier direction of movement 263 
as well as the temperature sensors positions and their labels. It should be noted that we 264 
will focus solely on the carrier wheel temperature measurements for bearing failure pre-265 
dictions in our paper. 266 

 267 

Figure 1. Stationary temperature measurement infrastructure proposal. 268 Figure 1. Stationary temperature measurement infrastructure proposal.

For the data collection from the sensors, we used Viltrus Electronics Data Logger
RAY-3 in configuration RAY-3.124.1.0.111333.2.4.10.1 [40]. The selected parameters of this
device are shown in Table 3. The main requirements on the device are the support of
standard industrial network protocols for communications as well as the ability to perform
remote configuration. Since the assembly hall environment is operated and maintained by
multiple companies, the galvanically isolated interfaces and power supply proved to be
crucial features for long term production deployment.
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Table 3. Data Logger RAY-3—selected technical parameters.

Name Specification

CPU CORTEX M4
Ethernet 10/100 Mbps, RJ45, distance up to 100 m
Discrete IN 4 sink contact
Discrete OUT 2 relay 3 A
Analog IN 6 resistance, voltage or current, reading 10 times per second
Analog OUT 2 voltage 0–10 V, load up to 5 mA

Protocols Modbus RTU, Modbus TCP/IP, IP, ICMP, UDP, TCP, DHCP, PPP, ARP, SNTP, IEC60870-5-104:2000, DynDNS,
FTP server, FTP client, DNS client

Power supply 9–36 VDC
Real time clock Yes

The 6 analog inputs were used to connect temperature, vibration, and tilt sensors.
For the temperature measurements performed on the 6 carrier wheels, data logger de-
vices marked “Ray101” and “Ray102” were used. For the data collection in our imple-
mented application, we utilized the Modbus protocol for direct access to the measured val-
ues. After the proper data logger register configuration, this approach worked without
major issues.

3.3.1. Temperature Measurement

For the contactless temperature measurements, we wanted to deploy infrared pyrom-
eter sensors from Optris, namely OPTCSTCLT15 [41]. All throughout the sensors were
working, however after modifying sensor connections on the data logger we experienced
incorrect and unstable measured tension values. The most probable reasons considered
were the wrong connections of the Optris sensors or faulty input protection on the data
logger device. However, none of these were confirmed.

Since we were not able to fix these issues with the help of Optris support and decided
to switch to the Calex PC21MT-0 [42] non-contact temperature sensors, which were used
without issues for measurements of temperature on the carrier lift motors. The param-
eters of these sensors are shown in Table 4. These sensors are suitable for temperature
measurement in our environment and provide better accuracy and repeatability than the
Optris sensors. Calex also provides air purging collars for dealing with dust that could be
added for continuous production deployment.

Table 4. Calex PC21MT-0—selected technical parameters.

Name Specification

Temperature Rang 0 ◦C to 250 ◦C
Field of View 2:1
Target Temperature Output 4–20 mA
Sensor Temperature Output Not available
Accuracy ±1% of reading or ±1 ◦C whichever is greater
Repeatability ±0.5% of reading or ±0.5 ◦C whichever is greater
Response Time, t90 240 ms (90% response)
Spectral Range 8 to 14 µm
Supply Voltage 24 V DC (28 V DC max.)

These sensors were connected using the analog outputs to the data logger devices
marked as “Ray101” and “Ray102”. Due to the custom nature of the carrier lift measur-
ing position, custom sensor mounts were created to hold them in place. The measuring
distance was around 170 mm for all 6 installed sensors.

The most challenging step in using these sensors, was the proper placement and
stability of the sensor mounts to ensure the repeatability of measurements. After the initial
installation, the repeatedly measured values were in the ±3 ◦C range. After the sensor
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mounts modification, and proper calibration, we achieved an accuracy of ±1.2 ◦C at the
ambient temperature of 26 ◦C.

3.3.2. Carrier Identification

For carrier identification, Radio-Frequency Identification (RFID) technology was used.
The RFID technology was preferred instead of a bar code scanner, due to the poor lightning
conditions and continuous setting of impurities on the carrier sides. A RFID reader device
was used mid-range SICK RFID RFH630-1000001 [43], its parameters are shown in Table 5.
This device was installed near the stationary temperature measurement sensors to provide
not only carrier identification but also to identify carrier presence for measurement start
signal.

Table 5. Radio-Frequency Identification (RFID) reader SICK RFID RFH630-1000001—selected techni-
cal parameters.

Name Specification

Frequency band HF (13.56 MHz)
RFID standard ISO/IEC 15693, ISO/IEC 18000-3 “Mode 1”
Read range ≤240 mm
Typical access times UID read (64 bits/8 bytes): 18 ms
Connection type 1 x cable, 15-pin D-Sub HD male connector
Supply voltage 10 V DC to 30 V DC
Serial Yes, RS-232, RS-422, RS-485(RS-422/RS-485 only via 4-wire)

The RFID device was installed on a custom mount, within the 150 mm distance from
the carrier side, to achieve error-free tag reading. For the device communication, we used
the RS-232 serial interface.

Various types of RFID tags shapes and mount types were tested, however the square
shape with the metal base, mounted using industrial glue and secured using translucent
adhesive tape, proved to be sufficiently durable.

3.3.3. Industrial PC

For the data collecting and processing on the site, we utilized the Industrial PC (IPC)
AAEON NANO-002N-6100-01 [44], whose parameters are shown in Table 6. One of the
selection criterions were the availability of the audio inputs and serial port connection.
This IPC served as a basis for running our data collection and integration application
implemented in Python, and it could be further extended by implementing additional func-
tionalities.

Table 6. Industrial PC—selected technical parameters.

