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Abstract

Objective—Our aim was to determine if walking speed affected human sensorimotor 

electrocortical dynamics using mobile high-density electroencephalography (EEG).

Methods—To overcome limitations associated with motion and muscle artifact contamination in 

EEG recordings, we compared solutions for artifact removal using novel dual layer EEG 

electrodes and alternative signal processing methods. Dual layer EEG simultaneously recorded 

human electrocortical signals and isolated motion artifacts using pairs of mechanically coupled 

and electrically independent electrodes. For electrical muscle activity removal, we incorporated 

electromyographic (EMG) recordings from the neck into our mobile EEG data processing 

pipeline. We compared artifact removal methods during treadmill walking at four speeds (0.5, 1.0, 

1.5, and 2.0 m/s).

Results—Left and right sensorimotor alpha and beta spectral power increased in contralateral 

limb single support and push off, and decreased during contralateral limb swing at each speed. At 

faster walking speeds, sensorimotor spectral power fluctuations were less pronounced across the 

gait cycle with reduced alpha and beta power (p<0.05) compared to slower speeds. Isolated noise 

recordings and neck EMG spectral power fluctuations matched gait events and showed broadband 

spectral power increases at faster speeds.

Conclusion and significance—Dual layer EEG enabled us to isolate changes in human 

sensorimotor electrocortical dynamics across walking speeds. A comparison of signal processing 

approaches revealed similar intrastride cortical fluctuations when applying common (e.g. Artifact 

Subspace Reconstruction) and novel artifact rejection methods. Dual layer EEG, however, allowed 

us to document and rule out residual artifacts, which exposed sensorimotor spectral power changes 

across gait speeds.
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I. Introduction

ELECTROENCEPHALOGRAPHY (EEG) is a non-invasive, lightweight and portable 

neuroimaging method with fast time scale for studying human electrocortical dynamics. 

Unfortunately, speed related changes in human electrical brain activity have been 

challenging to study because of motion artifact contamination at fast gait speeds [1]–[3]. 

Neural pathways between cortical motor planning centers and spinal cord circuits have also 

been a source of contention [4], with gait speed changes attributed to subcortical structures 

that can require limited cortical input [5].

Gait speed adjustments have been studied across species using invasive recordings from 

cortical and subcortical structures. Locomotion speed control has been traced to the 

mesencephalic locomotor region of the midbrain, which responds to electrical stimulation by 

initiating gait and proportionally increasing gait speed [5]–[7]. Recently, however, slow and 

fast gait speed mechanisms have been dissociated in mice by Caggiano et al. [8] and Josset 

et al. [9]. Separate neuronal populations were identified within pedunculopontine nucleus for 

controlling slow speeds and cuneiform nucleus for fast speeds. Separate gait speed control 

mechanisms therefore appear to project from these structures through the brainstem via 

lateral paragigantocellular nucleus and ultimately to the spinal cord [5], [8], [10].

Although gait speed is modulated by the mesencephalic locomotor region, presynaptic 

inputs to pedunculopontine nucleus are received from basal ganglia and medulla, and 

cuneiform nucleus receives input from the periaqueductal grey and inferior colliculus [5]. 

Inhibitory mesencephalic inputs are also received from central amygdala, superior colliculus 

and dorsal raphe [5], [11]. Motor cortex, however, has input into basal ganglia, which 

appears to relay into pedunculopontine nucleus during slow locomotor control [5]. To 

understand the role of motor cortex during gait, its activity has therefore been studied across 

the stride and during locomotor adjustments.

Neuronal activity in motor cortex during animal locomotion has revealed fluctuations across 

the gait cycle. Studies in cats by Drew et al. [12], [13] and Beloozerova et al. [14], [15] have 

shown increased motor cortex activity during forelimb swing, which further increased 

during precision stepping. Studies in rats, however, showed hindlimb locomotion can be 

largely controlled subcortically [16], [17], though gait timing and limb kinematics can be 

decoded from cortical activity [18]–[20]. Recently, DiGiovanna and colleagues [21] showed 

neuronal firing in rat motor cortex more closely resembles activation patterns in cats than 

previously thought. Specifically, motor cortex firing preceded gait initiation, fluctuated with 

hindlimb trajectories and muscle activities, and decreased in more automated behaviors, 

such as treadmill stepping [21]. Studies in non-human primates have shown similar 

instrastride fluctuations that are highly structured and reproducible across gait speeds [22]–

[24]. Within specific gait phases, however, locomotion speed has shown little effect on 

motor cortex firing rates in cats [25], [26] and rats [21], and non-human primates have 
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shown mixed trends [22]–[24]. Although human sensorimotor alpha (8–13 Hz) and beta 

band (13–30 Hz) cortical oscillations have shown reduced spectral power during upper and 

lower limb motor preparation and execution [27]–[30], and at the instant of gait speed 

adjustments in slow treadmill walking [31], spectral power changes at faster walking speeds 

remain unclear.

