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Objective: Accurate staging is of great importance in treatment selection for patients

with nasopharyngeal carcinoma (NPC). The aims of this study were to construct radiomic

models of NPC staging based on positron emission tomography (PET) and magnetic

resonance (MR) images and to investigate the correlation between metabolic parameters

and radiomic features.

Methods: A total of 100 consecutive cases of NPC (70 in training and 30 in the

testing cohort) with undifferentiated carcinoma confirmed pathologically were recruited.

Metabolic parameters of the local lesions of NPC were measured. A total of 396 radiomic

features based on PET and MRI images were calculated [including histogram, Haralick,

shape factor, gray level co-occurrence matrix (GLCM), and run length matrix (RLM)]

and selected [using maximum relevance and minimum redundancy (mRMR) and least

shrinkage and selection operator (LASSO)], respectively. The logistic regression models

were established according to these features. Finally, the relationship between the

metabolic parameters and radiomic features was analyzed.

Results: We selected the nine most relevant radiomic features (six from MR images

and three from PET images) from local NPC lesions. In the PET model, the area under

the receiver operating characteristic (ROC) curve (AUC), accuracy, sensitivity, and the

specificity of the training group were 0.84, 0.75, 0.90, and 0.69, respectively. In the MR

model, those metrics were 0.85, 0.83, 0.75, and 0.86, respectively. Pearson’s correlation

analysis showed that the metabolic parameters had different degrees of correlation with

the selected radiomic features.

Conclusion: The PET and MR radiomic models were helpful in the diagnosis of

NPC staging. There were correlations between the metabolic parameters and radiomic

features of primary NPC based on PET/MR. In the future, PET/MR-based radiomic
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models, with further improvement and validation, can be a more useful and economical

tool for predicting local invasion and distant metastasis of NPC.

Keywords: nasopharyngeal carcinoma, positron emission tomography, magnetic resonance imaging, radiomics,

staging

INTRODUCTION

Nasopharyngeal carcinoma (NPC) is a special tumor of the head
and neck which is the main characteristic disease in South Asia
(1). It is of great importance to appropriately predict the disease
stage because proper therapy strategies are based on the current
stage. The preferred treatment for early NPC is radiotherapy.
However, locally advanced or advanced NPC patients should
be treated with a combination of radiation and chemotherapy.
Radiomics models based on 18F-fluorodeoxyglucose positron
emission tomography (FDG-PET) and magnetic resonance
imaging (MRI) could provide additional useful information for
NPC staging (2).

The integrated synchronization of 18F-FDG PET/MR can
simultaneously provide the morphological information of MRI
and the molecular metabolic information of PET imaging
through a single scan and realize the accurate fusion of
MRI anatomical imaging and PET functional imaging. Chan
et al. (3) conducted both whole-body PET/MR and PET/CT
examinations on 113 patients with pathologically confirmed
NPC. The study showed that, for tumor staging of NPC,
PET/MR improved the accuracy of head and neck tumor
detection and could better show the mapping tumor extension,
especially the intracranial invasion, than PET/CT. Cheng
et al. (4) performed PET/CT-MRI scans on 35 patients with
NPC. The study indicated that PET/MR was more efficient
in characterization and visualization and showed high lesion
detection and good image quality of NPC compared with
PET/CT. Some studies have shown that the combination of PET
andMRI images and the comprehensive analysis of themolecular
metabolism and microstructure characteristics of the tumors
are of great value in the differential diagnosis and prognosis
analysis of tumors (5, 6). However, there are relatively few
PET/MR studies on the staging of NPC. In this study, 18F-
FDG PET/MR was used to determine the early and late stages
of NPC.

In theory, the metabolic imaging of PET can quantitatively
and early reflect the heterogeneity of tumor. The preferred semi-
quantitative parameter for primary and metastatic NPC in PET
is standardized uptake value (SUV). Since SUVmax only reflects
the highest tumor volume of the 18F-FDG perturbation value, the
intake and overall metabolic of area of interest (ROI) were not
assessed. Larson et al. (7) introduced themetabolic tumor volume
(MTV) and total lesion glycolysis (TLG) for the assessment of
important parameters.

