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Abstract
Background:Current methods to find significantly under- and over-represented gene ontology
(GO) terms in a set of genes consider the genes as equally probable "balls in a bag", as may be
appropriate for transcripts in micro-array data. However, due to the varying length of genes and
intergenic regions, that approach is inappropriate for deciding if any GO terms are correlated with
a set of genomic positions.

Results:We present an algorithm – GONOME – that can determine which GO terms are
significantly associated with a set of genomic positions given a genome annotated with (at least) the
starts and ends of genes. We show that certain GO terms may appear to be significantly associated
with a set of randomly chosen positions in the human genome if gene lengths are not considered,
and that these same terms have been reported as significantly over-represented in a number of
recent papers. This apparent over-representation disappears when gene lengths are considered, as
GONOME does. For example, we show that, when gene length is taken into account, the term
"development" is not significantly enriched in genes associated with human CpG islands, in
contradiction to a previous report. We further demonstrate the efficacy of GONOME by showing
that occurrences of the proteosome-associated control element (PACE) upstream activating
sequence in the S. cerevisiae genome associate significantly to appropriate GO terms. An extension
of this approach yields a whole-genome motif discovery algorithm that allows identification of many
other promoter sequences linked to different types of genes, including a large group of previously
unknown motifs significantly associated with the terms 'translation' and 'translational elongation'.

Conclusion:GONOME is an algorithm that correctly extracts over-represented GO terms from
a set of genomic positions. By explicitly considering gene size, GONOME avoids a systematic bias
toward GO terms linked to large genes. Inappropriate use of existing algorithms that do not take
gene size into account has led to erroneous or suspect conclusions. Reciprocally GONOME may
be used to identify new features in genomes that are significantly associated with particular
categories of genes.

Background
The Gene Ontology (GO) project [1] arose partly in
response to the problem of non-uniform assignment of

genomic annotations. Biological databases are notorious
for the inconsistency of their annotation terminology, and
attempts to apply statistical methods based on annota-
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tions across, or even within, genomes face difficulty with
this problem. GO addresses this issue by re-expressing
annotations using controlled vocabularies, or ontologies;
by providing a mechanism for formalizing relationships
between qualitative properties (GO terms) that can be
associated to genomic features; and by creating a hierar-
chical structure of these qualities through the use of 'is-a'
and 'part-of-a' relationships, allowing one to fit all anno-
tation terms into a "tree" structure (actually a directed acy-
clic graph) with the most general terms at the root and the
most specific terms as leaves. The GO database is broken
into three such hierarchies, or aspects: biological process,
molecular function and cellular component.

GO has become a popular way of analyzing sets of genes
to find under- or over-represented terms associated with
that set of genes, especially in expression micro-array data-
sets. One may, for example, apply a "GO analysis" to sets
of up- or down-regulated genes to assess which processes
or functions are undergoing coordinated regulation. A
variety of web-based tools exist that allow one to enter a
list of gene identifications and find the over- and under-
represented GO terms associated to those genes – for
example GOstat [2] and GO::TermFinder [3].

In this work, we consider the slightly different task of
determining whether a set of genomic positions is associated
with any GO terms. This situation arises in many contexts
(see, e.g. [4,5]). One might, for example, wish to deter-
mine if a particular regulatory sequence motif is signifi-
cantly associated with genes involved in any particular
pathway.

The typical "GO analysis" begins with a set of genes and
uses a random model that assumes that each gene in the
genome is equally likely a priori to be included in the set.
This assumption is inappropriate when the input is a set
of genomic positions rather than a set of genes. Due to the
varying length of genes and intergenic distances, ran-
domly selected genomic positions are much more likely
to fall within large genes or within large adjacent inter-
genic regions. Therefore, when determining which (if any)
GO terms are significantly associated with a set of
genomic positions, a different random model is required.