Many human EEG studies have now reported electrocortical fluctuations across the gait 

cycle [32]–[39]. Gwin and colleagues [32] first identified gait related spectral fluctuations in 

left and right sensorimotor cortices, along with anterior cingulate and posterior parietal 

cortices. The authors [32] showed alpha and beta spectral power increases during double 

support and decreases during limb swing, but the appearance of broadband (3–150 Hz) 

spectral power fluctuations in each cortical cluster could relate to motion or muscle artifacts 

[1], [2], [32]. To limit EEG artifacts during locomotion, human brain dynamics have 

therefore largely been studied in slow walking and gait-like tasks [32]–[42]. Although scalp 

EEG recordings are prone to artifacts arising from electrode and cable motions, as well as 

confounding electrophysiological signals (e.g. eye and muscle) and environmental electrical 

noise, recent hardware and signal processing advances have expanded possibilities for 

studying electrical brain signals in dynamic tasks [43], [44]. Dual layer EEG hardware that 

simultaneously records electrocortical signals along with isolated noise from secondary 

sensors can enhance signal processing efforts for noise removal and help rule out the 

influence of noise artifacts in EEG recordings during locomotion [43], [44]. Capabilities and 

best practices for dual layer EEG processing, however, have yet to be established for human 

EEG recordings. Comparisons among common and novel signal processing approaches 

using dual layer EEG hardware are therefore needed for removing electrical, mechanical, 

and biological artifacts from mobile EEG.

Our aim was to study human electrocortical dynamics across a range of gait speeds using 

mobile EEG. Because motion and muscle artifacts have imposed barriers to the collection 

and interpretation of human scalp EEG at fast gait speeds, we evaluated traditional and novel 

processing approaches for motion and muscle artifact removal using dual layer EEG. We 

hypothesized that alpha and beta EEG spectral power would increase during double support 

and decrease during limb swing, independent of gait speed, and that dual layer EEG would 

allow motion and muscle artifacts to be quantified and removed through signal processing. 

Dual layer EEG artifact removal may then uncover gait speed-related changes in human 

EEG spectral power.

II. Methods and materials

Prior to participation, nine healthy subjects (6M, 3F, mean age 27 ± 4 years) provided 

institutionally approved informed consent. Institutional Review Boards at the University of 

Michigan and University of Florida approved the study. To begin each collection, subjects 

were fit with an appropriately sized 128-channel EEG cap and the location of each scalp 

electrode was measured with a Zebris digitizing system. After participation, each subject 

received an anatomical magnetic resonance image used during EEG source localization.
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A. Dual layer EEG hardware

Our dual layer EEG array consisted of 128-scalp interfacing EEG electrodes, with 40 

mechanically coupled and inverted noise-only electrodes that were electrically isolated from 

the primary scalp EEG sensors [43], [44] (Fig. 1). The 128-scalp EEG electrodes were pin 

type BioSemi ActiveTwo sensors that fit into a standard 128-channel EEG cap after applying 

conductive gel into each electrode well. The 40-noise electrodes were flat type BioSemi 

ActiveTwo sensors that were paired with scalp sensors evenly distributed across the EEG 

cap. Wires from each EEG-noise pair were bundled with each other electrode wire, forming 

a single cable bundle exiting the rear of the EEG cap (Fig. 1A). To serve as an electrically 

isolated artificial skin circuit for the noise electrodes, a custom conductive fabric cap 

(Eeonyx, Fig. 1B) was fit over the inverted noise sensors, which approximately matched the 

resistivity of human skin [44]. Conductive gel was inserted between the conductive fabric 

and the inverted recording electrode to complete the artificial skin circuit. Eight flat type 

BioSemi ActiveTwo sensors were also placed on the left and right sternocleidomastoid and 

trapezius muscles (2 electrodes per muscle), capturing EMG activity from the neck. In total, 

the 128-scalp EEG and 8-neck EMG electrodes were collected from a single BioSemi 

collection box and the 40-noise electrodes were collected from a separate BioSemi 

collection box. The two systems were daisy-chained, which stored the EEG, EMG, and 

noise data in a single synchronized data file sampled at 512 Hz. During testing, the BioSemi 

collection boxes were placed above the subject on a bodyweight support apparatus.

B. Experimental protocol

Subjects completed testing in randomized walking speed conditions (0.5, 1.0, 1.5, 2.0 m/s) 

on a Bertec force-instrumented treadmill used to detect heel strike and toe off events for 

each limb. During testing, additional experimental conditions were completed, but we focus 

this analysis on continuous walking conditions at different speeds. Each speed conditions 

were completed, but we focus this analysis on continuous walking conditions at different 

speeds. Each speed condition lasted 3-minutes with rest periods between. Subjects were 

instructed to walk normally while restricting unnecessary eye blinks, head motions, or jaw 

clenching. Because our fastest locomotion condition was near the preferred human walk to 

run transition speed [45], we asked subjects to remain walking in each condition. Prior to 

gait speed conditions, a standing baseline trial was also recorded.