Radiomics is a rapidly developing new technique for disease
diagnosis and auxiliary detection (8). Tumor heterogeneity
is a recognized cancer feature in biology, and visualization
of tumor heterogeneity plays a key role in evaluating tumor
invasiveness. The study of the heterogeneity of cancer foci

by radiomic analysis has become a hot topic in the field of
medical imaging of cancer. Radiomics provides a promising
method in the diagnosis and prediction of many cancers, such
as glioblastoma (9), lung cancer (10), prostate cancer (11),
breast cancer (12), and colorectal cancer (13, 14). Moreover,
Zhang et al. (15) conducted a multi-parameter MRI radiomic
study on 118 advanced NPC patients and found that the
selected radiomic features had different degrees of correlation
with the T stage, N stage, and clinical stage. Du et al.
(16) performed PET/CT examination on 76 patients with
NPC. The study showed that machine learning methods in
radiomics can distinguish local recurrence vs. inflammation.
However, there is still a lack of PET/MR-based radiomic studies
on NPC.

In this study, we will construct radiomic models based on 18F-
FDG PET/MR for NPC staging and investigate the correlations
between the metabolic parameters and radiomic features.

MATERIALS AND METHODS

Patients
In this study, patients with pretreatment NPC (all pathologically
non-keratinized undifferentiated carcinoma) who were
examined at the Hangzhou Universal Medical Imaging
Diagnostic Center from June 2017 to October 2019 were
collected; all patients underwent PET/MR examination
before treatment. Before the examination, all patients
signed an informed consent. This study was approved
by the local ethics committee (no. KT2018024), and all
methods were implemented in accordance with the Declaration
of Helsinki.

All patients were staged according to the 8th edition of
the American Joint Committee on Cancer (AJCC)/Union for
International Cancer Control (UICC) TNM staging system
(17). The inclusion criteria are as follows: NPC patients
with pathologically confirmed non-keratinized undifferentiated
carcinoma; nasopharyngeal lesions were found for the first time
without any treatment such as chemotherapy or radiotherapy;
clear pretreatment PET/MR images of the whole body and
head and neck can be obtained; and PET/MR examination
was performed between 40 and 60min after injection of the
imaging agent. The exclusion criteria are as follows: patients
who had received any form of treatment (such as radiotherapy,
chemotherapy, etc.) before PET/MR examination; patients with
a history of other head and neck malignancies or other
systemic malignancies; PET or MRI images do not meet
the diagnostic criteria (such as metal or motion artifacts);
patients with MRI contraindication or intolerance; and SUV
value suspected to have deviation (such as high blood sugar
or low radiation purity of the FDG drug). A total of 100
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consecutive NPCs who met the criteria were included. NPC
patients were divided into early group (stages I and II) and
advanced group (stages III and IV) according to the TNM
staging system.

PET/MR Imaging Protocol
18F-FDG PET/MR scans were performed using GE integrated
TOF PET/MR (GE SIGNA,Wisconsin, USA). The patients fasted
for more than 6 h and drank clear water. Strenuous exercise was
prohibited before the injection of 18F-FDG. Blood glucose was
controlled below 7.8 mmol/L. The patients were injected with
18F-FDG at a dose of 3.7 MBq/kg and underwent whole-body
PET/MR examination after urination. PET images were collected
and reconstructed using 3D mode, time-lapse technique, and
point spread function during whole-body MRI examination. A
local PET/MR scan of the head and neck, from the base of the
skull to the supraclavicular bones, was then performed. Finally,
whole-body and local PET, MRI, and PET/MR fusion images
were obtained.

Radiomics Analysis
Image preprocessing was conducted using the Artificial
Intelligence Kit (A.K) software which was developed by
GE Healthcare. The A.K software has been registered and
approved. It realizes several key steps of radiomics and has
already been applied to some radiomics studies, including
ourselves (18, 19). The image resolution was adjusted to
1mm × 1mm × 1mm for resampling. The image was
transformed into the same layer thickness through the linear
difference value, i.e., 1mm layer thickness. Then, image gray
unified adjustment to 0–255 was done for standardization.
The maximum value of grayscale is 255 and the minimum
value is 0; the rest were converted linearly. An example
before and after the preprocessing of images is shown in
Figure 1.

For ROI segmentation, the T2-weighted images (T2WI) from
the local head and neck scan and the corresponding PET
images were imported into ITK-SNAP software (version 2.2.0;
www.itksnap.org). On the T2WI, the edges of the primary
NPC were manually delineated layer by layer, excluding the
normal tissues and posterior pharyngeal lymph nodes that were
not invaded. The segmentation boundaries of the PET images
and T2WI coincide. All segmentations were conducted by a
neuroradiologist with 12 years of work experience. Finally,
the segmentation results of the T2WI and the PET images
were derived.