As an illustration, imagine that we are given a set of
genomic positions and asked to determine with which
GO terms they are associated. Note, firstly, that the GO
database maps genes to terms, so we must define how we
are going to map genomic positions to genes. A natural
way to associate GO terms with genomic positions is to
associate each position with a single gene, and, transi-
tively, with that gene's GO terms: position→gene→GO
Term. In this example, we map each (strand-specific)
genome position falling within a gene to that gene. Sup-

pose then that the genome consists of five 1 Kb genes
annotated as metabolic and one 1 Mb gene annotated as
meiotic. A randomly chosen genomic sequence in this
genome is 106/5000 = 200 times more likely to lie within
the meiotic gene than within any of the metabolic genes.
Therefore, a random model that assumes all genes (and,
hence, their GO terms) are equally likely to be selected is
clearly inappropriate. Using such a model would cause
randomly chosen genomic positions to (erroneously) cor-
relate with GO terms associated with the meiotic gene.
Thus a new approach is required to assess the statistical
significance of GO terms associated to genomic positions
that explicitly considers gene length, as opposed to the
event-based associations currently used with gene expres-
sion data.

Results
GONOME: Gene Ontology correlations in the genome
We have developed a new application, called GONOME
[6], which calculates the statistical significance of the cor-
relation between a set of genomic positions and their
associated Gene Ontology terms. GONOME does this by
applying a random model that assumes that each position
(rather than each gene) in the portion of the genome
under consideration is equally likely. This implies that the
chance of a uniformly distributed random position "hit-
ting" (lying within, or adjacent to) a particular genomic
region is proportional to the size of the region, removing
the bias toward large genes caused by considering all
genes equally probable.

GONOME takes as input a set of genomic positions and a
genome annotated with the locations of genes. The posi-
tions in the input set may be strand-specific or not. If a
DNA strand is not specified, GONOME replaces the posi-
tion with two positions: one on each DNA strand.

GONOME also allows the user to define which genomic
regions are of interest in a particular analysis. The
upstream, transcribed and downstream regions of each
gene may be associated with its GO terms or treated as
'unscored'. These regions are linked to the GO terms asso-
ciated with the gene's GO terms (If a gene has no associ-
ated GO terms, its regions are associated with the
"placeholder" term "NO_GO"). When the upstream and
downstream regions of two adjacent genes overlap,
GONOME treats the positions in the overlap as lying in
both regions. All positions not lying in the upstream, tran-
scribed or downstream region of any gene are also consid-
ered unscored, have no GO terms associated with them,
and the user can choose to either include or exclude them
from the analysis.

The user can also control the allowed size of the associated
upstream and downstream regions via configurable "cut-
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offs". This is a useful feature because which genomic posi-
tions are of interest depends on the organism being
studied as well as the type of positions being analyzed. For
example, a position 100 bp upstream of a gene might nat-
urally be associated with that gene, a position 500 bp
upstream of one gene and 500 bp downstream of another
might be ascribed to either or both of the flanking genes,
while one 10 Kbp upstream and downstream from the
nearest genes might not be associated at all. Such judg-
ments are partly dependent on the size of the genome and
the intergenic regions (e.g. yeast vs. human). Additionally,
if the positions in the input set are (putative) promoters,
one might only be interested in the region upstream of the
gene, and only if within 500 bp.

Finally, rather than merely counting the number of times
each GO term is associated with a genomic position in the
input set, GONOME allows the user to specify weights for
each type of region: upstream, transcribed and down-
stream. This allows the user to tailor a "correlation scoring
function" appropriate to the biological questions being
asked.

Over-represented terms from random positions
To validate the approach and compare it with previous
approaches, we compared the statistical significance of the
GO associations of a set of 30,000 randomly chosen
strand-specific positions in the human genome calculated
by GONOME and GOstat [2]. The genomic positions

were generated uniformly across both strands of the
genome. We set the GONOME parameters so that all three
types of region (upstream, downstream and the tran-
scribed gene, including its introns and UTRs) were
included in the analysis and that all intergenic regions
were ascribed as the downstream and upstream regions of
the respective adjacent genes. For input to GOstat, a set of
genes corresponding to the randomly chosen set of
genomic positions was constructed similarly by adding
the gene for positions falling within the boundaries of the
transcribed gene, and by adding both the upstream and
downstream genes for positions falling within intergenic
sequences. The results are shown in Figure 1.