Name Specification

CPU Intel Core i3-6100U 2C/4T GT2 2.3 GHz 3M/
Cooler Fanless
System Memory 4 GB, DDR4 2133/1867 MHz, non-ECC, un-buffered memory
Storage Devices M.2 2280 128 GB SSD
Ethernet Realtek 8111 G Giga LAN 10/100/1000 Mb LAN × 2, RJ-45 × 2
Audio Realtek® ALC887
USB USB3.0 Port × 4
Serial Port RS-232 Port × 1
WatchDog Timer 1~255 steps by software program

The IPC was supplemented by the Solid State Drive and 60 W power supply from the
vendor and was mounted on the measurement site supplemented by the external fan for
providing additional air flow. Although the IPC contains two network adapters, only one
was used due to the connectivity available on site. The IPC was running the Ubuntu Server
18.04 LTS.
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3.3.4. Sound Measurement

For sound measurements, we selected the calibrated measurement micro-phone
miniDSP UMIK-1 [45], its specifications are shown in Table 7. This microphone provides
manufacturers calibration for frequency response and uses the USB connection compatible
with the Advanced Linux Sound Architecture (ALSA) framework in Linux.

Table 7. Microphone miniDSP UMIK-1—selected technical parameters.

Name Specification

Type 6 mm electret
Polar Patter Omni-Directional
Frequency response 20–20,000 Hz
Connector miniUSB, USB Audio class 1.0
Resolution 24 bit ADC
Sample rate 48 kHz
Max SPL for 1% TDH @ 1 kHz 133 dB SPL @OdB gain setting
Output noise level at max IGPA −74 dBFS

3.4. Methods for the Bearing Failures Evaluation

For empowering the bearing failure detection in our proposal, we decided to add
sound analysis in to the implemented approaches. The monitoring, detection, and diag-
nostic of bearing faults from sound recordings could be achieved using different methods.
Some of them are simple for use while others require sophisticated signal processing.

Overview of methods of the bearings condition monitoring are well summarized in
the basic works [46–48]. Progress in this field is captured by works [49,50].

They may be generally based on measurements of vibration, acoustic analysis, temper-
ature measurements, and wear analysis. Shocks and bearing faults can be analyzed either
in the time domain or in the frequency domain [51].

The time-domain feature extraction method is the most dominant one for rolling
element bearings. Scalar descriptors, such as Root Mean Square (RMS), peak amplitude of
vibration level, Crest factor, Kurtosis, Skewness [52–54], detection of shock waves method,
Julien method [55], Cepstrum [56], and multiple other methods are generally used for
statistical analysis [57].

The most widely-used frequency domain methods are spectral analysis around bear-
ing defect frequencies [58,59], frequency spectrum in the high frequency domain [60],
Spike energy [61,62], high frequency demodulation, acoustic emission focused on high
frequency events [63–65], adaptive filtering, artificial neural networks, time-frequency, etc.

Acoustics methods are also established as promising for condition monitoring and
bearings fault detection [66,67]. Many studies were performed under laboratory conditions
with artificially defected bearings instead of bearings with a natural defect. Depending on
where the defect occurs, it can excite one of the characteristic bearing fault frequencies [68]:

• Ball Pass Frequency Outer (BPFO),
• Ball Pass Frequency Inner (BPFI),
• Ball Spin Frequency (BSF),
• Fundamental Train Frequency (FTF).

These frequencies, manifested in both vibration and acoustic signals, are detectable
with the appropriate processing techniques. The signal of early fault is often too low due
to the fact that small localized damage can generate small periodic pulses. Over and above,
the measured vibrational signals in the initial stage are disturbed by loud sounds.

4. Results

Wheel bearing failure on the roller element makes up a great part of the failures
identified on the assembly conveyor carriers. The failure usually results in the wheel
bearing seizure, blocking the movement of the carrier and resulting in the temporary
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shutdown of the conveyor. Therefore, the detection of the wheel bearing failure through
any monitoring process is especially important.

Online condition monitoring, proposed in our paper, is therefore highly desirable
due to the potential issues that can be detected and rectified during scheduled mainte-
nance. The proposed and implemented solution incorporates requirements for the design
and implementation of the monitoring system, which will provide early warning of po-
tential failures of the carrier wheel bearings, in order to minimize the occurrences of
unexpected failures.

The proposed system covers multiple processes, involving data collection and their pro-
cessing, data storage, and anomaly detection process, as shown in the process diagram
shown in Figure 2.
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Figure 2. Process diagram of proposed monitoring and anomaly detection system.

The diagram outlines the processes required for the monitoring and anomaly detection
of the wheel bearing failure proposed in our paper. Data collection using the IIoT devices
is performed by the IIoT devices alone as is further described in Section 4.1. The station-
ary measurements performed in our proof of concept are carried out, implementing the
algorithm described in detail in Section 4.2.

The anomaly detection approach consists of following methods that were proposed
and implemented in our solution:

• Trigger-based bearing failure detection,
• Anomaly detection using a neural network,
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• Bearing condition detection using sound measurements.

These methods can operate separately and are combined in our solution to provide
a comprehensive overview of the bearing wheel status, detected anomalies, and bearing
failures themselves. Used methods are described in detail in Section 4.3, Section 4.4,
and Section 4.5.

All through the implemented monitoring and detection system is fully automated,
the results evaluation is in the hands of the maintenance crew, since the maintenance and
repair scheduling as well as the detected anomalies evaluation is carried out by them.

4.1. Data Collection and Integration Architecture for IIoT Measurements

For all the installed sensors and devices, it was necessary to design a data collection
and integration process to obtain suitable data for further analysis. Since we utilized
two data collection technologies, this approach can be divided into two separate designs
that both integrate their data into the common data storage. As the main data storage,
we utilized Yandex ClickHouse column-oriented database that can be used for efficiently
storing and accessing time-series data.

For the collection of data originating from the LoRaWAN devices, we designed and
implemented the architecture shown in Figure 3.
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Internet of Things (IIoT) measurements.

The data measured on the IIoT devices are transferred through the LoRaWAN network
to the available Kerlink Wirnet Station in range. Since we are using multiple stations with
overlapping coverage, receptions of the same data on both stations are quite common.
Deduplication of received data was therefore required and performed in data collection
application implemented in Python.

To achieve near real time data storing, we utilized the Message Queuing Telemetry
Transport (MQTT) protocol that is provided by the Kerlink Wirnet Station. The MQTT
broker was utilized in the middle for data buffering and future expansion possibilities.
In our proof of concept, we utilized the lightweight Mosquitto MQTT broker that met all
requirements.