C. EEG processing

Figure 2 illustrates our EEG processing pipeline used to isolate and fit electrocortical 

sources to each subject’s brain, perform time-frequency and spectral analyses, and statistical 

testing in EEGLab [46]. We evaluated multiple EEG processing procedures that included 

two single layer EEG methods (Fig. 2A) and four dual layer EEG methods (Fig. 2B) using 

EEGLab functions and custom MATLAB scripts. To distinguish traditional single layer EEG 

processing from our dual layer EEG approach, we highlighted novel processing steps in 

black boxes (Fig. 2B). Single and dual layer EEG processing differed in the number of 

channels analyzed, data preprocessing, independent component analysis input, and 

independent component rejection. Otherwise, common EEG processing steps are shown in 

white boxes (Fig. 2).
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Common EEG processing steps involved high-pass filtering channel data (1Hz) followed by 

preprocessing. Next, data from each speed condition were concatenated and outlier channels 

were rejected using statistical criteria (kurtosis and standard deviation) [32]. In methods 

without preprocessing, EEG data were common average referenced after channel rejection 

(methods 1 & 3, Fig. 2). A robust average reference was applied before each other 

preprocessing method by excluding outlier channels from the average. Prior to performing 

adaptive mixture independent component analysis (AMICA) [47], we down sampled data to 

256 Hz. We then modeled independent components as equivalent current dipoles using a 

three layer boundary element model and subject-specific anatomical magnetic resonance 

image warped to the Montreal Neurological Institute standard brain using DIPFIT and 

Fieldtrip function in EEGLab [48]. Dipoles with residual variance less than 0.15 were 

retained for further analysis. We extracted complete gait cycles from our EEG data using 

synchronized vertical ground reaction force gait events, delimited by right heel strike. Time-

frequency analysis was performed using single trial spectrograms that were baseline 

normalized within each speed condition, and time-warped to create event related spectral 

perturbation (ERSP) plots across the gait cycle [32], [50]. Group analysis relied on k-means 

clustering using vectors jointly coding dipole locations, scalp maps, and spectral power 

similarities in EEGLab [40], [49]. Clusters containing multiple independent components per 

subject were first aggregated within subjects to avoid artificially inflating sample size during 

statistical testing [44]. We then averaged time-frequency data across subjects in each cluster. 

Next, we set non-significant spectral power changes to zero using bootstrap methods in 

EEGLab (α = 0.05). Cortical clusters with components from more than 50% of the subjects 

were further analyzed. Because we compared multiple EEG processing methods, we focused 

our analysis on consistent cortical clusters with spectral fluctuations across the gait cycle. 

Finally, we evaluated spectral power differences among speed conditions using non-

parametric bootstrap-based ANOVA in EEGLab (α = 0.05).

D. Single layer EEG processing

Single layer EEG processing (Fig. 2A) was completed without additional preprocessing (1: 

Single layer EEG) and after artifact subspace reconstruction (2: ASR) in EEGLab. ASR is a 

commonly used EEG preprocessing method that relies on 0.5 s sliding window principal 

component analysis to correct and reconstruct non-stationary high variance EEG data based 

on statistical criteria from clean EEG [51]. Here, we used a standing baseline for each 

subject during ASR and applied a 7 standard deviation cutoff based on pilot testing. The 

remainder of each single layer EEG processing approach was performed as outlined above 

and in Fig. 2A using data from the scalp interfacing dual layer EEG sensors and omitting 

data from the outer layer sensors (Fig. 1).

E. Dual layer EEG processing

Dual layer EEG processing (Fig. 2B) was completed without additional preprocessing (3: 

Dual layer EEG), after frequency domain noise cancellation (4: Noise cancellation), after 

artifact subspace reconstruction (5: ASR), and after applying frequency domain noise 

cancellation to artifact components from principal component analysis and canonical 

component analysis (6: PCA+CCA). Each dual layer EEG preprocessing approach relied on 

methods adapted from Nordin et al. [44], using similar AMICA input and independent 
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component rejection steps. In each case, dual layer EEG preprocessing output was merged 

with 40-channel dual layer noise data and 8-channel EMG data by stacking channels. We 

reduced dual layer EEG AMICA output to 136 dimensions using PCA. To reject dual layer 

EEG independent components, component spectra were compared to noise and EMG 

channels using a polynomial fit. Components with flat spectra (linear slope ≥ −0.06) or those 

matching noise or muscle (R2 ≥ 0.99) were rejected.

Frequency domain noise cancellation was applied using methods from Nordin et al. [43]. 