It is apparent from Figure 1A that GOstat reports numer-
ous GO terms as being over-represented among the ran-
dom positions. The most over-represented term is
'development', with the estimated probability of random
occurrence (E-value) being 2.41 × 10-31 – a number that
would be hard to consider insignificant. This result may
be understood by observing that many of the over-repre-
sented terms are associated with genes encoding develop-
mental regulators and/or membrane proteins, genes
longer than most – the average length of all GO annotated
genes is 106.5 Kb (5257 genes) (note that non-GO anno-
tated genes have an average length of 34.4 Kb, suggesting
that these may not include distal exons and/or include
artifacts), whereas the average of those annotated as devel-
opment is 133.9 Kb (770 genes), cellular process 125.8 Kb

GONOME and GOstat output on random positionsFigure 1
GONOME and GOstat output on random positions. Panel A compares GONOME and GOstat analyses of 30,000 ran-
domly selected positions in the human genome. The E-values of the top 10 over-represented GO Terms as found by GOstat 
(red), and the values GONOME derives for the same terms (blue). Panel B shows the top ten over-represented terms accord-
ing to GONOME. E-values were calculated as described in Methods.
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(2832 genes), morphogenesis 152.2 Kb (466 genes), and
organogenesis 158.3 Kb (392 genes). In contrast,
GONOME finds no terms occurring significantly more
often than expected at random (Figure 1A). What is more,
the top ten GONOME E-values range from values of about
one to about ten, as they should when the genomic posi-
tions are chosen at random. This result clearly demon-
strates the inappropriateness of considering all genes as
equally likely when analyzing genomic positions. This
error has been made in a number of recent papers, which
typically ascribe development as a significantly enriched
term. For example, more than half of the over-represented
terms reported in Table 1 from Seipel et al. [5] are also pre-
dicted as over-represented by GOstat applied to sets of
random positions. Another example is provided by the
Robinson et al. [7] analysis of CpG islands in the human
genome, which we re-analyze in the next section. On the
other hand, the general gene categories (RNA processing,
regulation of transcription and development) reported as
being significantly associated with ultraconserved ele-
ments [4] remain significantly associated using GONOME
(data not shown).

Human CpG Islands
A CpG island is a cluster of CG dinucleotides, which
appear as obvious features in mammalian genomes
wherein only a quarter of the expected number of CG
dinucleotides occur. CpG islands have previously been
shown to be strongly associated with 'housekeeping'
genes [8-12], but were recently reported to be also signifi-
cantly associated with genes annotated with the GO term
"development" using a chi-squared based method [7].
Following Robinson et al. [7], we applied GONOME to
the positions of CpG islands in the human genome,
restricting the scored positions to those occurring within
genes and their 'promoter' regions (2000 bp upstream),
against a null model that compares the observed pattern
to that expected from random positions occurring uni-
formly throughout the entire genome (i.e. including the
regions outside genes and their immediate 5'-promoter
regions, termed the 'unscored' regions) (Figure 2).

The results show that, using the null model of the random
incidence of CpG islands in the entire genome, the GO
root node 'biological_process' and other broad functional
descriptors are very significantly over-represented terms
associated with CpG islands (Figure 2A). This occurs
because CpG islands occur more often in or near the
beginnings of genes per se than would be expected for a
uniform distribution of random positions across the
genome. Other generic terms indicating housekeeping
functions as well as the term 'NO_GO' (the placeholder
for genes without associated GO annotations) also receive
significant E-values. Thus, if GONOME is applied against
the whole genome in this way, and general GO terms are
reported as being significantly over-represented, one may
conclude that the chosen feature (in this case CpG
islands) is strongly associated with genes and their pro-
moters, genome-wide. However, while this may be gener-
ally informative, the strength of the signal obscures
potential specific associations of the feature in question
with particular subsets of genes, and thus one needs to be
judicious about the choice of the null model.