For feature extraction, firstly, all the unsegmented raw
data of the T2WI and PET images were imported into the
A.K software, and then the corresponding ROI data were
imported in batches. The selection parameters include histogram,
Haralick, shape factor, gray level co-occurrence matrix (GLCM),
and run length matrix (RLM) with steps 1, 4, and 7.
Finally, radiomic features were extracted in batches from all
the data.

For feature selection, the extracted radiomic feature tables of
the T2WI and PET images were imported into the A.K software
for feature selection. Then, we divided the data in a ratio of

FIGURE 1 | Workflow of radiomics analysis for NPC staging.

7:3, i.e., 70% of the training set and 30% of the testing set. The
outliers in the table were replaced with the average values and
the data was standardized. Feature selection was conducted on
the two groups of data, respectively (the total feature number
for both PET and MR was 396). We used two feature selection
methods: maximum relevance and minimum redundancy
(mRMR) and least shrinkage and selection operator (LASSO).
Firstly, mRMR was used to eliminate redundant and irrelevant
features. Next, we chose the LASSO regression model, which
is suitable for the dimension reduction of high-dimensional
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data to select the predictive radiomic features of the training
data. In order to avoid overfitting, 10-fold cross-validation
with minimum criteria was used. These two-dimensional

TABLE 1 | Clinical data comparison of NPC patients in the training and the testing

groups.

Training

group

Testing

group

Statistic p-value

Sample size 70 30 NA NA

Age (years, mean ±

SD)

52.23 ± 12.33 50.40 ± 13.68 −0.658 0.512

Gender

(male/female)

56/14 22/8 0.544* 0.461*

SUVmax 10.91 ± 4.76 10.03 ± 3.78 −0.899 0.371

MTV 9.87 ± 7.38 11.31 ± 9.29 0.824 0.412

TLG 51.06 ± 46.95 57.61 ± 41.46 0.661 0.510

Clinical staging

(I/II/III/IV)

5/14/38/13 2/6/19/3 1.250* 0.767*

Statistics were analyzed with t-test, unless otherwise indicated. SD, standard deviation;

SUVmax , maximum standard unit value; MTV, metabolic tumor volume; TLG, total lesion

glycolysis; NA, not applicable. P-value, 0.05. *χ2 test was performed.

reduction methods have been well-used in some radiomics
studies (16, 20).

In machine learning modeling, according to the selected
features, the logistic regression models of T2WI and PET
were constructed using machine learning methods. The
model’s performance in the training and testing groups was
assessed using receiver operating characteristic (ROC) curves
and accuracy.

Figure 1 shows the workflow of the radiomics analysis for
NPC staging.

Measurement of PET Metabolic
Parameters
Various metabolic parameters were measured using the PET
VCAR software in a GE Healthcare AW 4.6 post-processing
workstation by a neuroradiologist with 12 years of work
experience. The PET/MR image sequences of the local head
and neck scans were opened. The adaptive threshold method
was used to determine the uptake boundary of the primary
lesion (21), which determined 40% of the SUVmax in ROI
as the tumor boundary. The ROI recognition box size was
adjusted, and the high uptake areas such as normal tissues and

FIGURE 2 | (A) The error rate curve. (B) LASSO coefficient λ graph. Coefficient λ was selected in the LASSO using a 10-fold cross-validation. We chose the

coefficient λ with the lowest error rate. (C) The remaining features of the positron emission tomography (PET) images after feature selection.
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FIGURE 3 | (A) The error rate curve. (B) LASSO coefficient λ graph. We chose the coefficient λ with the lowest error rate. (C) The remaining features of the magnetic

resonance (MR) images after feature selection.

metastatic lymph nodes were excluded from the ROI range
in combination with the MRI structure image. Finally, three
metabolic parameters of ROI, namely, MTV, SUVmax, and TLG,
were recorded.