For the transfer of MQTT data into the database server, a custom Python application
using paho-mqtt library was created. This application was subscribed into the MQTT
broker topics and transformed the obtained message payloads into the measured values.

Sample data from the Adeunis devices, received by the Kerlink gateway, are shown in
Figure 4. These data contain the necessary device identification, defined as a Mote number,
Time value, and Payload containing RAW binary data. This binary data had to be further
transformed into measured values.
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Figure 4. Sample of IIoT data collected from the Adeunis devices.

To decode the Payload value, official DataFrame documentation of the Adeunis
devices was used. The device payload structure, shown in Figure 5, served as a basis for
the decoding process. The values of internal and external sensors are stored in the Big
Endian byte order and therefore had to be transformed to obtain measured values. Due to
the fact that both sensors were part of the same device, the values could be transformed
directly without any need for further calculation.
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Figure 5. Adeunis device payload structure.

This conversion was supplemented by decoding the Status bits, to identify error states
and low battery warnings, since the identification LEDs on the devices are not accessible
during use and the devices do not provide any other status information.

For the data archiving and debugging purposes, all the data received from both
LoRaWAN gateways are stored on the File Transfer Protocol (FTP) server, using the options
provided by the Kerlink Wirnet Stations. This process is performed periodically every
60 min. The target FTP server was installed on a CentOS server in the plant’s infrastructure.

4.2. Data Collection and Integration Architecture for Stationary Measurements

The data obtained from the stationary measurements shared the data collection in-
frastructure with the carrier lift sensors for the lift platform inclination, lift motors current
consumption, temperatures, and vibrations. However, in our paper, we solely focus on the
carrier wheels temperature measurement.

Since we decided to incorporate the sound recording for the carrier bearing failure
identification, we installed the measurement equipment near the stationary temperature
measurement. The data collection and integration architecture for the carrier wheels
temperature measurement and carrier sound recording is shown in Figure 6.

Due to the shared infrastructure, temperatures of the front and rear carrier wheels
are collected by the Ray Data Logger marked as Ray101 and middle carrier wheels are
collected by the device marked as Ray102. The respective analog inputs on the Ray
Data Logger device were properly configured for the input types and ranges of the used
temperature sensors.

For the individual analog input values, accessed through the Modbus protocol,
was also required to properly set the Ray Data Logger registers. It should be noted
that although the Ray Data Logger can perform basic input value transformation, the
obtained Modbus values are always in raw input format.
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For the transformation of the measured current value into the measured temperature
for the Calex sensor, we used:

T = Iout∗
MaxValue

20mA− 4mA
(1)

where T is the measured temperature, Iout is the measured current on sensor output,
MaxValue is the maximum measurement range of the sensor, 20 mA is the largest output
current of the sensor, and 4 mA is the lowest output current of the sensor.

The RFID reader device is connected to the Industrial PC using the standard RS-232
connection. The measurement microphone is connected directly into the USB port on
the IPC.

The IPC runs the data integration application, implemented in Python programming
language, for collecting and integrating the measured data. For the data reading in designed
application, we used the PyModbus library for Modbus communication, PySerial library
for serial communications, and PyAudio library for sound recording.

For data backup and debugging purposes, we utilized the data logger function to
store the data every 30 min on the FTP server. This server was shared with the IIoT
gateway backups.

For the stationary measurement of the carrier wheels temperature on the carrier lift,
a custom measurement algorithm was designed, as shown in Figure 7. The measurement
of the carrier wheel temperatures has to be performed during and after the carrier lift up
process that is independent from the temperature measurement.

The measurement algorithm is designed around three stages that are looped indefi-
nitely. The first state focuses on the RFID tag reading, since the valid tag is the signal for
starting the carrier wheels temperature measurement. The RFID reader uses a serial bus
with a 9600 baud rate. Since the RFID reader uses a serial bus for communication, the RFID
tags are validated against the tag pattern and also against the RFID tag list that contains all
installed RFID tags paired to the carrier ID number. When the tag is read and validated,
the program is switched to the second state.

In the second state, the program reads the data from the Ray Data Logger registers
and converts them into the measured values, based on the type of sensor. For the used
temperature sensors, the value is converted using Equation (1). The temperature is mea-
sured every second for five times, to increase the accuracy of the measurements. When the
measurements are completed, the measured values are used to calculate minimal, maximal,
and average values and are subsequently stored in the database. It should be noted that
the saving of data into the database is performed asynchronously, to minimize the unpre-
dictable events influence on the application logic. Finally, the algorithm is switched to the
third state.
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In the third state, the measurement algorithm waits until the carrier starts to move
away from the lift. The RFID tag reading must fail three times before we declare the carrier
as moved. This is due to the tag reading issues despite the fact that the carrier RFID tag was
still present. When the carrier has moved, we start the sound recording that is performed
asynchronously in the separate application thread.

The audio sample recorded for each carrier has 58 s and is recorded as a mono channel
with a 16-bit word size and sampling rate of 48 kHz. For the recording in Python, we used
the PyAudio library that provides the wrapper over the standard Linux ALSA library.
One of the biggest issues of the PyAudio library was the underlying ALSA library written
in C programming language. During continuous deployment, multiple issues arose caused
by the C errors not captured and handled properly by the PyAudio library. Therefore,
we had to implement a custom ALSA error handler, shown in Figure A1 in Appendix A.

It should be noted that we had omitted the argument parsing using the libc Python
library and regular expression error matching in the code sample, for better clearness and
simplicity. This code is usually recommended for ALSA device initialization, in our proof
of concept we found that it is also necessary for audio stream recording. This was due to the
occurrences of random ALSA errors during the recording. These errors occurred randomly,
without any configuration or library version changes in the system.

The recorded audio samples were stored on the FTP server, shared with the Kerlink,
and RAY-3 data backups. One recorded sample has an average size of 5 MB and we kept
all recorded samples stored for further audio analyses. To save the space, audio files older
than one month were automatically deleted using scheduled Bash script.

