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In the present work, we model single-cell movement as a random walk in an external potential observed within the extreme
dumping limit, which we define herein as the extreme nonuniform behavior observed for cell responses and cell-to-cell
communications. Starting from the Newton–Langevin equation of motion, we solve the corresponding Fokker–Planck equation
to compute higher moments of the displacement of the cell, and then we build certain quantities that can be measurable ex-
perimentally. We show that, each time, the dynamics depend on the external force applied, leading to predictions distinct from the
standard results of a free Brownian particle. Our findings demonstrate that cell migration viewed as a stochastic process is still
compatible with biological and experimental observations without the need to rely on more complicated or sophisticated models
proposed previously in the literature.

1. Introduction

To understand many physiological processes in living or-
ganisms, such as embryogenesis and wound healing, among
others, as well as their malfunctions, e.g., inflammatory
diseases, tumor growth, and metastasis, it is fundamental
and of great interest to comprehend the process of reloc-
alization of cells, commonly known as cell migration. -is
term is used to refer to different processes that involve the
movement of cells from one location to another. In living
animals, embryonic development provides a clear example
of importance of accuracy in cell migration, as errors in this
process can result in birth defects. It is also known that
proper cell migration is necessary for functional immune
response and tissue repair in adults. Conversely, failure in
cell migration or inappropriate migratory movements may
result in life-threatening scenarios, such as autoimmune
diseases, defective wound repair, inflammatory diseases, and

tumor dissemination, promoting metastatic cancer pro-
gression [1–3].

-e process of cell migration is very specific and depends
on the cell type and the context of the migration process,
thus several modes of cell migration have been described [4].
-ere are migrating cells that are self-propelled (self-driven,
with autonomous mobility) and others that are nonmobile.
In the case of bacteria, flagella-associated self-propulsion is
an important virulence factor for some strains such as
Escherichia coli and plays a crucial role in attachment to
biomaterial surfaces and infection [5, 6]. Additionally, cells
can move either as separate entities or by exhibiting a
collective behavior. A mathematical model of cell collective
movement has been reported [7] as well as a model that
explains how swimming velocity of self-driven cells can
increase in viscosity [8]. However, in this work we are in-
terested in single-cell movement, which plays a crucial role
in maintaining the homeostasis of the body (i.e., leukocyte
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migration through blood vessels), as well as in tumor
progression and metastasis [9]. During these processes, a
migrating cell travels through the body by a motion called
random walk, yet this process does not fulfill the necessary
understanding of the migration process of different cell
types. For example, recent evidence has shown that leu-
kocytes exhibit types of migratory behavior which differs
from the previously described random walk [10] and that
cells can undergo directed migration by the influence of
chemical or mechanical signals originating from the envi-
ronment [11–14] (Figure 1).

At first sight, the migration of nonmotile cells is es-
sentially a random walk, very similar to thermally driven
Brownian particles. -is is also true for bacteria in sus-
pension. -e observation that, when suspended in water,
small pollen grains are found to be in a very animated and
irregular state of motion was first systematically investigated
by Scottish botanist Robert Brown in 1827, and the observed
phenomenon took the name of Brownian motion. Albert
Einstein in 1905 [15] and sometime later Paul Langevin in
1908 [16] explained Brownian motion using different but
equally successful mathematical approaches. Einstein’s
analysis was based on the diffusion equation:

zf(t, x)

zt
� D

z2f(t, x)

zx2 , (1)

where D is diffusion coefficient, with initial condition
f(x, t � 0) � δ(x), where δ(x) is Dirac’s delta function.
Solution of diffusion equation is given by [17]

f(t, x) �
1

�����
4πDt

√ exp −
x2

4Dt
 , (2)

and the mean of the square of displacement is given by
〈x2〉 � 2Dt. On the other hand, Langevin started from
Newton’s equation of motion assuming a Stokes’s drag
force and a random thermal force due to continuous
bombardment from molecules of the liquid. Although he
did not exploit all richness of his model, Langevin obtained
in the long-time regime Einstein’s result, namely, by
〈x2〉 � 2(kBT/6πaμ)t, where a is the radius of particle, μ is
fluid viscosity, T is temperature, and kB is the Boltzmann’s
constant, hence bridging Brownian motion, random walk,
and diffusion, a view soon quantified experimentally by
Perrin [18]. -erefore, diffusion coefficient can be computed
in terms of properties of the fluid in Brownian particles,
which is the Einstein–Stokes formula D � (kBT)/(6πaμ).