The alternative null model excludes unscored positions in
the genome, thereby calculating the chance that any GO
term attains its score given the actual number of scoring
positions. Using this model one can better assess whether
there is a significant bias in the association of CpG islands
with specific GO terms. When we repeated the analysis
with this model, we found that GO terms with a "house-
keeping" nature, such as those including the words
'metabolism,' 'transcription' and 'regulation' predominate
(Figure 2B). This confirms the strong association of CpG
islands with housekeeping genes, as well as the over-rep-
resentation of the most significantly enriched term found
in CpG island associated genes from Table 2 in Robinson
et al. [7], 'regulation of transcription, DNA dependent'.
However, of the remaining nine biological process terms
in that table, seven are found to be over-represented in
four runs of 30,000 random positions through GOstat. It
should be borne in mind, however, that the previous anal-
ysis also used a tissue-specific metric on gene expression

Table 1: Novel putative motifs found by GONOME. GONOME was used to find over-represented GO terms associated with each 
possible n-mer (for n from 5 to 11) in the S. Cerevisiae genome, here are some of the significant motifs not reported elsewhere. (Motifs 
are expressed in IUPAC extended DNA alphabet: K is G or T; V is G, C or A; B is G or T or C; S is G or C; M is A or C)

Motif GO Term GONOME E-value Transcription Factors

CCCCTAAAA vitamin metabolism 2.5e-7 ADR1, NRG1
GCCCTAA rRNA modification 1.1e-5 NRG1
TCCGCGG Response to drug 8.7e-11 SUT1, STB5
GGVBCCSG Translation 3.3e-30 -
CACGTGA Sulfur amino acid metabolism 6.5e-10 CBF1
GKKGSMAAA Protein catabolism 1.0e-10
TGGCAAA Protein catabolism 7.0e-4 -
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Over-represented gene ontology terms associated with human CpG islandsFigure 2
Over-represented gene ontology terms associated with human CpG islands. Over-represented gene ontology 
terms associated with human CpG islands as determined by GONOME when (A) unscored regions are included in the analysis 
and when (B) unscored regions are excluded from the analysis. The E-values of the 25 most over-represented GO process 
associated with CpG islands in the human genome in each case are shown. The image is the actual output of the GONOME 
application, save that long GO terms have been replaced with shorter equivalents and their GO identification numbers pro-
vided in brackets.
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(the distribution of ESTs belonging to the same UniGene
cluster) [7] that ours does not.

The dataset used in Figure 2 has been masked for repeti-
tive sequences, and contains 67,697 positions. However,
when GONOME is used with the same parameters on the
unmasked set of 102,064 positions, virtually identical
results are found. This demonstrates that GONOME is
robust to noise – the repetitive positions showed no sig-
nificantly over-represented terms (graphs available on the
website). Full graphs and corresponding results for the
murine and yeast genomes, as well as correlations with
terms in the function and component GO hierarchies are
available online [13].

Whole-genome motif discovery with GONOME
In another test of GONOME, we used the positions of all
190 exact occurrences of the proteosome associated con-
trol element (PACE) upstream activating sequence (UAS),
5'-GGTGGCAAA-3' [14] in the S. cerevisiae genome. The
PACE sequence motif is known to be present in the
upstream regions of 27 proteasomal genes, and a number
of ubiquitin-proteasomal genes. As we are interested in a
UAS, we directed GONOME to include only (2000 bp)
upstream regions in the analysis, against a null model of
the whole genome (the results of which barely differ from
null model that only considers the scored regions, because
highly gene-specific terms do not give a broader signal
associated with genes generally). As expected, GONOME
reveals significant over-representation of terms for the
appropriate (proteasomal) processes (Figure 3) indicating
its accuracy.