This method cancels artifacts from scalp-interfacing EEG electrodes using artifacts captured 

by dual layer noise electrodes. Because our array consisted of 128-EEG electrodes and 40-

matched noised pairs, we used spherical interpolation in EEGLab to compute matched noise 

pairs for all 128-EEG electrodes. We then used the noise cancellation algorithm to separately 

perform Fast Fourier Transform (FFT) on the EEG and noise data in a 0.5 s sliding window 

with 94% overlap. Noise frequencies in the EEG signal were cancelled using cutoffs based 

on the median Fourier coefficients across frequencies, and the signal was reconstructed 

using inverse FFT [43]. We used separate upper (>6x median) and lower cutoffs (<2x 

median) for motion artifact and electrical noise cancellation, respectively. To account for 

magnitude differences between EEG and noise signals, we scaled noise FFT coefficients to 

the median EEG FFT coefficients and reconstructed an amplitude-matched noise signal, 

which we later used in dual layer AMICA. Our aim was to match noise and EEG artifact 

signal amplitudes, compensating for resistivity differences between the scalp and conductive 

fabric. This overall approach has outperformed direct time or frequency domain noise 

subtractions when applying algorithm parameters from pilot testing.

To remove motion and muscle artifacts from our dual layer EEG data, we combined 

preprocessing approaches. Because ASR relies on principal component analysis to 

reconstruct signal components that deviate from clean EEG data, we developed a process to 

clean large variance components based on comparisons to dual layer noise electrodes. To do 

so, we used a 0.5 s sliding window with 50% overlap to perform PCA on the EEG channel 

data. We replaced outlier PC scores (>2SD from the median) with the median and cleaned 

components highly correlated with 40-channel dual layer noise mean (>5SD from the 

median noise correlation) using frequency domain noise cancellation (cancel Fourier 

coefficients >2x noise median). The signal was then reconstructed from artifact cleaned 

principal components.

Next, because canonical component analysis has been used to remove EEG motion and 

muscle artifacts [52], [53], we used a 3.0 s sliding window with 50% overlap to perform 

CCA on the PCA preprocessed EEG data. CCA input relied on channel data with a 1-frame 

lag autocorrelation, which separates low frequency, high autocorrelation motion artifact 

components from high frequency, low autocorrelation electrical and muscle artifact 

components. Components with low autocorrelation (below the component-autocorrelation 

plot knee) or biased power spectra (negatively skewed: high frequency, or outlier skewness 

or kurtosis: >2SD from the median) were cleaned using frequency domain noise cancellation 

(cancel Fourier coefficients >6x noise median or <2x noise median). The signal was then 

reconstructed from artifact cleaned canonical components. We found that using PCA before 

CCA to cancel large artifacts improved the performance of CCA for muscle and electrical 
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artifact cancellation, as well as residual motion artifacts. Overall parameter selection was the 

result of pilot testing.

F. Dual layer EEG noise and EMG channel processing

After analyzing our EEG data using each single and dual layer method, we performed 

similar channel-based analyses on the 40 dual layer noise channels and 8 neck EMG 

channels. The purpose was to evaluate pure motion and muscle artifacts by examining 

equivalent spectral power fluctuations across the gait cycle and changes in spectral power 

among speed conditions. We compared motion and muscle artifact signal changes to our 

preprocessed and ICA-derived electrocortical sources. Channel data were analyzed after 

high pass filtering at 1 Hz, down sampling to 256 Hz, extracting gait cycle epochs, and 

performing time-frequency analysis. ERSP plots were normalized to baseline within each 

speed condition and masked for significance (α = 0.05). Spectral power differences among 

speed conditions were also assessed using non-parametric bootstrap-based ANOVA in 

EEGLab (α = 0.05).

III. Results

Left and right sensorimotor cortices showed spectral power fluctuations across the gait cycle 

using contrasting EEG processing methods. Figure 3 shows increased left sensorimotor 

alpha and beta spectral power surrounding left heel strike, and decreased alpha and beta 

spectral power after right toe off. Left sensorimotor alpha and beta fluctuations therefore 

increased during right limb single support and push off in double support, but decreased 

during right limb swing. In contrast, Figure 4 predominantly shows asynchronous spectral 

power fluctuations in right sensorimotor cortex compared to left. Right sensorimotor alpha 

and beta power increased surrounding right heel strike, followed by decreased alpha and 

beta power after left toe off. Right sensorimotor alpha and beta power therefore decreased 

during left limb swing, but increased during left limb single support and push off in double 

support. At faster gait speeds, electrocortical fluctuations were less pronounced across the 

gait cycle, with limited amplitude, duration, and spectral bandwidth compared to slow 

walking (Figs. 3 & 4, ERSPs). Supplementary Figures A and B show spectral power 

fluctuations from Figures 3 and 4 without significance masking.

Discrepancies were apparent among EEG processing approaches when assessing spectral 

power fluctuations across the gait cycle. Similarities were evident in the scalp map, dipole 

locations and ERSP plots among single layer and dual layer EEG processing using ASR 

(Figs. 3 & 4, rows 2 & 5, respectively) and dual layer PCA+CCA (Figs. 3 & 4, row 6). Each 

of these methods showed lateralized asynchronous sensorimotor electrocortical fluctuations 

across the gait cycle. In contrast, single and dual layer EEG without additional preprocessing 

(Figs. 3 & 4, rows 1 & 3, respectively) and noise cancellation (Figs. 3 & 4, row 4) did not 

show consistent gait-related spectral power fluctuations, despite relatively similar scalp 

topography and dipole locations compared to each other processing method.

