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Abstract: Concrete properties and damage conditions are widely evaluated by ultrasonics. When
access is limited, the evaluation takes place from a single surface. In this case, the sensor size plays a
crucial role due to the “aperture effect”. While this effect is well documented regarding the amplitude
or the frequency content of the surface (or Rayleigh) wave pulses, it has not been studied in terms of
the wave velocity, although the velocity value is connected to concrete stiffness, porosity, damage
degree, and is even empirically used to evaluate compressive strength. In this study, numerical
simulations take place where sensors of different sizes are used to measure the surface wave velocity
as well as its dependence on frequency (dispersion) and sensor size, showing the strong aperture
effect and suggesting rules for reliable measurements on a concrete surface. The numerical trends are
also validated by experimental measurements on a cementitious material by sensors of different sizes.

Keywords: concrete; surface (Rayleigh) waves; dispersion; sensor size; aperture effect; heterogeneity

1. Introduction

Elastic wave techniques are globally used for laboratory and in-situ concrete charac-
terization purposes, either in their passive (acoustic emission, AE) or in the active form
(ultrasound). In most applications, the elastic waves are captured by piezoelectric (PZT)
transducer(s) on the surface of the material. These sensors transform the pressure on their
surface to an electric waveform, which is recorded and analyzed. Based on the arrival time,
the amplitude and the shape of the waveform, wave speed, and attenuation can be derived,
while projections to mechanical properties of concrete (Young’s and shear moduli, strength)
and damage are commonly conducted with good accuracy [1,2]. Although some measure-
ments are seemingly straightforward and can be conducted in the time domain (such as
“pulse velocity” based on first threshold crossing), other more delicate parameters like
the frequency-dependent velocity and attenuation curves and diffusivity heavily depend
on the whole recorded waveform [3–6]. In these cases, the response of the transducers
becomes crucial. The response (resonant or broadband) and the frequency band are defined
by the characteristics of the piezoelectric element, such as stiffness and thickness. The
response is characterized by certain calibration procedures [7,8] and is usually available
for any commercial sensor for cases of vertical impinging waves as well as for waves
propagating parallel to the sensor’s surface, such as guided waves in beams/plates or
Rayleigh waves propagating on the surface where the sensors are attached [8,9]. In the
latter case, apart from the sensitivity characteristics of the PZT element, its physical size
becomes very important. The reason is simply that cycles with wavelengths shorter than
the size of the element act simultaneously, with their positive and negative phases essen-
tially cancelling each other, see Figure 1a. This is known as the “aperture effect” and has
been acknowledged and studied in literature [8–11]. The consequence is that for Rayleigh
or other guided waves that travel parallel to the sensor’s surface, the sensitivity to higher
frequencies decreases compared to the sensitivity to bulk waves (of vertical impact to
the sensor) [9–12], see also schematic representation in Figure 1b. The larger the size of
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the sensor, the strongest is the deviation (decrease) of sensitivity compared to normally
impinging waves or to an ideal “point” receiver. Even though the decrease of sensitivity for
higher frequencies due to aperture effect is well documented, there is no strong evidence
in concrete literature about how the aperture influences the wave velocity measurements
and more specifically the Rayleigh wave “dispersion curves” or the velocity dependence
on frequency.
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ometric attenuation (spreading) as the three-dimensional longitudinal and shear waves 
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concrete surfaces. Their limited penetration in terms of depth is roughly considered equal 
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2. Wave Background
2.1. Rayleigh Waves and Dispersion on Concrete