4.3. Bearing Failure Detection Using Trigger Based Approach

Due to the fact that the IIoT temperature measurements were implemented as first
in our proof of concept, we could use this data for further analyzes. From this data we
removed bearing failure records and assembly downtime during the weekends, to repre-
sented the carrier wheel temperature values measured during normal operating conditions.

For the trigger-based bearing failure detection, using the carrier wheel tempera-
ture measurements, we decided to use common approach by using the wheel tempera-
ture threshold. The carrier wheel temperature was measured using the external contact
temperature sensor on the Adeunis IIoT device.
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From the IIoT data obtained during a period of two weeks collected in February 2020,
we created a histogram, shown in Figure 8. The histogram illustrates the number of obser-
vations of measured carrier wheel temperatures from the IIoT devices. It can be seen that
the majority of measured temperatures start at 23 ◦C and end at 26.5 ◦C, with the average
temperature at around 24.5 ◦C. This clearly shows that the carrier wheel temperature dur-
ing the operational conditions do not contain outliers that could affect the bearing failure
detection using the carrier temperature measurement, since the carrier wheel temperature
during the bearing failure is significantly higher.
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To compensate the data errors in the early stage of the proof of concept, we col-
lected minimum, maximum, and average wheel bearing temperature values. In the pro-
posal we decided to use the averages of measured carrier wheel temperatures, provided by
the IIoT and stationary devices.

For detecting the carrier wheel temperature anomalies for predicting the bearing fail-
ure, we considered multiple approaches. These include for example:

• Fixed temperature difference;
• Difference against the average wheel temperatures of the carrier;
• Difference against the wheel temperatures on previous carriers;
• Difference against ambient temperature.

We evaluated proposed trigger-based detection approaches and performed tests using
the collected data to select the most suitable for detecting wheel temperature anomalies.
Although the fixed temperature threshold detection method worked, it required manually
changing the detection value due to the unstable temperature in the assembly hall. Eval-
uating the difference against the wheel temperature on other carriers seemed promising,
however this approach generated a large number of false positive or false negative detec-
tions before and after daily breaks in production. This was caused by the stationary carriers,
i.e., the carrier wheels cooled down during the daily break.

Therefore, we selected the difference against the average temperature of other carrier
wheels and difference against the ambient temperature for trigger-based detection imple-
mentation. The detection parameters were specified based on the statistical analyses of
collected data. These parameters were subsequently tweaked using following months data.

The selected approach was also further supplemented by the data from the stationary
temperature measurements. The correlation matrix in Table 8 clearly shows strong corre-
lation between the ambient temperature (TAmb) in the assembly hall and temperatures
measured on carrier wheels. Measured temperatures are labeled as TR1—TR3/TL1—TL3
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for the wheel temperature on the right/left side of carrier, numbered from the front side of
the carrier. There is also a strong dependence between the wheels on the opposite sides of
the carrier. It should be noted that the correlation matrix was created on the data without
carrier wheel failures, to show normal operation temperature dependencies.

Table 8. Correlation matrix of input parameters. TAmb: Ambient temperature.

Parameter TR1 avg TL1 avg TR2 avg TL2 avg TR3 avg TL3 avg TAmb

TR1 avg 1.0000 0.9456 0.7036 0.6847 0.9817 0.5930 0.8475
TL1 avg 0.9456 1.0000 0.5765 0.6424 0.9654 0.5400 0.8203
TR2 avg 0.7036 0.5765 1.0000 0.8879 0.6859 0.9175 0.8669
TL2 avg 0.6847 0.6424 0.8879 1.0000 0.7038 0.9273 0.8742
TR3 avg 0.9817 0.9654 0.6859 0.7038 1.0000 0.6037 0.8329
TL3 avg 0.5930 0.5400 0.9175 0.9273 0.6037 1.0000 0.8277
TAmb 0.8475 0.8203 0.8669 0.8742 0.8329 0.8277 1.0000

To implement the trigger-based carrier wheel temperature anomaly detection for pre-
dictive maintenance, we proposed an algorithm for evaluating data stored in the database
and notifying assembly hall maintenance. The algorithm was designed to provide possibili-
ties for detecting and evaluating any of the proposed methods. This was done by using the
lambda expression for trigger function definition, as shown in the detection configuration
code in Figure A2 in Appendix A. Detection configuration uses the difference against the
average wheel temperatures of the carrier.

The query parameter specifies the query used for obtaining the data from the database
for the trigger function. The detect dictionary structure specifies the table columns used
for the detection, and the lambda function that is evaluated. If the lambda function is
evaluated as true, the detection was successful. The headers item defines array of database
columns that will be added to the detection record for further processing.

This algorithm was subsequently implemented in the application, developed in
Python programming language and performed scheduled data evaluation every 15 min.
The detected anomalies in the data were labeled and further processed by email and SMS
notification functions to notify assembly hall maintenance.

The results of the implemented trigger-based detection approach can be clearly seen
in Figure 9, which shows the bearing failure on carrier 25 identified using the temperature
anomaly detection approach. The line graph shows the temperature profile of all carrier
25 wheels before and after bearing failure.

The bearing failure on wheel TR1, in this example, was detected at 19:34 (yellow
line in Figure 9) using the difference against ambient temperature. This detection was
further supplemented by the difference against the average wheel temperatures of the
carrier detection approach at 21:42 (orange line in Figure 9). The anomaly was further
confirmed at 23:43 (red line in Figure 9) by both detection methods and the maintenance
crew was notified. The bearing wheel failure was then repaired around 00:40 (green line in
Figure 9) at the next carrier rotation and was returned back into the assembly conveyor
without any unplanned production downtime.

The detection sensitivity of the used methods is therefore sufficient for the bearing
failure detection, and allows carrier bearing repair to be performed well in advance by the
maintenance crew.
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4.4. Neural Network Design for Bearing Failure Detection

When we want to further move detection time before failure occurrence, the main
limitation of the trigger-based anomaly detection approach is increasing false detections.
To improve this, we decided to use machine learning approach. From published arti-
cles [23–25] and previous projects [69–71], the neural network was evaluated as suitable
for this use due to the excellent results with the numerical values, its possibility to improve
results based on future data, and suitability of implementation for our smart system.

