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ABSTRACT
Understanding the pharmacokinetic (PK) properties of a drug, such as clearance, is a crucial step for 
evaluating efficacy. The PK of therapeutic antibodies can be complex and is influenced by interactions 
with the target, Fc-receptors, anti-drug antibodies, and antibody intrinsic factors. A growing body of 
literature has linked biophysical properties of antibodies, particularly nonspecific-binding propensity, 
hydrophobicity and charged regions to rapid clearance in preclinical species and selected human PK 
studies. A clear understanding of the connection between biophysical properties and their impact on PK 
would allow for early selection and optimization of antibodies and reduce costly attrition during clinical 
trials due to sub-optimal human clearance. Due to the difficulty in obtaining large and unbiased human 
PK data, previous studies have focused mostly on preclinical PK. For this study, we obtained and curated 
the most comprehensive clinical PK dataset to date and calculated accurate estimates of linear clearance 
for 64 monoclonal antibodies ranging from investigational candidates in Phase 2 trials to marketed 
products. This allows for the first time a deep analysis of the influence of biophysical and sequence- 
based in silico properties directly on human clearance. We use statistical analysis and a Random Forest 
classifier to identify properties that have the greatest influence in our dataset. Our findings indicate that 
in vitro poly-specificity assay and in silico estimated isoelectric point can discriminate fast and slow 
clearing antibodies, extending previous observations on preclinical clearance. This provides a simple yet 
powerful approach to select antibodies with desirable PK during early-stage screening.
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Introduction

Monoclonal antibodies (mAbs) can bind with high affinity and 
specificity to a broad range of protein targets, making them 
desirable molecules for drug development. Due to their large 
molecular weight, they have poor oral bioavailability and are 
typically delivered via injection. The IgG family of antibodies, 
with the exception of IgG3, have a long endogenous in vivo 
half-life (~18-21 days) in humans as a result of pH-dependent 
binding to the neonatal Fc receptor (FcRn), which enables 
recycling from endocytic compartments.1–3 Their long half- 
lives allow less frequent dosing strategies, and their effector 
functions may offer a substantial benefit for patients across 
numerous indications. Pharmaceutical companies have, there-
fore, invested heavily in research and development of IgG- 
based therapies.4

In practice, the half-lives of engineered antibodies can vary 
greatly from as long as four weeks to as little as a few days. 
Half-lives can depend on dose, route of administration, patient 
population, and other aspects of the study design.3,5,6 

Furthermore, many antibodies exhibit non-linear pharmaco-
kinetic (PK) profiles, and therefore half-life cannot be unam-

biguously determined from a given experiment. A key factor 
that influences the half-life is antibody clearance, which quan-
tifies the rate at which a drug is removed from circulation, 
providing a useful measure for how long the antibody remains 
in the body after dosing.

Previously published studies have associated changes in 
antibody biophysical properties, including mAbs Fv charge 
and hydrophobicity, with improved clearance,7–10 suggesting 
that mAbs can be engineered early in the discovery process to 
improve the likelihood of observing favorable PK at later 
stages. Similarly, correlations shown between early-stage devel-
opability assays, including affinity-capture self-interaction 
nanoparticle spectroscopy (ACSINS), poly-specificity reagent 
(PSR), and mAbs clearance, may offer a way to prioritize 
antibodies during early-stage screening.11–13 However, eluci-
dating the relationship between antibody biophysical proper-
ties and favorable human clearance remains a challenge. In 
a recent study investigating the solution behavior and PK for 
several antibodies, no correlation was found between measured 
in vitro properties, calculated pI, or calculated charge and the 
human PK values obtained from package inserts.14 At present, 
the best preclinical proxy for human antibody clearance comes 
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from studies of non-human primates, such as cynomolgus 
monkeys,15,16 which, however, are performed on only a few 
promising molecules due to strict ethical guidelines and asso-
ciated long timelines and high costs.17 While progress has also 
been made in predicting human clearance from early-stage 
in vivo models in animals such as FcRn transgenic mice and 
minipigs,18,19 these studies can be influenced by a number of 
factors including target specificity, volume of distribution, low 
affinity of competing mouse antibodies in transgenic mice, and 
the range of sequence and structure variability in the antibodies 
tested.

Here, we use published human clearance data from clinical 
trials to identify key in silico and in vitro approaches that can be 
used to triage antibodies during early-stage screening. At the 
time this work was conducted, there were 75 approved mAbs 
and over 200 in Phases 2 and 3 undergoing clinical trials.20,21 

Despite this substantial increase in clinical-stage antibodies in 
recent years, obtaining a large, unbiased dataset of publicly 
available antibody clearance from humans remains a difficult 
task because different studies and reports are published at dif-
ferent times during clinical development prior to or after sub-
mission in different populations at different dose levels. 
Therefore, a curation step was performed on the collected data, 
and statistical modeling was used to obtain high confidence and 
unbiased estimates of linear clearance for 64 mAbs. Using a set 
of 28 in silico properties calculated from antibody structure and 
12 measurements from in vitro developability assays published 
by Jain et al.,22 we applied the random forest machine learning 
algorithm to identify biophysical properties that were best able to 
distinguish between normal clearing and fast clearing antibodies 
in our data, with the goal of identifying a set of property cutoffs 
that can be used for antibody prioritization.