Rayleigh (or surface) waves are widely utilized for concrete investigation. They
propagate along the surface of the material or structure, and they occupy a much higher
percentage of energy than the other types of waves after a surface excitation [13]. In
addition, since they propagate only in two dimensions, they do not suffer similarly much
from geometric attenuation (spreading) as the three-dimensional longitudinal and shear
waves [14]. This makes their detection easier than other types of waves at longer distances
on concrete surfaces. Their limited penetration in terms of depth is roughly considered
equal to their wavelength [15], their particle motion is elliptical, and their vertical (out-of-
plane) displacement component is greater than the horizontal (Figure 2a), making their
reception possible by usual PZT transducers placed on the surface [16].
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Due to the microstructure of concrete including heterogeneity in ranges from µm
to cm, various wavelengths can be influenced in a different way. Therefore, detailed
ultrasonic studies reveal that wave propagation is dispersive or else that the wave velocity
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depends on the frequency. The form of dispersion (or shape of the dispersion curve) can
supply information on its source (Figure 2b), such as porosity or voids [19], aggregate
particles [20], damage in distributed [21–23] and concentrated forms [24–27], repair, and
self-healing [28,29]. In addition, due to the connection of Rayleigh propagation depth
to the wavelength, a layered material is by definition dispersive, which means that in
such media different frequency components will propagate at different speeds. Therefore,
Rayleigh dispersion curves reveal the differential stiffness of layered structures [13,23,30,31].
Additionally, the value of Rayleigh wave velocity, CR, is used for the characterization of
the Young’s modulus, since CR is firmly connected to longitudinal velocity through the
Poisson’s ratio [13,16]:

CR =
0.87 + 1.12ν

1 + ν

√
1− 2ν

2(1− ν)
CP, (1)

where CP is the longitudinal wave velocity and ν is the Poisson’s ratio. Indicatively,
following Equation (1), CR is approximately 55% of CP, for a Poisson’s ratio ν = 0.21.

Concrete strength estimations are also attempted by the Rayleigh wave velocity due
to the indirect correlation of strength to stiffness [32–34].

In the studies where multiple wave frequencies are examined, wave velocity (of
Rayleigh or longitudinal waves) shows an increase with frequency, with the strongest
increasing trend at moderate frequencies (up to 100 or 150 kHz) [3,4,19,21–23,35]. The dis-
persive trend of the increase of velocity with frequency, becomes stronger with the amount
of inherent heterogeneity (sand, aggregates) [4,21] and damage or air content [3,19–22].
Scattering was shown to be strongly connected to the aforementioned dispersion mainly
through interaction with voids and cracks [3,19–21], while enhanced elastic models based
on the content and size of aggregates have also been proposed [36].

Recently the influence of the sensor physical size on the Rayleigh velocity measure-
ment in concrete has been acknowledged in [37]. There, it was shown that larger surface-
bonded sensors (of 20 mm size) led to certain underestimation of Rayleigh wave velocity
compared to sensors of 10 mm, using a wavelength of approximately 50 mm (the frequency
was 40 kHz). This led also to a strong underestimation of the Young’s modulus by 11%.
However, so far, the effect of sensor size on the frequency dependence of velocity has not
been systematically studied, even though the interaction of multiple short wavelengths on
the physical aperture of the sensor is bound to have an effect on the final result. This issue
gains more importance as it is well known that the surface layer of concrete is normally
less stiff and more porous than material deeper in the casting direction, due to settlement
and bleeding, and one-sided surface wave measurements are in many cases the only way
to investigate its properties.

2.2. Objective

In this work, a study of the aperture effect on Rayleigh wave velocity and dispersion
was attempted. The main part is numerical since numerical simulation is the only way to
compare the results when varying just the physical size of the sensors. In an experimental
case, where sensors are compared, they may have different sizes but at the same time their
overall response will be different (different PZT sensitivity curve), therefore not allowing to
isolate the aperture effect. In the numerical case though, the response of the virtual receivers
is flat, meaning that no bias or preference is included in the result, and the effect of the
physical size can be identified. The study is conducted using surface wave propagation on
the half space of a material with properties of a cementitious medium. Different frequencies
are excited, and the wave is received by two sensors of three different sizes. Dispersion
curves are calculated for all sensor sizes showing the noticeable “aperture” effect which
becomes more evident in the case of heterogeneity, as simulated by voids in the cement
matrix. An indicative set of experiments on cement mortar by using three different pairs
of sensors with noticeably different size (from 4 to 41 mm) to demonstrate this effect is
also presented.



Sensors 2021, 21, 6483 4 of 13

3. Numerical Simulation and Dispersion Calculation

Numerical simulations are conducted with a commercially available software
Wave2000 [38]. It computes displacement vectors by solving 2D elastic wave equations
using a method of finite differences. The specific acoustic equation that is simulated is:

ρ
θ2u
θt2

=

(
µ + η

θ

θt

)
∇2u +

(
λ + µ + ϕ

θ

θt
+

n
3

θ

θt

)
∇(∇u), (2)

where u is the displacement vector (consisting of two ux and uy components perpendicular
to each other), ρ is the density (kg/m3), λ and µ are the first and second Lamé constants
(Pa), η and ϕ are the “shear” and “bulk” viscosity (Pa·s), and t is time (s) [38].