Spectral power changes across speed conditions further exposed differences among EEG 

processing methods (Figs. 3 & 4, right column). Left sensorimotor cortex mostly showed 

increased gamma power at faster gait speeds (p < 0.05) based on single layer EEG and ASR 
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(Fig. 3, rows 1 & 2, respectively), as well as dual layer EEG without preprocessing and after 

noise cancellation (Fig. 2, rows 3 & 4, respectively). In contrast, dual layer ASR and PCA

+CCA showed reduced left sensorimotor beta power at faster gait speeds (Fig. 3, rows 5 & 

6, p < 0.05), and PCA+CCA also showed reduced alpha power at faster speeds (Fig. 3, row 

6, p < 0.05). Similar to the left, right sensorimotor cortex showed greater gamma power at 

faster speeds (p < 0.05) based on single layer EEG and ASR (Fig. 4, rows 1 & 2, 

respectively), as well as noise cancellation and dual layer ASR (Fig. 4, rows 4 & 5, 

respectively, p < 0.05). In contrast, PCA+CCA, showed reduced beta power at faster gait 

speeds (Fig. 4, row 6, p < 0.05).

Dual electrode noise recordings captured spectral fluctuations due to motion artifacts across 

the gait cycle (Fig. 5). Noise fluctuations varied slightly across scalp locations, but 

consistently showed increased spectral power following heel strike, during double support, 

and reduced spectral power during swing, without lateralization. Artifact related broadband 

spectral power fluctuations are seen clearly in Supplementary Figure C, which shows Figure 

5 ERSPs without significance masking. Spectral fluctuations tended to increase in amplitude 

at faster gait speeds (Fig. 5 & Supplementary Fig. C ERSPs), along with broadband spectral 

power increases (Fig. 5, right column, p < 0.05).

Neck EMG recordings showed spectral power fluctuations across the gait cycle (Fig. 6). 

Each neck muscle recording contained lateralized high frequency gamma oscillations, and 

broadband spectral fluctuations were evident without significance masking (Supplementary 

Fig. D). Left and right sternocleidomastoid and trapezius muscles predominantly showed 

increased spectral power preceding heel strike and during double support with the 

contralateral limb leading, and prior to ipsilateral heel strike. Left and right neck muscles 

also showed decreased spectral power during double support with the ipsilateral limb 

leading, through swing. Lateralized neck EMG spectral power fluctuations did not match left 

and right sensorimotor fluctuations across the gait cycle, nor did they match dual electrode 

noise recordings. Neck EMG spectral fluctuations tended to increase at faster gait speeds 

(Fig. 6 & Supplementary Fig. D ERSPs, p < 0.05), along with broadband spectral power 

increases (Fig. 6, right column).

IV. Discussion

We observed asynchronous spectral power fluctuations in left and right sensorimotor 

cortices across the gait cycle, with reduced duration and frequency bandwidth at faster gait 

speeds. Sensorimotor alpha and beta power increased during contralateral limb single 

support and push off, and decreased during contralateral limb swing. Mean spectral power 

across the gait cycle showed reduced left and right sensorimotor beta power, and reduced 

right sensorimotor alpha power, at faster gait speeds, after removing muscle artifacts. 

Gamma power increased in left and right sensorimotor cortices at faster gait speeds without 

removing EEG muscle artifacts, but did not show gait speed differences after EMG artifact 

removal.

By simultaneously collecting isolated noise recordings from our dual layer EEG electrodes, 

we were able to characterize spectral power fluctuations due to motion artifacts across the 
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gait cycle at a range of speeds (Fig. 5). Motion artifact related spectral power fluctuations 

increased with gait speed and overlapped with left and right sensorimotor electrocortical 

fluctuations in Figures 3 and 4, which illustrates challenges involved in isolating brain 

signals from scalp EEG during locomotion. After preprocessing with ASR or PCA+CCA, 

however, we were able to identify robust lateralized sensorimotor cortical activity across a 

range of gait speeds that is distinct from isolated EEG motion artifacts and EMG recordings. 

Dual layer EEG therefore allowed us to rule out residual artifacts from our electrocortical 

sources.