Statistical Analysis
Statistical analyses for clinical data comparison were performed
using SPSS (version 22.0, IBM). Data of continuous variables
conforming to normal distribution were expressed as the
mean ± standard deviation. Chi-square (χ2) test was
used for the comparison of counting data, t-test for the
comparison of measurement data, and Pearson’s analysis was
used for the correlation between the metabolic parameters
and radiomic features, which were normally distributed.
All statistical methods of the radiomics analysis process
were conducted with the A.K software and R software
(version 3.5.2; http://www.Rproject.org).

RESULTS

Comparison of Clinical Data
Table 1 shows the results of statistical analysis of the
demographics and clinical data. There were no statistically
significant differences in age, gender, the metabolic parameters

(SUVmax, MTV, and TLG) and clinical stage between the training
group and the testing group (P > 0.05).

Radiomics Analysis Results
There were 396 features calculated for the PET and MR data. For
the PET data, after mRMR, the remaining feature number was
20. After LASSO, three features were retained (Figures 2A–C).
For the MR data, after mRMR and LASSO, the remaining feature
numbers were 20 and 6, respectively (Figures 3A–C). The type
and formula of the selected features are shown in Table 2.

For the PET data, according to the three selected features,
the logistic regression algorithm was used to construct the
classification model of the training group and the testing group.
The area under the ROC curve (AUC), accuracy, sensitivity, and
the specificity of the training group were 0.84, 0.75, 0.90, and
0.69, respectively. The corresponding indexes of the testing group
were 0.82, 0.86, 0.88, and 0.86, respectively (Figure 4). The AUC
values were very close in the two groups, and the fitting degree
of the model was considered to be good. The cutoff values of
radscore for training group and testing group were 1.01 and
0.74, respectively.

For the MR data, logistic regression algorithm was used to
construct the classification model of the training group and
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the testing group according to the six selected features. The
AUC, accuracy, sensitivity, and specificity of the training group
were 0.85, 0.83, 0.75, and 0.86, respectively. The corresponding
indexes of the testing group were 0.83, 0.83, 0.88, and 0.81,
respectively (Figure 5). The fitting degree of the model was also
considered to be good. The cutoff values of the radscore for
the training and testing groups were 0.64 and 0.89, respectively.
The radscore formula is shown in Supplementary Data.
Calibration curves of the PET and MR data are shown in
Figures 6, 7.

Correlation Between the Radiomic
Features and PET Metabolic Parameters
In the PET model, Pearson’s correlation analysis showed
that the feature (GLCMEntropy_angle0_offset4) was
significantly positively correlated with the MTV and
TLG (R = 0.70 and 0.73, P < 0.01). The feature
(HighGreyLevelRunEmphasis_AllDirection_offset1_SD) were
negatively correlated with TLG (R = −0.33, P < 0.01). More
correlation coefficients are shown in Table 3.

In the T2WImodel, Pearson’s correlation analysis showed that
the three features (MinIntensity, GLCMEntropy_angle0_offset4,
and HighGreyLevelRunEmphasis_AllDirection_offset4_SD)
were negatively correlated with MTV (R = −0.45, −0.45, and
−0.30, respectively, P < 0.01) and TLG (R = −0.47, −0.50, and
−0.37, respectively, P < 0.01). More correlation coefficients are
shown in Table 4.

DISCUSSION

We selected the nine most relevant radiomic features (six
from MR images and three from PET images) from local
NPC lesions. The correlations between the radiomic features
and the SUVmax, MTV, and TLG metabolic parameters were
discussed. The clinical value of the radiomic model in evaluating
the NPC stage was also analyzed. The results showed that
the constructed PET and MR radiomic models had high

diagnostic performance for NPC staging, and there was a
certain correlation between the metabolic parameters and some
radiomic features.

Burri et al. (21) found that 40% of the SUVmax based on
PET as the boundary of the lesion had the best correlation
with the pathological and physiological characteristics of

TABLE 2 | Type and formula of the selected features in positron emission

tomography (PET) and magnetic resonance (MR) data.