The simulated two-dimensional geometry is given in Figure 3. The physical properties
were chosen close to cementitious material: longitudinal wave velocity 4160 m/s, shear
velocity 2224 m/s, and density 2170 kg/m3, typical of mortar. Additionally, damping
attenuation was applied to the material in order to resemble the experimentally mea-
sured attenuation. This was conducted by modifying the material damping coefficients
in the software until an attenuation value of 0.32 dB/mm (taken from the experiment)
was reached.
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the specimen.

Three pairs of receivers with different size were used, namely 10 (called “large” sensor),
5 (“medium” sensor), and 1 mm (“point” sensor). The receivers are set at the top right side
of the geometry shown in Figure 3.

The distance from the source to the center of the closest sensor is 70 and another
50 mm to the furthest sensor. The source has a size of 1 mm. The excitation consists of a
single cycle with varying frequencies, being 50, 200, and 500 kHz, applied separately. The
spatial resolution of the geometry was equal to 0.1 mm and the simulation time was 100 µs.

The influence of heterogeneity was investigated by adding voids to the material.
Specifically, Figure 4a shows the homogeneous mortar (without voids), whereas Figure 4b
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displays the same mortar matrix with 3% of air voids. The voids have a diameter of 2 mm,
density of 1.2 kg/m3, and longitudinal wave velocity of 330 m/s, resembling air properties.
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Figure 4. Displacement field close to the surface of (a) mortar without voids and (b) mortar with 3% voids a few µs
after excitation.

The calculation of the phase velocity vs. frequency curves, was conducted based on the
original methodology of Sachse and Pao [39]. According to this approach, the phase of the
fast Fourier transform (FFT) of the two signals (sensor 1 and 2) is calculated and unfolded
for the whole frequency band. The difference of the two phases in combination with the
sensor separation distance leads to the phase velocity for each frequency component. More
details on the calculation are supplied in [40]. To avoid contamination of the results from
components other than Rayleigh (reverberations and initial longitudinal arrivals) the signal
was processed by zero-padding the rest of the waveform after maintaining the strong
Rayleigh cycles, as is common in similar cases [4,41].

4. Results
4.1. Waveforms

The description of the results starts with the pure waveforms, which are the raw
data for the phase velocity calculations. Figure 5a shows the waveforms of both sensors
(1 and 2 with distance 70 and 120 mm from the excitation, respectively) for the cases of
1 and 10 mm aperture and the 50 kHz excitation on plain material. Visual comparison
shows no strong differences in shape or amplitude between the waveforms captured by the
different apertures. The waveforms of sensor 1 start with a weak arrival at approximately
19 µs, while the strong Rayleigh contribution follows between 30 and 60 µs. Figure 5b
exhibits the corresponding waveforms from the excitation of 500 kHz. In this case, the
waves are much “sharper” because of the shorter period. Additionally, a change of shape
starts being evident with the wave captured by the large sensor being “stretched” in time
domain, while the amplitude is certainly decreased, close to one third of the point sensor
(indicatively 0.0163 compared to 0.0435 for 120 mm of propagation). These are already
strong indications of the aperture effect that are evident for the higher frequency pulse
even from time domain and in homogeneous medium.
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Moving to the material with voids, the waveforms of low-frequency excitation (50 kHz)
are shown in Figure 6a. The waves do not show strong discrepancies compared to the
homogeneous case. This is attributed to the high ratio of wavelength over diameter, which
for this case is approximately 20 (λ ≈ 40 mm, void diameter 2 mm). The situation changes
when looking at the highest excitation frequency used (500 kHz, Figure 6b). In this case
the existence of more cycles is evident, indicating the effect of scattering on the voids.
Considering the nominal excitation frequency, the wavelength is approximately 4 mm,
being already of the order of the void diameter.
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Apart from the general shape and amplitude observation, it is noteworthy that the
large sensor consistently leads to underestimation of the Rayleigh velocity. This is typically
measured by the delay of a characteristic point of the Rayleigh portion (e.g., the maximum
or minimum point of the large cycle) between the two sensors. For the 500 kHz excitation
of the reference mortar (waveforms in Figure 5b) the Rayleigh velocity is calculated at
2079 m/s for the 1 mm sensor, while at 2006 m/s for the 10 mm sensor. Concerning the
heterogeneous case with voids (Figure 6b) the corresponding values are 1993 m/s for the
1-mm sensor and 1926 m/s for 10 mm. In both cases the velocity decrease is approximately
3.5%, owing only to the larger sensor size. This effect is negligible for the 50 kHz excitation
with differences between apertures limited to 5 m/s (or approximately 0.2%) either for
reference or heterogeneous mortar.