Our observed changes in sensorimotor dynamics with gait speed are largely in agreement 

with invasive recordings during animal locomotion. Our human electrocortical spectral 

power fluctuations occurred within specific phases of the gait cycle that were maintained 

across locomotion speeds These data reflect similar neuronal firing rate patterns throughout 

the gait cycle in cats [25], [26], rats [21] and non-human primates [22]–[24], with neuronal 

spike rates that varied across the stride. Increased firing rates within the motor cortex have 

also been reported in transitions between single and double support [21], [22] and during 

limb swing [12], [13], [15], [24]. Our EEG data had spectral power increases in 

sensorimotor cortices during contralateral limb single support and push off, and decreases in 

swing. Compared to slower speeds, however, faster walking speeds had reduced spectral 

power fluctuation durations and frequency bandwidth in the gait cycle. Reduced overall 

sensorimotor alpha and beta power at faster gait speeds suggests greater cortical involvement 

compared to slow walking [54]. One explanation is that sensorimotor cortices are processing 

increased sensory feedback throughout the gait cycle at faster speeds. If sensorimotor cortex 

is more attuned to sensory feedback, it could be better primed for performing unexpected 

gait adjustments at fast speeds, such as stepping over obstacles [44]. Although animal 

studies have shown increased, decreased, and unchanging neuronal firing rates in 

sensorimotor cortex with changes in locomotion speed [21]–[26], comparisons between 

neuronal firing rates and EEG spectral power are indirect. Despite substantial evidence that 

locomotor speed is largely controlled subcortically [5]–[11], sensory integration involves 

many cortical structures [13]. Reduced alpha and beta EEG spectral power from human 

primary motor and parietal cortices at the instant of slow gait speed transitions (~0.3–0.6 

m/s) have therefore exposed cortical contributions to gait speed adjustments [31].

Slow gait-like stepping tasks have previously shown sensorimotor electrocortical 

fluctuations measured with EEG. During slow robot assisted walking (~0.5–0.6 m/s), 

Wagner and colleagues [33] and later, Seeber et al. [34], [35], showed low gamma 

fluctuations (~24–40 Hz) in central sensorimotor areas, without lateralization, though task 

differences might present contrasting brain dynamics compared to unassisted gait. Bradford 

and colleagues [36] subsequently showed lateralized asynchronous spectral fluctuations in 

left and right sensorimotor cortices during level and incline walking at 0.75m/s, and Oliveira 

et al. [37] isolated similar activities in somatosensory cortices during walking at 1.0 m/s with 

eyes open and closed. In each case, alpha and beta power increased in double support during 

contralateral limb push off, and decreased during swing, in agreement with our results.

Bulea and colleagues [38] also studied slow (0.8–0.9 m/s) and fast treadmill walking (1.4–

1.5 m/s), in active and passive speed control conditions, with some evidence of lateralized 
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spectral fluctuations in left and right motor cortices in slow walking. The authors [38], 

however, applied ASR to their EEG data using an aggressive three standard deviation cutoff 

that can attenuate or remove brain signals along with artifacts. In separate studies, Luu et al. 

also applied ASR with a three standard deviation cutoff, but did not report lateralized 

sensorimotor activity during level walking, and ramp and stair ascent [41], nor while 

controlling an avatar during treadmill walking [42]. Recently, however, Artoni and 

colleagues [39] reported spectral power fluctuations across the gait cycle in cortical motor 

regions after applying ASR with 20 standard deviation cutoff. Similar to our results and 

previous studies, the authors showed spectral power decreases during limb swing and 

increases during double support, and the authors were able to identify unidirectional 

connectivity to lower limb muscles during limb swing, indicative of motor drive [39].

Although we report lateralized activity in sensorimotor cortices, gait related spectral 

fluctuations have been reported in several cortical areas in previous mobile EEG studies, 

including occipital lobe, supplementary motor area, anterior cingulate, posterior parietal, 

prefrontal, and premotor cortices [32], [36]–[39], [41], [42]. We therefore cannot rule out 

gait speed changes in other cortical structures, but restricted our analysis to clusters that 

appeared in multiple preprocessing methods, and with prominent spectral fluctuations across 

the gait cycle. The inclusion of additional tasks, contrasting EEG processing, electrode 

configurations, or residual motion and muscle artifacts, could also lead to the appearance of 

intrastride spectral fluctuations in other brain areas. Additional studies that apply 

preprocessing steps to remove artifacts while preserving electrocortical activity are therefore 

needed.

In addition to our reported spectral power fluctuation patterns across the gait cycle, mean 

spectral power revealed important electrocortical changes among gait speeds. Reduced 

sensorimotor alpha and beta power was observed at faster gait speeds, often coinciding with 

increased gamma power (Figs. 3 & 4, right column). Although multiple processing methods 

showed these trends, dual layer EEG preprocessing with PCA and CCA appeared to limit 

artifact related variability that masked statistical differences in alpha and beta bands, and 

broad gamma band increases that were similar to motion artifact and EMG recordings (Figs. 

5 & 6, right column). Decreased sensorimotor alpha and beta spectral power are expected 

electrocortical responses during motor preparation and execution [27]–[30], but increased 

gamma power has also been reported in isolated upper and lower limb movements using 

electrocorticography, magnetoencephalography, and EEG [27], [55]–[57]. Observed spectral 

power differences among gait speeds could therefore indicate signal over cleaning when 

applying dual layer PCA and CCA for motion and muscle artifact removal [58]. Movement 

related gamma band activity, however, tends to be localized with short duration around 

movement onset and offset, which is difficult to record using scalp EEG because of its 

comparatively low signal to noise ratio and spectral overlap with muscle activity [55]–[57]. 