In modern times, Langevin’s approach is still used. In
fact, during the last decades, physicist and mathematician
modelers have viewed cell movement as a persistent random
walk, which can be modeled using well-known stochastic
differential equations. -e most widely used model is the
Ornstein–Uhlenbeck model (OU) [19], with certain pre-
dictions that until some years ago were in good agreement
with observations and experimental results ([20]). However,
recent discoveries seem to question and challenge the ar-
chetypical OU model. Specifically, Wua et al., reported that
in three dimensions, the path of cells is more directional than
random [21]. In addition, recent experiments show a scaling

at the long-range regime [22], 〈x2〉 ∼ tβ, where the power β
is just a number in the interval 1 < β < 2. It turns out that it is
useful to introduce two functions of interest, namely, (i)
logarithmic derivative of mean square of displacement (MS)
[23], defined previously as

β(t) �
dMSD(t)

dt

t

MSD(t)
, (3)

and (ii) kurtosis [24]:

C(t) �
〈(x− x)4〉
〈(x− x)2〉2

, (4)

where x is the mean value of the distribution function. In the
special case, where the mean value is zero, kurtosis can be
expressed simply, as

C(t) �
〈x4〉
〈x2〉2

, (5)

since they allow us to make contact between experimental
data and predictions of models. Both functions are di-
mensionless, and in addition, β(t) is defined such as in the
power law cases, 〈x2〉 ∼ tβ, and it is a constant and precisely
coincides with the power β. In the framework of the OU
model, kurtosis is a monotonic function and asymptotically
reaches value 3 from below [19], while in [25], data show that
kurtosis reaches value 2.3, while in [26] reaches asymptotic
value from above. -erefore, in both cases, a departure from
standard OU behavior is observed. In light of these findings,
the persistent random motion of cell migration has been
questioned, and other more complicated theoretical models
have been introduced [24, 27] to confront with experimental
results.

-erefore, the aim of the present work is to revisit the
idea that single-cell motility can be described as a random
walk. We point out that previous statements are only valid in
case of free Brownian particles. However, if we introduce an
external applied force and work in extreme dumping limit,
the dynamics change completely, and predictions of the
model depend each time on the form of assumed external
potential. We define the concept of extreme dumping limit
as the extreme nonuniform behavior observed for cell re-
sponses and cell-to-cell communications in vivo, within a
given biological context. Contrary to previous studies, where
authors usually solve the Newton–Langevin equation, here
we work with corresponding Fokker–Planck equation and
explain why it admits an exact solution for cases we have
considered, and we show in plots the kurtosis as well as the
logarithmic derivative of mean square of displacement
versus time for three different simple models. We show that
the nonstandard behavior seen experimentally can be
reproduced in the framework of random motion with an
applied external force within the extreme dumping limit
scenario. -erefore, the random motion paradigm mini-
mally extended can still be used to describe cell motility
successfully without the need of more complicated and
sophisticated models introduced previously in the literature.
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2. Results and Discussion

2.1. Cell Movement as a Stochastic Process

2.1.1. Newton–Langevin and Fokker–Planck Equations.
Let us consider a Brownian particle in one dimension in an
external potential V (x) with a drag force from the medium
proportional to the velocity–λv with λ given by Stokes’ law
λ � 6πaμ and a random thermal force (stochastic variable)
ξ(t) that considers the random collisions of the Brownian
particle with the molecules of the liquid. -is generalizes the
OUmodel where there is no external applied force, and thus
describes a free Brownian particle. Newton’s equation of
motion takes the form

ma � f(x)− λv + ξ(t), (6)

where m is the mass of the Brownian particle,
f(x) � −V′(x) is the applied external force, and the random
force ξ(t) is assumed to be a Gaussian white noise:

〈ξ(t)〉 � 0,

ξ t1( ξ t2( (  � 2gδ t1 − t2( ,
(7)

where g � λkBT required by the so-called fluctuation-
dissipation theorem [28]. In the case of a free particle,
there is no external force, f(x) � 0, and we obtain the
standard OU model [24]:

ma � −λv + ξ(t), (8)

and assuming as initial condition x0 � x(0) � 0, we obtain
for the mean squared of displacement (MSD) (in one di-
mension), the Furth formula [29]:

〈x2〉 � 2Dt −1 +
t

τ
+ exp
−t
τ

  , (9)

where τ � m/λ is the so-called persistent time. In the short-
time regime and in the long-time regime, we obtain [30]

〈x2〉 ∼
kBT

m
 t

2
, t⟶ 0,

〈x2〉 ∼ 2Dt, t⟶∞.

(10)

-e system eventually exhibits diffusive behavior at late
times, while at early times the dynamics are dominated by
the inertia of the particle, and the behavior is ballistic, which
has been observed in [31].