4.2. Dispersion Results

Figure 7a shows the phase velocity vs. frequency curve for the case of plain mortar and
for the mortar with 3% of voids for the 50 kHz of excitation. Results from all apertures are
included for both materials, but as the curves are almost identical, they are not separately
addressed in the legend for simplicity. There is a small but clear difference of approximately
60 m/s between the 0% and 3% void curves, owing to the decrease of the effective elastic
modulus of the material. For the excitation frequency of 200 kHz, the dispersion curves
are shown in Figure 7b. For homogeneous material, the different apertures do not lead
to systematic differences and therefore, are not separately identified for simplicity. The
curves for the heterogeneous media, however, exhibit distinct characteristics. First, all are
less smooth than the homogeneous, exhibiting small local peaks and troughs, which are
typical of heterogeneous media [3,21–23]. The average level of the 1 mm aperture curve is
approximately 60 m/s below the plain material for the band between 100 kHz and 300 kHz.
Interestingly, the aperture of 5 mm is in very good agreement with the 1 mm curve for
the lower band of frequencies and starts to deviate above 240 kHz. The dispersion curve
of 10 mm aperture is also in good agreement for low frequencies but starts to deviate
as of 160 kHz. Therefore, it is seen that for low frequencies the dispersion curves are
repeatable, when the aperture effect is negligible. However, when frequency increases
and the wavelength becomes small enough to be comparable to the sensor size, the curve
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starts deviating from the “ideal” one. Indeed, the frequency of 240 kHz where the curve of
the 5 mm sensor starts to deviate corresponds to the 8.5-mm wavelength. For the 10-mm
sensor, the deviation starts at 160 kHz with a corresponding wavelength of 13 mm.
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Concerning the higher frequency of excitation (nominally 500 kHz) results are depicted
in Figure 7c. The 1 mm curve is almost identical to the 200 kHz case. Differences are noticed
for the 5 mm aperture curve, as it starts to deviate from 310 kHz (λ ≈ 6.5 mm), while the
10 mm aperture curve deviates again as of 160 kHz (λ ≈ 13 mm). It is noticed that the
dispersion results from different sensors are in good agreement for low frequencies. The
aperture effect starts being evident resulting in lower phase velocity for wavelengths
reaching the order of the transducer size D, and specifically when λ < 1.3–1.5 D.

5. Discussion

Figure 7d shows the calculated dispersion curves for the two cases (homogeneous
matrix and matrix with 3% of voids of 2 mm) based on the scattering model of Waterman
and Truel [18]. This concerns elastic scattering only; therefore, damping is not included. The
original output is the longitudinal wave velocity. The Rayleigh wave velocity, CR, presented
in Figure 7d was consequently calculated according to Equation (1). The Poisson’s ratio
was considered 0.25 without variation with frequency. While this is an assumption, it is
not far from reality, since the “dynamic” Poisson’s ratio of cementitious media, measured
by ultrasound is just slightly higher than the one measured in quasi-static loading [42].
The curve of material with voids is theoretically predicted at 50 m/s lower than the plain
mortar for the frequency band of interest (below 300 kHz), while at higher frequencies the
velocities converge to the value of the matrix as is typical for scattering media.

The above analysis shows that with a small aperture sensor, wave velocity results fall
very close to the theoretically expected ones for homogeneous as well as heterogeneous
medium with small content of voids or pores. However, when the aperture, D, is compara-
ble to the wavelength (λ ≤ 1.3D) or smaller results strongly deviate, underestimating the



Sensors 2021, 21, 6483 8 of 13

wave velocity by as much as 15%. As an example, looking at Figure 7c, for the heteroge-
neous case of 3% voids, the 1-mm sensor results in a phase velocity of 2005 m/s at 250 kHz,
with the theoretical value calculated by the scattering model being 2018 m/s, showing close
agreement. However, the 10 mm aperture shows 1762 m/s, which is a deviation of 13%.