Nevertheless, increased primary motor cortex gamma power has been reported by 

McCrimmon et al. using electrocorticography during treadmill walking [59], and this 

activity showed intrastride fluctuations. The authors reported more gamma bursts across the 

gait cycle at faster walking speed, but this finding was limited to one of two epileptic 

patients in the study [59]. Intrastride fluctuations were also shown in alpha and beta bands 

for one subject [59], but the authors acknowledge the possibility of alpha band motion 
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artifact contamination in their electrcortographic data. Because the scalp, skull, and dura 

mater can also blur and low pass filter electrocortical signals [57], [60], [61], representations 

of gait related electrocortigraphic gamma activity might differ from scalp EEG, particularly 

during locomotion when muscle activity increases.

Acknowledging uncertainty in ground truth EEG spectral content during locomotion, 

intrastride alpha and beta fluctuations are well reported during slow walking using EEG. 

Bilateral sensorimotor alpha and beta activities therefore appear to be involved in regulating 

stride dynamics. Although McCrimmon and colleagues [59] attributed increased primary 

motor cortex gamma activity to high level locomotor control processes, such as adjusting 

gait speed and duration, rather than sensory processing, recordings from additional brain 

structures are required to draw concrete conclusions. Decreased bilateral coordination has 

also been reported based on lower limb gait dynamics in slow compared to fast walking [62]. 

The authors speculated that slower gait speeds might therefore require greater attentional 

resources and supraspinal input [62]. Ultimately, locomotor control likely involves complex 

interactions among brain areas that integrate sensory and motor processes, particularly 

during online gait adjustments. Fortunately, high density EEG captures electrocortical 

signals across the scalp, which has uncovered interactive processes among cortical structures 

in upper limb tasks [63], [64]. Here we show that novel hardware and signal processing can 

enable similar advances in the study of locomotor control using mobile EEG, though 

additional work is needed to decode the information from these brain signals during gait. 

Along these lines, reduced EEG beta power was recently reported over the contralateral 

sensorimotor cortex during a seated knee extension task in spinal cord injured subjects [65]. 

This spectral power decrease during movement was followed by a spectral power increase 

after movement termination that further increased with spinal cord stimulation. The authors 

attributed this EEG spectral power change to cortical excitability modulation through 

proprioceptive pathways [65].

To study a wide range of locomotion speeds, we chose relatively aggressive cleaning 

parameters in each preprocessing method. Although these parameters are adjustable, some 

evidence of over cleaning was apparent using ASR, which showed reduced delta and theta 

spectral power in 2.0 m/s walking (Figs. 3 & 4, rows 2 & 5, right column). Low frequency 

spectral power reductions, however, were also observed when applying higher standard 

deviation cutoffs (e.g. 10 and 20). Notably, similar spectral power fluctuation patterns were 

apparent after applying ASR to single and dual layer EEG, compared to dual layer EEG 

processing using PCA and CCA. In this case, however, single layer EEG also benefitted 

from a passive mechanical effect of cable bundling and the overlaid secondary cap [43], [44] 

because all data were collected with dual layer EEG hardware. An important distinction 

between ASR and our dual layer EEG approach using PCA and CCA is that our artifact 

component selection and cleaning criteria are based on simultaneous noise recordings, rather 

than statistical features from clean EEG while subjects were motionless. Dual layer EEG 

processing can therefore be carried out without calibration or baseline comparisons, which 

can enable more straightforward online EEG artifact removal without assumed similarities 

between EEG recorded at rest and EEG recorded during motor tasks. Although each 

approach carries assumptions, we believe objective artifact measures can improve EEG 

cleaning reliability and validity. Our ability to directly compare artifact recordings to pre and 
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post-processed EEG removes uncertainty when interpreting brain activity during movement. 

Artifact identification is therefore simplified during channel-level preprocessing and 

independent component rejection, similar to previous approaches that identified and filtered 

components based on accelerometer data [66], [67]. Our dual layer EEG approach, however, 

is well-suited for removing electrical artifacts [42]. Dual layer EEG processing might also 

benefit from alternative cleaning methods, including adaptive filtering [68]. Future signal 

processing evaluations should nevertheless include benchmark tests with ground truth 

signals broadcast through electrical head phantom devices during motion [43], [44], [69], 

[70].

In the current EEG processing approach, we applied frequency domain noise cancellation to 

artifact related principal and canonical components. Frequency domain noise cancellation 

was also applied directly to EEG channel data, but was less effective at removing artifacts 

that masked gait related electrocortical fluctuations (Figs. 3 & 4, row 4). Component 

decomposition methods prior to EEG cleaning therefore appeared to be more effective at 

isolating noise. We elected to clean rather than reject artifact related components in order to 

limit over cleaning and data rank reductions prior to ICA. Related to these concerns, we 

acknowledge contention surrounding PCA dimension reduction prior to ICA [71], but do not 

believe this step dramatically altered our ICA-derived brain sources during dual layer EEG 

processing. We do, however, note fewer subjects and components contributed to our cortical 

clusters after dual layer processing (Figs. 3 & 4, left column), which is likely due to 

additional artifact component rejection steps. Ultimately, these steps helped to ensure our 

electrocortical clusters were free of artifacts.