This analysis naturally raises the question of whether
GONOME could be applied on a genome-wide scale to
extract functionally-linked but as yet unrecognized UAS

sequences that may bind other transcription factors. To
this end, we used GONOME to analyze the positions in
the yeast genome of all possible k-mers (for k in the range
5 to 11) looking for any that showed significant over-rep-
resentation with particular GO terms. The complete
results are available at [13], and largely recapitulate results
of a similar study carried by Cora et al [15], without
requiring the prior isolation of upstream sequences asso-
ciated to groups of genes. Moreover, GONOME automat-
ically identified several additional motifs, including the
PACE element, not reported in Cora et al. (Table 1).

One interesting finding is that it would appear that the
PACE element (GGTGGCAAA) is actually a specific subset
of a more general motif (GKKGSMAAA) associated with
most protein catabolism genes. Whereas the PACE ele-
ment is found in the 2000 bp upstream of 27 genes anno-
tated as involved in protein metabolism, with 18 of those
also being annotated with 'protein catabolism', the related
motif TGGCAAA (underlined above, a subset of both the
PACE and the general motif) occurs in the upstream
regions of 56 protein catabolism genes, and of 65 genes
involved in 'macromolecule catabolism', perhaps imply-
ing greater promiscuity for the PACE associated transcrip-
tion factor, RPN4 [14,16,17], than is currently accepted,
or the existence of another transcription factor with over-
lapping specificity.

Another noteworthy finding is that, along with the previ-
ously reported large groups of motifs associated with
ribosome biogenesis and DNA replication, GONOME
identified a large group of previously unknown motifs sig-
nificantly associated with the terms 'translation' and
'translational elongation'. A set of genes is known to be
regulated as a group, for example, in stress induced inhi-
bition of translation [18]. The full set of over-represented

GONOME analysis of PACE elementsFigure 3
GONOME analysis of PACE elements. Figure legend text. Over-represented GO terms associated with positions in the 
S. cerevisiae genome of the proteosome associated control element (PACE) upstream activating sequence (UAS), 5'-GGT-
GGCAAA-3'. "Locus" refers in general to a gene and its associated upstream and downstream regions, which are "Hit" once 
when a position falls within any associated region.
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motifs found in this analysis can be also found in the
resources section of the website.

Discussion
GONOME provides a flexible way to examine correlations
between GO terms or other annotated features of genes
and sets of genomic positions. Configurable parameters
allow the genomic areas of interest to be defined and
given relative weights. Two different null models allow
the user to consider or exclude non-associated regions of
the genome from the statistical analysis. GONOME
reports correlations as E-values, conservatively accounting
for the testing of multiple hypotheses. The statistical
model accurately accounts for the varying length of
genomic regions.

GONOME is also a useful adjunct to many positional
genomic analysis methods (e.g., BLAST [19] or linkage
analysis) providing a generally applicable method for
enhancing understanding of the biological significance of
any set of genomic positions. It should also be noted that
the methodology is not restricted to GO term data. In the-
ory, any type of annotation data that can be associated
with genes can be accommodated.

As with any statistical method, some caution needs to be
used in the choice of parameters in order to achieve the
best results. We have observed that, in large genomes, lim-
iting the upstream and downstream cutoff distances to
around 10 Kbp avoids penalizing genes next to gene
deserts. It should also be borne in mind that larger genes
may and probably do have more extended regions of reg-
ulatory information, including that in introns, and there-
fore it may be appropriate, depending on the context of
the question, to (also) use incidence-based statistical
packages such as GOStat to obtain another perspective on
regulatory correlations.

Another issue can arise when multiple "hits" to a small
number of genes occurs due to clustering. For example, if
considering the terms associated to transposon positions,
a heavily invaded gene with 100 Alu hits causes all terms
associated with that gene to have significant E-values.
While this is indeed a statistically significant result, it may
obscure a more interesting genome-wide pattern. These
types of issues can be handled by representing clusters of
nearby positions with a single representative position. The
GONOME software package includes a simple clustering
routine for this purpose. The clustering routine finds all
chains of positions separated by less than a (user-speci-
fied) threshold distance, and replaces them with the mid-
point of the chain.