After collecting a sufficient amount of data, which was continuously collected during
the initial phase of proof of concept, it was possible to begin with the neural network
design, which will be used to predict the failure conditions of the carriers’ wheel bearings.
The initial phase started in March 2020 with the stationary measurement infrastructure
installation, however the data collection started in September 2020 after measurement
infrastructure testing and acceptation.

For the neural network design, we used the data science platform TIBCO Statistica,
which provides various tools not only for the analysis and preprocessing of the input data
set, but also for the design and subsequent optimization of the neural networks.

The first step was to analyze the available data set. During the six weeks of proof-
of-concept operation, approximately 16,000 data records were collected from the carri-
ers. Temperature was measured on all six carrier wheels and stored in the ClickHouse
database. This data set was supplemented by the temperature measured in the assembly
hall, which affects the temperature of the carrier wheel bearings. During the proof-of-
concept operation, 27 failures occurred on the carriers, and 18 of them were caused by a
fault in the wheel bearings.

The bearing temperature data set is necessary to be enriched by the bearing repair
information from the maintenance logs, which contained the date and time of the repair,
and type of the failure occurred. This information was added into the data set manually us-
ing the information from to the maintenance crew and is available in their maintenance log.
This information was later used in the neural networks training processes for the carrier
bearing failure prediction. It should be noted that we excluded repairs that were not related
to the wheel bearings.

Subsequently, it was necessary to determine whether the data set did not contain
values significantly different from other values, usually referred to as outliers. It was
important not only to determine whether the data set contained such values, but also the
reason for the existence of such values. The different values could be caused by e.g., reading
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error from the temperature sensors, its incorrect transformation, or whether it could have
been the correct values. The input data set contained some values with significantly higher
temperatures, but these values were marked by maintenance personnel as values that
led to bearing failure. The data set was further examined for missing or noisy data in
its parameters caused, for example, by unsuccessful value reading from the temperature
sensors or by a connection failure during the database operation, but such data did not
appear in the input data set.

For the designed neural network, we set the Bearing Failure parameter as the target
attribute for prediction of the bearing failure on the carrier wheel. This parameter evaluates
whenever the bearing was evaluated as failing and repaired by the maintenance crew,
which was obtained from the maintenance logs. Since the wheel bearing temperature
increases before the failure is continues, this parameter, represented by the Boolean value
was set for four measured temperature values before the failure on the identified carrier.
The bearing failure was represented by Failure (True) value and the normal operation was
represented by OK (False) value.

Since there are storing minimum, maximum, and average temperature values from
each carrier wheel measurement we had to evaluate which of these parameters group was
more suitable for neural network inputs. The dependencies in the data set were analyzed
using importance plot analysis, shown in Figure 10. This allow us to reduce the number of
input parameters that need to be used in the neural network design.
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Based on this result, we decided to use the minimal and average temperature values
for each carrier wheel as input parameters for our neural network. These parameters
were supplemented by the ambient temperature measured in the assembly hall, since the
wheel temperature is directly dependent on the ambient temperature, as shown in Table 8.
All neural network input parameters are represented as decimal numbers.

It should be noted that the number of bearing failures that occurred during data
collection was quite small in relation to the total amount of data records. Due this fact we
decided to create data subset using Stratified sampling, which would mitigate the impact
of data imbalances on bearing failure prediction [72–74].

The input data set was divided into training, testing, and validating sets in the ratio
of 60%—20%—20%. Using the Automated network search function, provided by the
TIBCO Statistica data science platform, several neural networks for the predicting of the
bearing failure were designed. The obtained MultiLayer Perceptron (MLP) neural networks
differed in various numbers of neurons in the hidden layer, type of activation and error
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functions, used training algorithm etc. Based on achieved performance in all subsets and
their balanced variance, the most suitable neural networks are shown in Table 9.

Table 9. Part of the obtained neural networks. MLP: MultiLayer Perceptron.

Topology Train. Perf. [%] Test. Perf. [%] Valid. Perf. [%] Error Func. Hidden Activ. Output Activ.

MLP 13-16-2 92.85 91.28 93.71 Sum of squares Identity Softmax
MLP 13-18-2 93.28 94.38 94.03 Entropy Exponential Softmax
MLP 13-15-2 93.12 94.83 91.44 Entropy Identity Logistic
MLP 13-19-2 92.54 91.24 91.86 Sum of squares Logistic Identity
MLP 13-11-2 92.11 92.45 91.82 Entropy Tanh Exponential

For the suitable neural networks, we created confusion matrixes and calculated se-
lected performance evaluations parameters. To empower the validation data set we had to
decide to supplement it with data from the following five weeks during which 16 bearing
failures occurred. This resulted into 87 carrier wheel temperature measurements to be
labeled as Failure.

From the performance evaluation parameters, we calculated the neural network pre-
cision, recall, accuracy, and F1 Score representing harmonic mean of the recall rate and
precision as:

Precision =
True positives

True positives + False positives
(2)

Recall =
True positives

True positives + False negatives
(3)

Accuracy =
True positives + True negatives

True positives + False positives + True negatives + False negatives
(4)

F1 Score = 2∗ Precision ∗ Recall
Precision + Recall

(5)

where True positives, False positives, True negatives, and False negatives are calculated from the
neural network prediction spreadsheet.

After the parameter evaluation, the neural network labeled MLP 13-18-2 with 13 neu-
rons in the input layer, 18 neurons in the hidden layer, and 2 neurons in the output layer,
was selected as most suitable. The confusion matrix of this neural network is shown in
Table 10.

Table 10. Validation data set confusion matrix of the selected neural network.

Actual Amount
Estimated Amount

Failure OK Total

Failure 70 17 87
OK 16 450 466

Total 86 467 553

The selected performance evaluation parameters of the most suitable neural network
are shown in Table 11.

Table 11. Performance evaluation parameters of the selected neural network.