V. Conclusion

Human sensorimotor electrocortical dynamics changed with gait speed, revealing lateralized 

sensorimotor activity tied to gait events. Intrastride electrocortical activity showed left and 

right sensorimotor alpha and beta power increased in contralateral limb single support and 

push off, and decreased during swing at each gait speed. At faster speeds, spectral power 

fluctuations had limited duration and bandwidth, along with reduced alpha and beta power 

across the gait cycle, after dual layer EEG motion and muscle artifact removal. Reduced 

sensorimotor spectral power could be indicative of greater cortical resources attuned to 

sensory feedback at faster locomotion speeds. This would prime sensorimotor cortices for 

performing sudden gait adjustments. Using our dual layer EEG hardware we were able to 

quantify artifact sources and clean noisy data. Isolated noise recordings showed discernible 

spectral power fluctuations from electrocortical activity after preprocessing, which helped 

rule out the effects of motion and muscle artifacts. Dual layer EEG can help expand 

possibilities for studying human brain activity in dynamic tasks.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Dual layer EEG displayed on a mannequin head (A.). 128-channel scalp interfacing EEG 

electrodes and 40 mechanically coupled and inverted noise-only electrodes bundled into a 

dual layer EEG array. Noise-only sensors were referenced to an overlaid custom conductive 

fabric cap (B.).
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Figure 2. 
Single (A.) and dual layer EEG (B.) processing pipelines. Common EEG processing steps 

(white boxes) and dual layer specific EEG processing steps (black boxes). Single-layer EEG 

approaches relied on 128-scalp EEG electrodes without additional preprocessing (1: Single 

layer EEG) and after Artifact Subspace Reconstruction (2: ASR). Dual-layer EEG 

approaches relied on 128-scalp EEG electrodes, 40 isolated noise-only electrodes, and 8 

neck EMG electrodes merged into an adaptive mixture independent component analysis 

(AMICA) after contrasting preprocessing steps. Dual-layer EEG processing was completed 

without additional preprocessing (3: Dual layer EEG), after frequency domain noise 

cancellation (4: Noise cancel), after ASR (5), and after applying frequency domain noise 

cancellation to artifact components from principal component analysis and canonical 

component analysis (6: PCA+CCA).
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Figure 3. 
Left sensorimotor cortex data processing comparisons (separate processing procedure in 

each row). Two traditional single-layer EEG approaches were applied to the scalp 

interfacing dual layer EEG sensors (top two rows) and four dual-layer EEG approaches 

incorporated all sensor data (bottom four rows). Left to Right: Mean cluster topographic 

map, Dipole locations (Blue: subject dipoles, Red: cluster centroid), Event Related Spectral 

Perturbation plots at each walking speed (Left to right: slow to fast, significance masked: p < 

0.05), Power spectral density at each walking speed (significant speed differences at each 

frequency identified below each plot in black, p < 0.05). ERSP plots without statistical 

significance masking are in Supplementary Fig. A.
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Figure 4. 
Right sensorimotor cortex data processing comparisons (separate processing procedure in 

each row). Two traditional single-layer EEG approaches were applied to the scalp 

interfacing dual layer EEG sensors (top two rows) and four dual-layer EEG approaches 

incorporated all sensor data (bottom four rows). Left to Right: Mean cluster topographic 

map, Dipole locations (Blue: subject dipoles, Red: cluster centroid), Event Related Spectral 

Perturbation plots at each walking speed (Left to right: slow to fast, significance masked: p < 

0.05), Power spectral density at each walking speed (significant speed differences at each 

frequency identified below each plot in black, p < 0.05). ERSP plots without statistical 

significance masking are in Supplementary Fig. B.
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Figure 5. 
Exemplar dual electrode isolated noise channel data. Left to Right: Noise channel scalp 

location (red circle), Event Related Spectral Perturbation plots at each walking speed (Left 

to right: slow to fast, significance masked: p < 0.05), Power spectral density at each walking 

speed (significant speed differences at each frequency identified below each plot in black, p 
< 0.05). ERSP plots without statistical significance masking are in Supplementary Fig. C.
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Figure 6. 
Exemplar neck EMG channel data (left and right sternocleidomastoid and trapezius 

muscles). Left to Right: EMG channel location (red circle), Event Related Spectral 

Perturbation plots at each walking speed (Left to right: slow to fast, significance masked: p < 

0.05), Power spectral density at each walking speed (significant speed differences at each 

frequency identified below each plot in black, p < 0.05). ERSP plots without statistical 

significance masking are in Supplementary Fig. D.
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