GONOME presently reports E-values computed by apply-
ing the conservative Bonferroni adjustment to p-values to

correct for multiple hypotheses. In the future this might
be extended to methods such as False Discovery Rate [20-
22]. However, while the optimal way to account for mul-
tiple hypotheses in the densely inter-related gene ontol-
ogy hierarchy remains an open question, the Bonferroni
approach seems prudent.

Conclusion
GONOME provides a method for assessing the statistical
significance of the association of genomic features with
particular types of genes, and enables the correction of
artifacts associated with variable gene size when using
event-based statistical packages. GONOME may be tai-
lored to specify the length of flanking sequences included
in the analysis as well as used as a tool to discover new
sequence motifs that are significantly associated with par-
ticular types of genes.

Methods
Correlations between GO terms and genomic positions
The objective of GONOME is to ascertain if a set of
genomic positions is correlated with some biological
property ("term") as annotated in the gene ontology (GO)
database, and to compute the probability of such a corre-
lation occurring at random. The GO database associates
terms with genes, not genomic positions, so one first must
define when a genomic position is considered to be asso-
ciated with a GO term. A scoring function is then defined
that measures the degree of correlation between a given go
term, T, and a set of genomic positions, X = {x1,x2,...,xn}.
Finally, to determine if the degree of correlation is statisti-
cally significant, the random distribution of the scoring
function is computed.

Associating GO terms with genomic positions
Each genomic position, xi, in the input set, X =
{x1,x2,...,xn}, consists of a chromosome or contig identi-
fier, a position on that chromosome or contig, and a
strand (i.e., Watson or Crick). (The user may specify
unstranded positions in the input to GONOME, but these
are each replaced by two positions, one on each DNA
strand.) GONOME associates all the GO terms associated
with a gene with each genomic position (on the gene's
DNA strand) that falls within the upstream, transcribed or
downstream region of the gene. GONOME permits the
user to define the extents (in base pairs) of upstream and
downstream regions. The downstream region of a gene
extends until the start of the flanking gene's transcribed
region or until the downstream cutoff is reached, which-
ever comes first. A similar definition applies to upstream
regions. If the downstream region of a gene overlaps the
upstream region of the flanking gene, the shared genomic
positions (herein called an "overlap region") are associ-
ated with the GO terms of both genes. Genomic positions
that are not part of any gene's upstream, downstream or
Page 7 of 11
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transcribed regions (as defined above), are treated as
unscored by GONOME and are not associated with any
GO terms.

The correlation scoring function
GONOME assigns a "weight" to each type of genomic
region that reflects the "strength" of the association
between positions in the given type of region and the GO
terms of the corresponding gene. The weights for the
upstream, downstream, transcribed and overlap regions
are called wu, wd, wt and wo, respectively. An upstream,
transcribed or downstream region is defined to be "anno-
tated with GO term T" if its associated gene is. An overlap
region is defined to be annotated with T if both flanking
genes are. Using these definitions, GONOME's score for
the association between a single genomic position, x, and
a GO term, T, in terms of the region weights is

GONOME's scoring function for the association between
the input set, X, and GO term, T, is the sum of the associ-
ation scores of each genomic position in X,

The GONOME correlation scoring function is illustrated
in Figure 4.

The user may choose the value of each region weight in
order to design a correlation scoring function appropriate
to the task at hand. Weights must be non-negative. For
example, to have the scoring function simply count the
number of positions in the input set that lie within or near
genes associated with GO term T, the GONOME user can
set the region weights to wu = wt = wd = 1. (This is not
strictly true if any input positions lie in the overlap regions
of two "red" genes as shown in Figure 4B). Such positions
are effectively counted twice. On the other hand, if the
user believes that positions in transcribed regions should
be stronger evidence of association with term T, this intu-
ition can be incorporated into the scoring function by set-
ting the weights to, for example, wu = wd = 1/2 and wt = 1.
As a final, simpler, example, setting the weights to wu = 1
and wu = wd = 0 will cause the scoring function to count
only positions within upstream regions, as might be
appropriate when studying promoter regions.