Figure 8 shows the FFT of the responses for S1 and S2 for 200 kHz excitation (a) and
for 500 kHz (b) for all apertures. Due to the imposed damping, the main content is clearly
downshifted, as also experimentally observed in cementitious media [20]. For the case
of 200 kHz, the peak frequency of the first sensor of 1 mm is at 134 kHz (propagation
of 70 mm). For the same distance from the source the large sensor of 10 mm, exhibits
a peak frequency of 76 kHz evidently showing the aperture effect. The effect is also
similar in Figure 8b for the excitation of 500 kHz with a strong downshift of the peak
frequency as the aperture increases from 1 to 10 mm. The horizontal lines with the arrows
in Figure 8 indicate the bandwidth with half the peak magnitude for the 1 mm (black) and
the 10-mm (red) sensor size, evidently showing once again the strong aperture effect, since
most of the higher frequency content is eliminated for the large aperture. In Figure 8b
the half peak content of the 10 mm is limited to 155 kHz, while for the same excitation,
medium, and distance it expands up to 300 kHz for the 1-mm aperture. Essentially, the
content above 150 kHz is canceled out in the large sensor, while it survives in the point
sensor. This strong downshift is also the reason that the numerical dispersion curves in
Figure 7 are presented up to 350 kHz, as the content for higher frequency bands is severely
compromised or eliminated.
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According to the presented results, the wave velocity is reliably calculated when the
wavelength is much longer (+50% or more) than the aperture of the sensor. In cases where
the wavelength drops to physical lengths similar to or lower than the physical aperture of
the sensor, the velocity calculated by waveforms received on the surface is lower than the
corresponding of an “ideal” point sensor, or the one predicted theoretically. This reduction
can be even of the order of 15%, an artifact that has not been clearly recognized in literature
and that can lead to strongly misleading results concerning the E-modulus and damage
content. This becomes especially important when results need to be compared to theoretical
dispersion curves (scattering, enhanced models), where for high frequencies the curves
exhibit a deviation, owing only to the influence of the sensor size and not to material
properties or heterogeneity.

6. Experimental Part

For the experimental verification, different piezoelectric sensors with large variation
in size were selected in order to highlight the aperture effect. Namely, these were Olympus
videoscan V1012 with a central frequency of 250 kHz and diameter of contact surface of
41.5 mm, Mistras Group R15 150 kHz resonant sensor with size 17.35 mm and the Mistras
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Group Pico sensor (with a sensitivity peak at 450 kHz but more broadband than R15) with
size of 4 mm. A thin layer of roller bearing grease was applied between the sensors and
the surface of the specimen to enhance acoustic coupling. In all cases, no external pressure
was applied on the sensors. Measurements were conducted on the bottom surface of the
specimens (considering casting direction) which was smooth due to the contact with the
steel mold and no extra preparation was necessary. The signals (waveforms) received by the
sensors were pre-amplified by 40 dB and were acquired through a Micro II Digital AE Data
Acquisition System from Mistras Group (Princeton Junction, NJ, USA) with a sampling
rate of 10 MHz. Ultrasonic measurements were made on the surface of a mortar specimen
of 400 × 100 × 100 mm. For completeness, the w/c ratio was 0.35, the maximum aggregate
size was 0.85 mm, and the sand/cement ratio was 2. The sensors were placed along the
central longitudinal axis of the specimen and in order to increase the representativity, the
distance between them was changed from 50 to 120 mm to account for different parts of
the specimen. The Rayleigh dispersion curve was derived from the waveforms of the two
receivers after a broadband excitation of a mechanical pencil lead break (HB 0.5 and length
4 mm) 10 mm away from the first sensor. Figure 9 shows photographs of typical tests.
More than ten individual tests were conducted with each type of sensors to evaluate the
experimental scatter. It is mentioned that excitation is possible with different transducers
and driving frequencies. In this study, pencil lead excitations were chosen because they
are broadband and repeatable and are casually used as reference sources [20,43], allowing
an identical source for all the different receivers. This way, any changes in the waveforms
and eventually in the dispersion curves can be safely attributed to the receiver’s behavior
(sensitivity and aperture).
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with 41.5-mm size. 
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Figure 9. Photographs of surface wave measurements on concrete using different sensors: (a) Mistras
pico sensor with 4-mm size, (b) Mistras R15 with 17.35-mm size, and (c) Olympus videoscan with
41.5-mm size.
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Figure 10 shows typical waveforms from all three pairs of transducers. The channels
were synchronized, meaning that when a “threshold crossing” was marked in one channel
(shown by the vertical line at 50 µs), recording started at both channels (sensors 1 and 2).
The strong Rayleigh cycle is present and characteristic points that are used for velocity
calculation can be clearly identified in the waveforms of the small sensors of 4 mm, see
arrows in Figure 10. The 17-mm aperture also shows a strong Rayleigh portion, although
the ringing of the strongly resonant sensor is obvious by the additional cycles. In both of
these cases, the waveforms were clear enough to allow treatment towards phase velocity
calculations. For the case of the large sensors of approximately 40 mm size, the signal is
compromised, and the Rayleigh portion is not evident. This is expected due to the aperture
effect and the aforementioned elimination of the content of the successive cycles acting
upon the surface of the sensor.
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Figure 10. Typical surface waveforms collected by two sensors for different apertures. The arrows
identify characteristic Rayleigh points used for velocity calculations. The vertical axis has been offset
for the different apertures for clarity, while the amplitude of the waveforms has not been altered.