Parameter Value Value [%]

Precision 0.8139 81.39
Recall 0.8045 80.45

Accuracy 0.9403 94.03
F1 Score 0.8092 80.92
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The selected neural network is able to predict the bearings failure of the carrier
based on the temperature of wheel bearings and the temperature in the assembly hall.
During several tests with different input data sets, a neural network was selected capable
of predicting the failure state of the carrier wheel bearing on average 4 to 6 h before the
probable failures. Based on these evaluations, the selected neural network was accepted as
a suitable to integrate it into the designed application.

For neural network implementation, we utilized TIBCO Statistica data science plat-
form which provides the ability to generate the neural network source code. This code was
subsequently integrated into the implemented application written in Python.

4.5. Sound Measurement System and Analyses Procedure for the Bearing Condition Detection

According to the experience of the maintenance department, the gradual seizure of
the bearings is always accompanied by acoustic noise in the form of whistling. This was
also confirmed during the regular inspections of the function parts condition of the carrier
and assembly conveyor.

By analysis of sound recordings, in the time and frequency domain, it looks for char-
acteristic acoustic manifestations of bearing damage. This approach of early prediction
does not allow identify specific bearing on which damage occurs. Therefore, this condi-
tion monitoring system works in the cooperation with the subsystem for measuring the
temperature of individual bearings.

An acoustic records of bearing failure, used as an example in this paper, were obtained
from real operation on two carriers marked 25 and 44. These records were evaluated by
the time domain statistical indicators and frequency analysis.

When any bearing was damaged, a whistling sound was generated randomly at
various carrier positions on the conveyor. However, the whistling always occurred when
the carrier moved on the conveyor rail. All audio recordings were made at the same position
on the assembly conveyor. The whistling sound is always recorded in them between 27 and
29 s, as highlighted in Figure 11a. To confirm this finding, Figure 11b presents the sound
record obtained from the carrier 44 with a faulty bearing. This eliminates the problem of
how to search the whistle in the long-time record and reduces the likelihood of accidental
whistling in the background. For carrier marked 25, 14 audio records were stored, one
of them after bearing replacement. The audio tracks were recorded approximately two
hours apart.
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4.5.1. Analysis of Acoustic Signal in Time Domain

In time domain statistical scalar indicators which assess the signal amplitude are used
for bearing diagnosis. As is known from the literature [53,75], standard scalar indicators
(RMS, Kurtosis, Crest factor, and Skewness) are less sensitive when the number of defects
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increases. Due this reason, the audio signal was also assessed by applying the Scalar factor,
Impulse factor, and new TALAF and THIKAT indicators defined in [76]. These new indica-
tors combine values of standard scalar indicators into one unit. The selected commonly
used statistical descriptors, used in time domain analyses, were calculated using equations:

Peak
PK = Sup1≤i≤N|xi| (6)

Root mean square

RMS =

√√√√ 1
N

N

∑
i=1

x2
i (7)

Crest factor
CF =

PK
RMS

(8)

Kurtosis

KURT =
1
N ∑N

i=1(xi − x)4

RMS4 (9)

Skewness

SKW =
1
N

N

∑
i=1

(
xi − x
RMS

)3
(10)

TALAF

TALAF = log
[

KU +
RMS
RMS0

]
(11)

THIKAT

THIKAT = log

[
KUCF +

(
RMS
RMS0

)PK
]

(12)

Shape factor

SF =
RMS

1
N ∑N

i=1|xi|
(13)

Impulse factor

IF =
PK

1
N ∑N

i=1|xi|
(14)

where x is the average value of signal samples xi in considered time window, N is number
of samples, and RMS0 is the root mean square value defined for a healthy bearing. After re-
placing of the damaged bearing with a new one, the first calculated value of RMS has been
used as the RMS0 value in our solution.

The statistical descriptors, described above, were considered for analysis of acoustic
signal parts of interest during which the whistle sound has occurred. Graphs in Figure 12
shows the evolution of the Kurtosis, Skewness, SF, IF, TALAF, and THIKAT indicators
according to the samples ordered by time on the horizontal axis.

Generally, the conventional scalar indicators, such as the Peak and RMS, increase with
smaller number of defects. When the bearing damage is moderate, the Kurtosis is the
most sensitive indicator of the signal energy density. With the deterioration of the defects,
the Impulse factor becomes the most sensitive indicator. The Shape factor is insensitive
to damage spread. The TALAF parameter and THIKAT parameter describes in detail the
evolution of the damage and achieves bigger difference between faulty bearing and bearing
without failure. All observed statistical indicators decreased more or less significantly after
the replacement of the damaged bearing with a new one.



Sensors 2021, 21, 2376 22 of 32Sensors 2021, 21, x FOR PEER REVIEW 23 of 33 
 

 

  

  

  
  

Figure 12. Evolution of the meaningful statistical descriptors for carrier 25 (the red line in the graphs indicates the time of 763 
replacement of the damaged bearing). 764 

Generally, the conventional scalar indicators, such as the Peak and RMS, increase 765 
with smaller number of defects. When the bearing damage is moderate, the Kurtosis is the 766 
most sensitive indicator of the signal energy density. With the deterioration of the defects, 767 
the Impulse factor becomes the most sensitive indicator. The Shape factor is insensitive to 768 
damage spread. The TALAF parameter and THIKAT parameter describes in detail the 769 

Figure 12. Evolution of the meaningful statistical descriptors for carrier 25 (the red line in the graphs indicates the time of
replacement of the damaged bearing).

The changes of the scalar indicators of the damaged bearing on carrier 25 are presented
in the line graphs in Figure 12. The largest value difference between damaged bearing
and new one shows the Kurtosis (63.3%) and the smallest difference is in value of the SF
(13.1%) indicator. The THIKAT displayed the highest difference between its values for
the damaged and new bearing over 67%. The TALAF indicator decreased by 37.5% after
bearing replacement. The last two scalar descriptors, Skewness and IF reduced after the
bearing repair their size to about half the previous value.
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Due to these reasons, THIKAT and Kurtosis were selected as the assessing criteria of
bearing state for time domain analysis in the proposed condition monitoring system.