Determining statistical significance
Sufficiently large values of the scoring function S(X,T)
indicate that genomic positions annotated with GO term
T are overrepresented in the set X. To determine how large
is "large enough," the probability that S(X,T) ≥ S is esti-
mated under the null assumption that the set of positions
in X are chosen randomly from some "universe" of posi-
tions. This probability is commonly referred to as the p-
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value of S. To adjust for testing multiple hypotheses, we
convert p-values to E-values by multiplying by the number
of terms in the GO ontology. This is also referred to as the
"Bonferroni adjustment" [23] and gives a conservative
estimate of the expected number of GO terms that would
score S or more when the set of positions, X, is uncorre-
lated with any GO term.

The "universe" of positions referred to in the previous par-
agraph usually will be just the "genic" positions – the
upstream, downstream, transcribed and overlap regions
of genes. Alternatively, the user can specify that the uni-
verse include all positions in the genome.

GONOME computes score p-values by summing the
(approximate) probabilities of all possible ways to
achieve a score of S or greater. Each possible score is the
sum of a total of n weights, one for each element in X. So,
if variables u, t, d and o represent the number of positions
in X that lie in upstream, transcribed, downstream and
overlap regions, respectively, the correlation score is
S(X,T) = uwu + twt + dwd + owo. Let Pr(n,u,t,d,o) be the prob-
ability that, out of n randomly chosen genomic positions,
u, t, d and o, respectively are in upstream, transcribed,
downstream and overlap regions. Then, by definition, the
p-value of score S is

Equation 1
provided that wo ≠ 0. (If any region weights are zero, those
regions are treated as unscored regions, and Equation 1 is
modified to only sum over regions with non-zero
weights.)

GONOME estimates Pr(n,u,t,d,o) in Equation 1 using the
multinomial distribution

Equation 2
where z = n - u - t - d - o is the number of positions in X
that lie in unscored regions, and pr is the fraction of posi-
tions of type r in the "universe" of positions. Equation 2
will be a good estimate of Pr(n,u,t,d,o) as long as n is small
relative to the size of the "universe," so that the probabil-
ity of randomly choosing the same position twice as very
small [24]. This is because Equation 2 represents the prob-
ability of randomly selecting the specified numbers (u, t,
d, o and z) of different types of positions in n random
selections with replacement, whereas the correct analogy
should be selecting without replacement, since the input (X)

is a set and a single position cannot appear (i.e., be
selected) more than once.

Optimizing the p-value computation

When all region weights are non-zero, computing Equa-
tion 1 requires O(n4) operations. This becomes prohibi-
tive for large values of n. GONOME reduces the
computational requirements by a factor of n by truncating
the innermost summation when the variable o is suffi-
ciently large that Pr(n,u,t,d,o) is negligible. GONOME
truncates the sum over o when Pr(n,u,t,d,o) is decreasing

and , where p is the current value of

the sum (Equation 1) and ε is a user-selected error thresh-
old. It can be shown that Pr(n,u,t,d,o) decreases monoton-
ically in o once it reaches its maximum, so the total
fractional error in the p-value (Equation 1) will be no

more than ε.

GONOME saves additional time by only computing
Equation 1 if the Z-score of the observed score, S, is greater
than a user defined cutoff. The Z-score is computed using
the mean and standard deviation of S, which can be com-
puted efficiently. Details of the derivation of the mean
and standard deviation of the correlation scoring func-
tion, including some extensions, and an analysis showing
no significant expectations are lost for a cutoff of three
standard deviations, are available at [13].