As it is known that cells are able to feel and sense certain
environmental cues such as the stiffness of their environ-
ment [32] or surface nanoscale patterning [33], it would be
more suitable to extend the standard OU model by con-
sidering an applied force that models anything from the
external environment that perturbs the movement of the
cell, such as signals, stimuli, etc. Furthermore, our focus on
extreme dumping limit in which coefficient λ in drag force
from the fluid is so large that acceleration term m a can be
neglected. In other words, we can write Newton’s equation
of motion in the following form:

ma + λv � f(x) + ξ(t), (11)

and assume that λv≫ma. In this case the Langevin–Newton
equation takes the simpler form:

λv � f(x) + ξ(t),

dx

dt
� A(x) + η(t),

(12)

where we have defined A(x) � f(x)/λ and η(t) � ξ(t)/λ.
-e latter is the Langevin equation for the process x(t)

where the noise η(t) satisfies 〈η(t1)η(t2)〉 � 2Dδ(t1 − t2)
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Figure 1: Cell migration is an important factor in physiological and pathological processes. (a) Inflammatory cells canmigrate towards a site
of interest via the sensing of chemokines and other inflammatory molecules. However, within the blood vessels, they are also subject to other
relevant forces such as blood flow. (b) Osteoclast precursor cells are recruited into the tissues, where they can become activated by factors
such as receptor activator of nuclear factor kappa-B ligand (RANKL) and cause bone resorption in health and disease. (c) Cell migration is
also an important process that allows nonmotile bacteria to attach to surfaces, initiating biofilm formation. Migration of floating bacteria is
also determined by important factors such as gravitational forces and flow. In all the above situations, migration is generated by a
combination of stochastic (i.e., Brownian motion and random walk) and external forces (i.e., chemokines and flow).
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with D � kBT/λ. Since the random force η(t) is not known,
we can only compute mean values of powers of the position,
or the moments, 〈xn〉 , once the density probability function
is known. -e density probability function u(t, x) satisfies
the corresponding Fokker–Planck (FP) equation [34]:

zu(t, x)

zt
� D

z2u(t, x)

zx2 −
z(f(x)u(t, x))

zx
, (13)

where the first term is the diffusion term while the second
term is due to the external force with a constant diffusion
coefficient D. If we ignore the external applied force, the FP
equation reduces to standard diffusion equation. -at ex-
plains why Einstein’s approach and Langevin’s approach
were equally successful. Solving the FP equation, we then can
compute the moments performing the integrals:

〈xn〉 � 
∞

−∞
dw u(t, w)w

n
, (14)

and it is a function of time. It is known that this type of
Fokker–Planck equation can sometimes be recast in the
usual diffusion equation. -is happens when the following
condition is satisfied [35]:

2DA′(x) + A(x)
2

� c0 + c1x + c2x
2
, (15)

and the reason why this happens is that the diffusion
equation and the FP equation at hand have the same number
of symmetries.

2.1.2. Applications: ?ree Concrete Simple Models. Next, we
shall consider three cases in which we can find exact ana-
lytical solution of the FP equation.

(i) Constant force or linear potential V(x) � −vdriftλx. A
constant force could be for example the gravitational
force. In this case the FP takes the form

zu(t, x)

zt
�
Δ
2

z2u(t, x)

zx2 − vdrift
zu(t, x)

zx
, (16)

where we have put Δ � 2D, and it is trivial to check that the
condition above is satisfied. So, the FK equation can be recast
in the diffusion equation ωτ � ωyy, and the solution is given
by u(t, x) � f(t, x)ω(τ(t, x), y(t, x)) where f(t, x), y(t, x)

and f(t, x) are given by [35]

y � x,

τ �
Δ
2

t,

f(t, x) � exp
xvdrift

Δ
−

tvdrift2
2Δ

 .

(17)

-erefore, the solution finally is given by [36]

u(t, x) ��
1

�����
2πΔt

√ exp −
x− tvdrift( 

2

2Δt
 , (18)

and the mean values 〈x2〉 and 〈x4〉 are given by

〈x2〉 � Δt + tvdrift( 
2
,

〈x4〉 � 3(Δt)2 + tvdrift( 
4

+ 6Δt3vdrift2,
(19)

where we have made use of the Gaussian integrals:


∞

−∞
dx exp −ax

2
  �

��
π

√

��
a

√ ,


∞

−∞
dx x

2 exp −ax
2

  �

��
π

√

2a
��
a

√ ,


∞

−∞
dx x

4 exp −ax
2

  �
3

��
π

√

4a2 ��
a

√ .