4.5.2. Analysis of Acoustic Signal in Frequency Domain

Due to the possible influence of the time analysis results by the assembly hall back-
ground noise from other sites near conveyor, the sound record of the carrier passage
through the measurement place was also analyzed in the frequency domain.

The fast Fourier Transform (FFT) transformation was utilized for digitalized audio
signal analyzes in the frequency domain. The Hanning window function was applied
on data blocks to zero-valued outside of the chosen interval and controlling leakage.
The sample overlapping was not applied.

One of the main symptoms of the bearing defect are ball-pass frequencies in the fre-
quency spectrum. However, it is usually difficult to locate these frequencies in the spectrum
if they are hidden in the background noise. Bearing defect characteristic frequencies are
therefore calculated using following equations:

Ball-passing frequency of the outer race

BPFO =
N
2

fr

(
1− BD

PD
cosα

)
(15)

Ball-passing frequency of the inner race

BPFI =
N
2

fr

(
1 +

BD
PD

cosα
)

(16)

Ball-spin frequency (about its axis)

BSF =
BD
PD

fr

[
1−

(
BD
PD

cosα
)2
]

(17)

Fundamental train frequency

FTF =
fr

2

(
1− BD

PD
cosα

)
(18)

where N is the number of rolling elements, fr is the relative frequency between the outer and
inner race, BD is the rolling element diameter, PD is the pitch circle diameter, and α is the
contact angle. The bearing frequencies of the spherical roller bearing type “SKF 22206 E”,
for different speeds of the carrier, are calculated using Equations (15)–(18) and summarized
in Table 12. It should be noted that the carrier speed varies in different operating modes.
In standard operating mode its speed is approximately 10 m/min. The diameter of our
carrier wheel is 140 mm.

Table 12. Bearing “SKF 22206 E” frequencies for different carrier speeds. Rotation per Minute (RPM),
Ball Pass Frequency Outer (BPFO), Ball Pass Frequency Inner (BPFI), Ball Spin Frequency (BSF),
Fundamental Train Frequency (FTF).

v
[m/min] RPM fr

[Hz]
BPFO
[Hz]

BPFI
[Hz]

BSF
[Hz]

FTF
[Hz]

frp
[Hz]

8 35.37 0.59 3.9 5.5 1.7 0.25 3.3
9 39.79 0.66 4.4 6.2 1.9 0.28 3.8

10 44.21 0.74 4.9 6.9 2.1 0.31 4.2
11 48.63 0.81 5.4 7.6 2.3 0.34 4.6
12 53.05 0.88 5.9 8.3 2.5 0.37 5.0
13 57.47 0.96 6.4 8.9 2.7 0.40 5.4
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Where the parameter v is the speed of the carrier and frp is the over-rolling frequency
of the damaged point on the rolling element (roller defect frequency).

The typical frequency spectrum of audio signals, recorded at a measurement point for
selected carriers 25 and 44, are shown in Figure 13. Graphs in the second row in Figure
13 show examples of fault wheel bearings frequency spectrum. The spectra in the first
row correspond to a new bearing after the replacement. The spectra of fault bearings
show a large increase in amplitude at the whistling frequency of approximately 1670 Hz
and a small rise in harmonic frequencies. Together with this whistling frequency, there is
also another significant frequency in the spectrum that is approximately 300 Hz higher.
The cause of the whistling is the friction of the steel transport or guide wheel with a
seized bearing. The presence of these frequency components in the frequency spectrum
indicates whistling and can predict possible bearing damage on the carrier.
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and 44 (right).

Identification of the bearing frequencies in the frequency spectrum of an acoustic
signal is a very difficult due to small values being at the limit of FFT resolution. Due to
the low carrier speed are the bearing frequencies (BPFO) localized in the range of lower
microphone sensitivity, it is difficult to identify them in the frequency spectra. In Figure 13
these frequencies are highlighted by a green line. Based on the analysis of the acoustic signal
of a healthy and damaged bearing, it can be stated that the damaged bearing produces an
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amplitude increase in the frequency spectrum at the 1670 Hz frequency, which corresponds
to the whistling generated when the wheel with damaged bearing comes into contact with
the carrier guide line.

Figure 14 shows the trend of increasing magnitude at frequency 1670 Hz, depending
on the order of samples in time. The results of the analysis show a significant decrease in
the amplitude of the whistling frequency after the replacement of the damaged bearing for
both analyzed carriers. Figure 14 compares the trends of the amplitude increased at the
characteristic frequency and the temperature of the damaged bearing on carrier 25.
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replacement time of the dam-aged bearing).

The proposed algorithm for early condition monitoring of bearings state is based on
the analyses of recorded sound signals in the time domain by calculating the selected de-
scriptors. Using the frequency analysis, we detected the presence of magnitude increase
for frequencies in range ±20 Hz around the whistle frequency. To identify the damaged
bearing, the results of individual bearings temperature measurements have to be applied.

Descriptors Kurtosis and THIKAT were used as auxiliary indicators to assess the con-
dition of bearings by analyzing the audio recordings in the time domain. The magnitude
value is tested in the frequency spectrum at a critical frequency of 1670 Hz. When the value
of the Kurtosis indicator exceeds 5, the THIKAT value reaches 7 and the magnitude of the
frequencies in the critical frequency range is greater than 100, the carrier is included in
the group with a potentially damaged bearing. This can be further investigated by the
maintenance personal to analyze the bearing state for future assembly conveyor modi-
fications. This identification was also used to minimalize anomalies, which occurred in
the implemented trigger-based bearing failure detection, using the carrier wheel tempera-
ture measurements.

In our proof-of-concept phase, acoustic treating of the sound recording point was not
possible and an alternative had to be found. Therefore, the magnitude limit value was
chosen in a way that eliminates unwanted acoustic disturbances in the assembly hall.

The proposed algorithm for the anomaly detection was implemented using the Math-
Works MATLAB platform that was also used for the sound analyzes and provides all
the required functionalities. These calculations were subsequently integrated into our
application, written in the Python programming language. For MATLAB function exe-
cutions, MATLAB Engine API available for Python was used. Although it is possible to
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rewrite the functions into the Python programming language, in our proof of concept we
decided to utilize MATLAB functionalities directly, for easier integration with the sound
analysis phases.