Extraction of upstream motifs associated to functional 
groups
Isolation of over-represented upstream motifs is done by
extracting all k-mers in the S. cerevisiae genome of lengths
5 to 11 that appear five or more times on either strand. For
each k-mer, we use GONOME to determine which (if any)
GO terms are correlated with its occurrences in the
genome. (We restrict the analysis to upstream positions
with a 2000 bp cutoff.) Each k-mer is labeled with the GO
term with the lowest E-value, provided that the E-value is
less than 0.05. The k-mers are then grouped by their GO
term labels. Each such group represents a putative motif.
The resultant motifs are then filtered to remove those with
fewer than four occurrences (of any of the k-mers in the
set) in upstream regions and those with more than two
hundred occurrences. Motifs with fewer than four occur-
rences have little statistical support. Motifs with more
than two hundred occurrences tend to be such things as
TATA motifs, and we chose to ignore them as well.

We then use the MEME [25] algorithm to refine the
motifs. Each set of k-mers is input to MEME. MEME aligns
the k-mers and creates a position specific scoring matrix
(PSSM) for the refined motif. We chose not to use the
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PSSM, but instead use the consensus sequence that MEME
also outputed as the "final" motif. We then validate each
consensus sequence determining all positions in the
genome that match the consensus exactly. These positions
are treated as the final occurrences of the motif and input
to GONOME to see if the original GO term labeling the
motif is significantly over-represented. The significant
consensus sequences are then compared to known tran-
scription factor consensus motifs.

Datasets
The feature positions used for mouse, human, D. mela-
nogaster and A. thaliana were extracted from their Gen-
bank genomes. The human genome used herein was
NCBI build 35, 26 Aug. 2004, the murine genome was
NCBI build 33, 2 Sep. 2004, fly was the 13 Apr. 2005 ver-
sion, and cress the 19 Feb. 2004 version [26]. The S. cere-
visiae feature positions were derived from the SGD
annotations, 7 Dec. 2004 [27]. GO annotations for
human, mouse and S. cerevisiae were derived from the
200411 version of the main GO database, (5 Nov. 2004).
Feature positions (Chromosome contigs, 4 Jul. 2005) and
GO annotation table (15 Aug. 2005) for S. pombe came
from the Sanger center [28]. C. elegans feature positions
were derived from the WS147 build GFF file (22 Aug
2005) and GO table revision 1.52 [29]. D. melanogaster
GO annotations came from the revision 1.65 of the FLY-
BASE GOA table [30]. A. thaliana GO annotations were
derived from the TAIR GOA table, revision 1.821 [31]. All
datasets are archived at the website [13].

CpG island data was generated using the UCSC version of
Larsen's CpG island scanner [11] using default parame-
ters, and taking the position of the 3' end on each strand.
The scanner was run over the unmasked human genome,
and then those positions matching regions annotated as
repetitive by A. F. A. Smit and P. Green's RepeatMasker
were removed. The PACE UAS sequences were extracted
using S. Weng's PatMatch program at the SGD website
[32]. The parameters were set to extract only exact
matches.

Transcription factor consensus motifs were drawn from
the SGD verified list [33], which was primarily derived
from [34].

Availability and requirements
Project name: GONOME

Project homepage: http://gonome.imb.uq.edu.au/.

Operating systems: platform independent

Programming languages: Perl, C++

Other requirements: Optionally Connection to a GO
database

License: open source under MIT license

Any restrictions to use by non-academics: No

The downloadable GONOME package includes a BIOP-
ERL [35] based parser for extracting necessary data from
Genbank or EMBL files. Input to GONOME consists of a
table of the starts, ends, strand and feature IDs of genes,
and a list of genomic positions. Output from GONOME is
a graph giving the E-values of the most over-represented
GO terms, and tables providing E-values.

The web version of GONOME [6] allows on-line querying
against the human, mouse, S. cerevisiae, S. pombe, C. ele-
gans, D. melanogaster, and A. thaliana (more genomes
coming soon) using a set of user-provided genomic posi-
tions.

List of abbreviations
EMBL European Molecular Biology Laboratory

GFF General Feature Format

GO Gene Ontology

NCBI National Center for Biotechnology Information

PACE Proteosome Associated Control Element

PSSM Position Specific Score Matrix

UAS Upstream Activating Sequence

UCSC University of California, Santa Cruz.
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