Feature Type Formula

PET_GLCMEnergy_All

Direction_offset1_SD

GLCM
∑

i,j g(i, j)
2

PET_GLCMEntropy_

angle0_offset4

GLCM −
∑

i,j g(i, j) log2(i, j)

PET_HighGreyLevelRun

Emphasis_AllDirection_

offset1_SD

RLM HGRE(θ ) = 1
nr

∑N
j=i

∑M
i=1 p(i, j, θ )i

2

MR_LowGreyLevelRun

Emphasis_AllDirection_

offset1_SD

RLM LGRE(θ ) = 1
nr

∑N
j=i

∑M
i=1

p(i,j,θ )
i2

MR_ShortRunHighGrey

LevelEmphasis_

AllDirection_offset4_SD

RLM SRHGE (θ) = 1
nr

∑N
j=i

∑M
i=1

p(i,j,θ )i2

j2

MR_GLCMEntropy_

AllDirection_

offset1_SD

GLCM −
∑

i,j g(i, j) log2(i, j)

MR_MinIntensity Histogram Minimum intensity value

MR_HighGreyLevelRun

Emphasis_AllDirection_

offset4_SD

RLM HGRE(θ ) = 1
nr

∑N
j=i

∑M
i=1 p(i, j, θ )i

2

MR_GLCMEntropy_angle

0_offset4

GLCM −
∑

i,j g(i, j) log2(i, j)

In the formulas, g is a gray level co-occurrence matrix (GLCM), where i, j are the spatial

coordinates of g(i,j). For the GLCM parameters, i is a gray level, j is a gray value, and N

is the number of classes of gray levels. For the run length matrix (RLM) parameters, nr is

the number of runs, N is the number of classes of gray levels, and M is the size in voxels

of the largest region found.

FIGURE 4 | Receiver operating characteristic (ROC) curves of the training set (A) and testing set (B) in the positron emission tomography (PET) data.
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FIGURE 5 | Receiver operating characteristic (ROC) curves of the training set (A) and testing set (B) in the magnetic resonance (MR) data.

FIGURE 6 | Calibration curves of the training set (A) and testing set (B) in the positron emission tomography (PET) data. The red line is the fitting line and represents

the actual value corresponding to the predicted value.

FIGURE 7 | Calibration curves of the training set (A) and testing set (B) in the magnetic resonance (MR) data. The red line is the fitting line and represents the actual

value corresponding to the predicted value.

the tumor, so this study used this method to measure the
metabolic parameters. In addition, we also combined the

anatomical information provided by the MRI structure to
exclude some interfering factors. There are several metabolic
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TABLE 3 | Correlations between the radiomic features and PET metabolic

parameters in the PET model.

Feature SUVmax MTV TLG

GLCMEnergy_AllDirection_offset1_SD −0.12 −0.18 −0.20*

GLCMEntropy_angle0_offset4 0.20 0.70** 0.73**

HighGreyLevelRunEmphasis_AllDirection_offset1_SD −0.21* −0.29** −0.33**

The values in the table are the correlation coefficients. SUVmax , maximum standard unit

value; MTV, metabolic tumor volume; TLG, total lesion glycolysis. *P < 0.05; **P < 0.01.

TABLE 4 | Correlations between the radiomic features and PET metabolic

parameters in the MR model.

Feature SUVmax MTV TLG

LowGreyLevelRunEmphasis_AllDirection_offset1_SD −0.13 −0.05 −0.09

ShortRunHighGreyLevelEmphasis_AllDirection_offset4_SD 0.01 −0.16 −0.15

GLCMEntropy_AllDirection_offset1_SD 0.11 −0.09 −0.06

MinIntensity −0.15 −0.45**−0.47**

HighGreyLevelRunEmphasis_AllDirection_offset4_SD −0.26**−0.30**−0.37**

GLCMEntropy_angle0_offset4 −0.14 −0.45**−0.50**

The values in the table are the correlation coefficients. SUVmax , maximum standard unit

value; MTV, metabolic tumor volume; TLG, total lesion glycolysis. **P < 0.01.

parameters representing tumor functional information,
but the most representative, the SUVmax, MTV, and
TLG, parameters were included in this study (22). The
metabolic parameters of primary NPC represent the clinical
parameters of tumor function, but the uptake of 18F-FDG
cannot always accurately reflect the physiological state of the
tumor (23).