(20)

It is easy to check that when vdrift � 0, we recover
Einstein’s results for the pure diffusion case. Furthermore,
it is easy to check that one can obtain the same result by
solving the Langevin equation for x(t) with the initial
condition x(0) � 0, namely,

x(t) � tvdrift + 
t

0
ds η(s), (21)

and then by squaring this expression and using the prop-
erties of the Gaussian white noise 〈η(t)〉 � 0 and
〈η(t1)η(t2)〉 � 2Dδ(t1 − t2), one obtains the previous ex-
pression for MSD.

Looking at the expression for MSD obtained, the first
term is the contribution of the diffusion term, while the
second term is the contribution from the applied external
force.

-erefore, the system exhibits the diffusive behavior only
in the beginning of the evolution, contrary to the OUmodel,
and eventually the deterministic force takes over.

-is can explain the observation that sometimes cell
motion is more directed than random, such as in the case of
cancer cell migration [37] or during zebrafish development
[38].

Now the kurtosis C(t) as well as the logarithmic de-
rivative of MSD β(t) can be computed. We see that for the
linear potential case, the kurtosis C(t)⟶ 3 when t⟶ 0
and C(t)⟶ 1 when t⟶ ∞, while the mean squared
displacement 〈x2〉 ∼ 2Dt at early times (or β(t) � 1) and
〈x2〉 ∼ t2 at late times (or β(t)⟶ 2).

(ii) Harmonic oscillator or parabolic potential V(x) �

θλx2/2 that corresponds to a force f(x) � −θλx. It is
quite common to model attractive forces with
springs ([39, 40]), and thus a harmonic trap is a
reasonable potential to consider. In this case, the FP
takes the form

zu(t, x)

zt
� D

z2u(t, x)

zx2 + θ
z(xu(t, x))

zx
, (22)

and the condition above is again satisfied. So, the FK equation
can be recast in the diffusion equation ωτ � ωyy, and the
solution is given by u(t, x) � f(t, x)ω(τ(t, x), y(t, x)),
where f(t, x), y(t, x) and τ(t, x) are given by [36]
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y � x exp(θt),

τ �
D

2θ
exp(2θt),

f(t, x) � exp(θt).

(23)

-erefore, the solution finally is given by [34]

u(t, x) �

�
θ

√

�����������������
2πD(1− exp(−2θt))



· exp −
θx2

2D(1− exp(−2θt))
 ,

(24)

and using the same Gaussian integrals as before, the mean
values 〈x2〉 and 〈x4〉 are given by

〈x2〉 �
D

θ
(1− exp(−2θt)),

〈x4〉 � 3 〈x2〉 
2
,

(25)

and one can check that when θ � 0, we recover Einstein’s
results for pure diffusion, and we make use of the fact that

1− exp(−2θt)

θ
⟶ 2t, θ⟶ 0. (26)

-erefore, the kurtosis in this case is always a constant in
time C(t) � 3. On the other hand, at early times t⟶ 0 the
mean squared 〈x2〉 ∼ 2Dt (diffusive behavior or β(0) � 1),
while at late times t⟶∞〈x2〉⟶ D/θ(or β(t)⟶ 0).

(iii) Constant force and within a harmonic trap
V(x) � θλx2/2− vdriftλx. -is model combines the
two previous cases, and by redefinition
z � x− (vdrift/θ), we recover the FK equation of the
harmonic trap. -erefore, the solution reads

u(t, x) �

�
θ

√

�����������������
2πD(1− exp(−2θt))



· exp −
θ x− vdrift(1− exp(−θt))/θ( 

2
 

2D(1− exp(−2θt))
⎛⎝ ⎞⎠.

(27)

Finally, with help of Gaussian integrals and defining

X �
vdrift
θ

(1− exp(−θt)),

α �
θ

2D(1− exp(−2θt))
,

(28)

the moments are computed to be

〈x2〉 � X
2

+
1
2α

,

〈x4〉 � X
4

+
3
4α2

+ 3
X2

α
.

(29)

-e MSD in short-time regime is diffusive 〈x2〉 ∼ 2Dt,
while in long-time regime approaches a constant value
〈x2〉⟶ (D/θ) + (v2drift/θ

2). Kurtosis at early times starts
from the value 3, while eventually approaches the value

C∞ �
1 + 6b + 3b2( 

1 + 2b + b2( )
, (30)

where we have defined dimensionless quantity b � θD/v2drift.
-is value depends on the interplay between θ and vdrift. -e
drift velocity (linear term in potential) dominates b≪ 1 and
C∞ � 1, while θ (quadratic term in potential) dominates
b≫ 1 and C∞ � 3. -erefore, it is possible to reproduce
observation of [25] that kurtosis approaches 2.3 value. -is
can be achieved for b � 0.33.