Based on a characteristic Rayleigh point (e.g., negative peak as indicated by the arrows
in Figure 10), the Rayleigh wave velocity is calculated at 2402 m/s using the small sensors
and 2173 m/s using the medium sensors, while it was not straightforward to identify such
points for the large sensors.

Figure 11a shows the experimental Rayleigh dispersion curves directly from the
surface measurements for the small and medium sensors. It is evident that the curves
derived from the medium sensors exhibit a significant decrease of phase velocity compared
to the small ones. The difference is approximately 250 m/s in absolute value for most of the
frequencies, representing a change of 12%. The aforementioned curves are averaged after
several individual tests, by applying multiple pencil lead break excitations. To examine the
repeatability of the results, the standard deviation of different curves is shown in Figure 11b.
There, one can see that the R15 sensors exhibit their lowest standard deviation (70 m/s)
around 150 kHz, something compatible with their sensitivity, implying that the results
between 100 to 200 kHz are more reliable. Pico sensors show a standard deviation of
approximately 65 m/s for the band between 200 and 700 kHz being again in accordance
with their sensitivity curve and showing a much broader band of higher reliability. These
areas of higher reliability are indicated by horizontal arrows in Figure 11b.
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7. Conclusions

The present study clarifies the effect of sensor size, not only on the content of surface
waves but also on the measured Rayleigh wave velocity. The importance lies in the fact
that in surface ultrasonic measurements on cementitious mixtures the wave propagates in
parallel to the sensor and multiple wavelengths destructively interfere. Practically, it was
seen that:

• The Rayleigh pulse velocity as measured from time domain is underestimated by 3.5%
for large sensors (wavelength smaller than 1.5 times the sensor size). Experimentally,
this difference reached even higher values above 10%;

• The Rayleigh dispersion curve is strongly influenced by the sensor size. Specifically,
the velocity starts to deviate from the point the wavelength becomes about 1.3 to
1.5 times the sensor size or lower;

• Up to that point (roughly wavelength 1.5 times the sensor size) there is no strong
influence of the sensor size. Practically, for concrete media, a sensor of 4 cm diameter
would lead to reliable Rayleigh wave velocity measurements up to approximately
35–40 kHz, while a sensor of 1 cm diameter, would be reliable up to 160 kHz. For
higher frequencies, the velocity curve vs. frequency could be underestimated by up
to 15%.

This study has implications for assessment of material in the lab and in situ. Wave ve-
locity is empirically correlated with the strength of concrete, while it is used for assessment
of stiffness and voids. Concrete is heterogeneous and experimental scatter in all measured
properties (as well as ultrasonic velocity) is expected. A deviation of 15% on top of that
would definitely lead to erroneous conclusions about the quality or damage content.
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