4.6. Bearing Failure Detection Visualization

To give the maintenance crew a tool for bearing health monitoring, a dashboard
was implemented that allows them access to the collected data and anomaly detection
results. The visualization was built on top of the ClickHouse database that integrated the
data collected from the IIoT devices and stationary temperature measurements. For the
identification and prediction of the bearing failure, we utilized the proposed algorithms that
labeled identified anomalies in the collected data and created email and SMS notifications
to notify the assembly hall maintenance. The example of the implemented dashboard is
shown in Figure 15.
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Figure 15. Implemented smart system dashboard for assembly hall maintenance.

The implemented dashboard shows carrier temperature measurements in the last two
hours on the left side. Anomalies detected by the implemented trigger-based algorithms
based on the thresholds and neural network together with the bearing health monitoring
by sound measurements are shown on the upper right side. For the detected carrier,
the temperature profile for the last seven carrier rotation is shown on the lower right side.

The dashboard provides an overview of all the important monitored assembly carrier
parameters required by the maintenance crew. Together with email and SMS notifications,
it provides powerful tool for minimizing assembly conveyor downtime.

5. Discussion

The advantage of the IIoT data collection approach is in our case a complex coverage of
the measurement of individual devices, during the entire assembly process, which provides
opportunities for a more comprehensive analysis of the problem area. It is also suitable for
collecting data from constantly moving devices, due to the fact that the operating time is
several months or years without external power supply.

A limitation in our case was the mounting of sensors on individual devices. Mechani-
cal intervention on the carriers was not the preferred method of device and sensor mounting.
Due to this limitation, the usage of vibrometer devices was not considered for anomaly
detection. A complete implementation of IIoT sensors would also require the use of custom-
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built IIoT devices that would support six temperature sensors, but these are not available
as standard.

Despite the suitability of the IIoT data collection approach, it was unacceptable in
terms of the plant’s production reliability strategy to install IIoT sensors on each carrier.
For this reason, as an alternative solution, we proposed and implemented a stationary
temperature and sound measurement infrastructure, which allowed us to measure and
record the temperatures and sounds of all carriers in the assembly conveyor.

With this approach, we created a universal, inexpensive, and easy-to-implement
solution, where it is possible to measure values from any number of carriers and on
any type of assembly line. The disadvantage of this solution is that the availability of
the measured temperature information is only every two hours, when the carrier passes
through the temperature measurement point on the carrier lift.

From the point of view of bearing failure detection, the implemented solution using
trigger-based anomaly detection seems to be a suitable approach. The main advantage was
the possibility of a very fast deployment in this approach, given that from the available
data it was possible to derive parameters for anomaly detection very soon requiring a small
amount of data.

Using this approach, we were able to detect an anomaly, a bearing failure, approxi-
mately 2 to 4 h before critical bearing damage during normal operation. A limitation of
this solution is the need to manually set the detection parameters to capture only the actual
bearing failure while minimizing false detection, which causes confusing notifications to
the operator.

Applying a neural network approach allowed us to eliminate the need to manually set
parameters for anomaly detection. Based on the available data we were able to predict crit-
ical bearing damage using the proposed neural network, based on the currently measured
bearing temperatures. This approach was able to predict bearing damage approximately 4
to 6 h before critical damage.

To deploy this approach, it is necessary to have a sufficient amount of data available
to learn the neural network, which makes it possible to deploy this approach later.

Both previous approaches detect bearing damage indirectly due to increasing temper-
ature caused by guide line friction.

Therefore, we decided to supplement the anomaly detection with sound analysis,
which is possible to predict the bearing state on the carrier in the phase when the limitation
of its functionality begins. This can give the maintenance crew time to analyze bearing
health before the failure itself and can lead to assembly line modification to mitigate the
bearing failure causes. This means that with this approach it is possible to detect bearing
state anomaly approximately 8 to 10 h before its critical damage.

The disadvantage of this approach is the impossibility of accurately identifying a
particular damage bearing on the carrier due to the fact that the sound is analyzed as
a whole.

Although the used methods are calculated and performed over the data store in the
SQL storage, there should be no performance limitations implementing them on the used
IPC directly performance wise. The anomaly detection, using a trigger-based approach
and neural networks, can provide results in near real time. Detection using the sound
analysis can provide results in a few seconds that is still a fraction of the time between the
individual sample recordings.

Each of these approaches can be used separately, but by appropriately combining
these approaches, using their advantages and suppressing their disadvantages, we have
proposed and implemented a unique approach that allows more accurate damage predic-
tion and significantly minimizes the possibility of false detection.

While the symbiosis of the neural network and sound analysis are used for prediction
well in advance, the identification of damage by trigger-based anomaly detection is a direct
starter of the maintenance process.
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6. Conclusions

Damaged carrier wheel bearing is the most common cause of cessation of the assem-
bly conveyor. Using a proposed analysis of the sound signal, it is possible to predict the
failure of a bearing on the carrier in the phase when the limitation of its functionality
begins. Subsequently, with the deterioration of bearing damage, its temperature increases.
This allows the identification of the specific wheel or guide bearing using our trigger-based
detection and neural network approaches.

The implemented smart monitoring system made it possible to predict and detect
damage to the bearings of the transport carrier in time at a stage when the operation of
the conveyor was not endangered. Alerts are sent to the maintenance department when
bearing failure occurs using email and SMS notifications. Thus, a preventive replacement
of a damaged bearing could be performed during the next regular scheduled production
outage, minimizing production downtime.

The maintenance crew thus received a powerful tool to predict and identify the dam-
aged bearing before its complete seizure. The use of an implemented application platform
can prevent an unexpected cessation of the entire assembly process and avoid significant
financial losses. Performing the predictive maintenance, based on notifications from the
realized application platform, ensures assembly process continuity and compliance with
the planned number of produced cars. This is what our proposal has realized.
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Appendix A

This appendix contains examples of Python code used in our implemented appli-
cation platform. Custom ALSA error handler required for sound recording is shown in
Figure A1.
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