In recent years, more and more evidences show that the
analysis of radiomics of medical images can better reflect
the potential spatial variation and heterogeneity of the tumor
endosomal intensity, which will generate more prediction
and prognostic information (13, 24). Du et al. (16) used
machine learning methods to analyze post-therapy NPC PET/CT
images and found that, compared with conventional indicators,
radiomics signatures showed higher AUC values (0.867–0.892
vs. 0.817) in the differentiation between local recurrence and
inflammation. Zhuo et al. (25) studied the multi-modality
MR images of 658 patients with non-metastatic NPC. It was
found that the radiomic features based on MRI could divide
NPCs into subtypes with different survival modes, which
showed better performance than the TNM staging system.
Zhang et al. (15) performed radiomics nomogram combined
with multi-parametric MRI-based radiomic features with the
TNM staging system. It showed improved prognostic ability
in advanced NPC over the TNM staging system. But these
studies have not included PET images. We used the T2WI and
PET imaging features based on the local lesions of NPC to
evaluate its application value in NPC staging. In this study,
the AUC values of the T2WI and PET models were 0.85
and 0.84 in the training group and 0.83 and 0.82 in the
testing group, respectively, showing good diagnostic efficacy for
NPC staging.

Among the nine radiomic features extracted from the
PET/MR images that were highly correlated with NPC stage,
four were GLCM features, four were RLM features, and one
was a histogram feature. The feature “MinIntensity” was the
histogram parameter, which represents the minimum intensity
of the 3D image matrix. GLCM describes texture by studying
the spatial correlation characteristics of the grayscale. The
advantage is that the spatial relationship of the distance and
angle between two pixels can be considered simultaneously.
The “GLCM_Energy” value ranges from zero to one. Constant
image energy is one. The value is higher when the image has
good homogeneity or the pixel is very similar. The value of
“GLCM_Entropy” represents the complexity of the symbiotic
matrix, and the larger the value, the more complex is the
symbiotic matrix. RLM is used to obtain the length matrix
by calculating the probability of the continuous occurrence
of pixels in different directions and steps to describe the
complexity of the lesion, the degree of change, and the
texture thickness.

Theoretically, the uptake capacity of the tumor to 18F-FDG
can quantitatively quantify tumor heterogeneity at an early
stage, while the radiomic features based on PET images can
provide more comprehensive details, which are attributed to
pathological factors such as tumor proliferation, angiogenesis,
tumor necrosis, and hypoxia (26). Therefore, it is suggested
that there should be some intrinsic relationship between the
metabolic parameters representing tumor uptake capacity and
the radiomic features representing tumor heterogeneity. Our
study showed that the metabolic parameters had different
degrees of correlation with the selected radiomic features.
The feature “GLCMEntropy_angle0_offset4” of the PET
images had the strongest positive correlation with the
metabolic parameters MTV and TLG, indicating that the
more complex the symbiotic matrix of tumor is, the larger the
uptake volume and the amount of glycolysis are. However,
the correlations between the other radiomic features and
metabolic parameters were relatively low. Some studies
also found that there was a certain correlation between the
radiomic features and PET metabolic parameters. A study
on non-small-cell lung cancer based on PET/CT found that
some texture features like volume of the lesion were highly
positively correlated with MTV, the CT average density
was moderately positively correlated with SUV, and CT
kurtosis was moderately positively correlated with MTV
(27). However, another PET/CT study on non-small-cell
lung cancer showed that texture and shape features had
stronger correlations with MTV and GTV compared to SUV
measurements (28). The results of our study are consistent
with the second study, in this respect. The uptake process of
18F-FDG is the potential expression of biological processes,
and the measured MTV and TLG can indirectly reflect tumor
proliferation, angiogenesis, tumor necrosis, etc. (29), which has
a certain correlation with the radiomic features representing
tumor heterogeneity.

However, there were several limitations in our study.
Firstly, the distribution of FDG in the body is also
different in different physiological periods, which may
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affect the quality of the PET data to a certain extent.
In the future, we will carry out stricter standardization
on the data preprocessing. Secondly, the sample size of
this study is relatively small and the source of cases is
single. A large sample size and a multicenter test are
needed for verification. In our future NPC studies, we plan
to build models based on the combination of radiomic
features and PET parameters as well as supplement
external validation.

CONCLUSION

The radiomic models based on 18F-FDG PET and MR
images were valuable for the evaluation of the clinical
stage of NPC. In the future, radiomics could become
a more useful and economical tool for predicting the
aggressiveness and distant metastasis of NPC. There
was a correlation between the metabolic parameters
and radiomic features, which reflects the correlation
between the metabolic function and microstructure
of tumor to some extent. In summary, the radiomic
model based on 18F-FDG PET/MR has a high diagnostic
performance in the evaluation of NPC staging, which is
conducive to the accurate clinical staging of NPC after
further verification.
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