In both the second and third models, MSD asymptoti-
cally in time goes to a constant value due to the harmonic
trap, and their logarithmic derivatives of MSD exhibit
similar behavior, namely, they both are a monotonically
decreasing function of time in the interval 0 < β(t) < 1.

In the corresponding Figures, we show functions C(t)
and β(t) versus time for all three models. Figure 2 shows the
kurtosis, while Figure 3 shows β(t) for the models considered
here.

We see that each model exhibits its own dynamics, and
they behave differently at late times, although in the short-
range regime (t⟶ 0), they all exhibit diffusive behavior.

-e simplest model with a constant applied force can
explain (i) the scaling behavior with power β � 2, (ii) the fact
that cell movement can be more directed than random, and
(iii) the monotonic decrease of kurtosis as seen in [26].

In addition, a more complicated model with a harmonic
trap and constant force can explain asymptotic value of 2.3
seen previously [25]. -erefore, our results show that de-
partures from OUmodel seen in recent experiments are also
present here, and thus our findings suggest that the random
motion paradigm minimally extended is still compatible
with biological observations, at least qualitatively.

It would be interesting to obtain more data that could
verify (or falsify) the predictions of the models considered
here in a quantitative manner.

2.1.3. Biological Significance. Although it is widely accepted
that cell migration is complex and multifactorial, our results
show that this process can be described with a modification
of the randomwalkmodel that also considers the application
of external forces within a complex biological environment.
-erefore, it remains possible to model cell migration in a
minimalistic fashion without the need of using more
complex calculations. Furthermore, this model is in line with
several experimental observations in the laboratory. For
example, despite the fact that fibroblasts can display random
migration patterns in 2D tissue culture [20], many groups
have observed that fibroblasts are also able to alter their
migratory behavior when changed from a 2D to a 3D culture
[4, 41]. -is change in migration patterns is believed to be
due to the ability of cells to detect and respond to stimuli in
their environment, such as an increased number of adhesion
points or mechanical differences of the matrix. -us, given
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the 3D nature of the in vivo setting, it is possible to de-
termine that cell migration within a living organism is more
complex than a simple random walk, being also influenced
by a number of external cues.

Furthermore, it has also been discussed that macro-
phages and neutrophils migrate using various modes of
random walks (i.e., biased random walks) in response to
acute injury, most of which include external factors that are
guiding the cell towards an area of interest [42–44]. -e
presence of these factors (i.e., chemokines) are crucial in the
biological setting, as they are responsible for generating
effective inflammatory and wound healing responses [45].
Also, chemokine-based migration is imperative for osteo-
clast recruitment into bone tissue, which plays a big role in

bone resorption observed in many chronic inflammatory
diseases such as rheumatoid arthritis, periodontitis, and
peri-implantitis [46, 47]. In all these scenarios, either con-
stant or complex external forces are at play guiding cell
migration towards the area of interest. However, our results
strengthen the idea that cell migration is in fact a combi-
nation of stochastic processes and directed motion by ex-
ternal stimuli, which is supported by the calculations
discussed in this research.

3. Conclusion

Studying properties of cell migration is of fundamental
interest to understand many physiological processes in
living organisms, as well as some pathological processes such
as tumor metastasis or bacterial infection. Single-cell mo-
tility of nonmotile cells can be viewed as a random walk
assuming that cells are thermally driven Brownian particles
and can be modeled using well-known stochastic differential
equations such as Langevin and Fokker–Planck equations.
Recent experimental results have questioned the archetyp-
ical Ornstein–Uhlenbeck model, as they have shown some
departures from standard predictions of persistent random
motion paradigm based on a free Brownian particle driven
by a drag Stokes’s force, as well as by a random force due to
molecule thermal motion. In the present work, we have
revisited the issue of cell migration viewed as random walk
by adding an applied external force and working in extreme
dumping limit. We have studied three concrete cases for
which the Fokker–Planck equation can be solved exactly,
and we have provided analytical expressions for MSD and
for certain quantities of interest that can be used to make
contact observations. Our results show that predictions of
the model and behavior of the system depend on form of the
applied force (although all models exhibit diffusive behavior
in short-time regime), and they all differ compared to the
standard OU model. Our work shows that random motion
paradigm minimally extended can still be used to describe
cell motility successfully without introduction of sophisti-
cated models. Overall, this model could be potentially
beneficial to understand the migration behavior of cells
during relevant biological processes such as wound healing,
inflammation, and embryonic development from a mini-
malistic approach.
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