Results

Obtaining linear clearance values for clinical-stage mAbs

Clinical-stage human PK data for therapeutic mAbs were 
obtained from two databases, the Clarivate Analytics Integrity 

database and the Elsevier Pharmapendium.23,24 To allow relevant 
comparison between distinct mAbs, the data was curated and 
converted to uniform units, resulting in a comprehensive set of 
paired clearance rates and dose concentrations for an initial 
collection of 87 therapeutic antibodies, with a median of 10 
measurements per molecule. For 22 antibodies, we observed 
more than 100 times difference between the highest and lowest 
reported clearance, with extremes typically coming from a single 
reference source. An outlier analysis was performed, keeping 
values of clearance below 72.8 mL/day/kg and greater than 
0.35 mL/day/kg. For eight antibodies where the median lay out-
side this range, we retained all data as we reasoned, based on the 
median values, that atypical clearance values for these antibodies 
were more likely due to intrinsically high clearance rather than 
spurious outliers (Supplementary Figure S1). We manually 
removed most of these high clearance biologics from further 
analysis, as they either could not be fit or were not typical mono-
clonal antibodies and could not be compared to the more typical 
monoclonals.

For mAbs with sufficient data, non-linear least-squares 
regression was used to model the relationship between dose 
and clearance in order to obtain an estimate of linear 
clearance at high-dose ranges, where all receptors are pre-
sumed to be saturated (Figure 1a, Supplementary Figure 
S2). Our final dataset consisted of 64 mAbs for which the 
clearance rates could be compared without the confounding 
effects of target-mediated drug disposition (TMDD) (Table 
1). This was necessary in order to analyze the contribution 
of antibody “intrinsic” factors, such as biophysical proper-
ties, to clearance.

As an additional confirmation that our method of obtaining 
linear clearance values is valid, the clearance values we 
obtained were compared to human clearance for 22 antibodies 
for which the published literature3,12,25–29 supplied reliable 
clearance estimates. We found strong agreement (within 
20%) between our calculated clearance and the published 
values for 16 of the antibodies (Figure 1b). This indicates that 
the regression model can indeed be successfully used to obtain 
estimates of linear clearance for further analysis.

Figure 1. A. Clearance (CL) is plotted against dose for four antibodies. Regression line is shown in dashed blue. Estimated linear clearance is indicated in blue in the 
upper right. Dose values are shown on a log scale for clarity. B. Comparison of calculated clearance values with data from published literature. Gray area indicates 20% 
error from published values, with R2 shown in the lower right.
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Influence of antibody origin and isotype on clearance

As we are primarily interested in understanding the correlates of 
antibody intrinsic linear clearance mechanisms, such as biophy-
sical properties, we sought to analyze what role other, potentially 
confounding clearance mechanisms such as anti-drug antibodies 
(ADA) might play in our calculated clearance values. Antibody 
drugs, as “foreign” proteins, can induce ADA in humans, and 
ADA can affect the PK of protein drugs. We observed 
a statistically significant higher clearance among chimeric 
mAbs compared to either human or humanized ones, in our 
dataset (Figure 2a), and wondered whether this was due to 
differences in antibody intrinsic factors or to the increased 

“foreignness” of the chimeric antibodies. A comprehensive 
review of therapeutic mAbs30 found that while some murine or 
chimeric antibodies had faster clearance, overall no significant 
differences in the population PK of chimeric, humanized, and 
fully human antibodies were noted. In support of this, the 
observation that two mAbs with fast clearance, carlumab and 
ganitumab, (>10 mL/day/kg) were of human origin suggests the 
influence of a particular sequence, structural or biophysical 
motifs, rather than murine origin per se, on fast clearance. 
Furthermore, the clearance reported in well-designed clinical 
PK studies, as used in this dataset, filters out the effect of ADA, 
either by focusing on the first weeks after first dosing in drug 
naïve subjects, or by the design of the PK study and analysis 

Table 1. Linear clearance rate estimates with residual standard error (RSE) reported for 64 therapeutic antibodies. XI, ZU & HU indicate chimeric, humanized or human 
origin. aAntibody drug conjugate, bpegylated Fab.

mAb Clearance (mL/day/kg) RSE Isotype Origin mAb Clearance (mL/day/kg) RSE Isotype Origin

Abituzumab 3.52 2.63 G2 ZU Guselkumab 4.35 0.31 G1 HU
Adalimumab 3.66 0.40 G1 HU Infliximab 3.62 0.48 G1 XI
Alirocumab 3.16 0.28 G1 HU Ipilimumab 4.46 0.43 G1 HU
Atezolizumab 2.70 1.20 G1 ZU Matuzumab 5.58 1.87 G1 ZU
Basiliximab 11.34 1.00 G1 XI Mavrilimumab 4.33 0.32 G4 HU
Bavituximab 31.22 0.74 G1 XI Mepolizumab 2.48 0.26 G1 ZU
Belimumab 2.95 0.23 G1 HU Natalizumab 7.09 1.82 G4 ZU
Bevacizumab 2.99 0.40 G1 ZU Necitumumab 2.35 1.11 G1 HU
Brentuximab vedotina 22.19 0.40 G1 XI Nimotuzumab 4.64 1.44 G1 ZU
Brodalumab 2.99 0.01 G2 HU Nivolumab 3.32 0.96 G4 HU
Canakinumab 2.18 0.35 G1 HU Obinutuzumab 0.85 0.82 G1 ZU
Carlumab 12.82 1.30 G1 HU Ofatumumab 2.90 2.51 G1 HU
Certolizumab pegolb 3.37 0.14 G1 ZU Onartuzumab 6.96 0.03 G1 ZU
Cetuximab 7.88 1.32 G1 XI Pembrolizumab 3.16 0.07 G4 ZU
Cixutumumab 3.25 0.81 G1 HU Pertuzumab 3.29 0.46 G1 ZU
Daclizumab 2.05 0.98 G1 ZU Ponezumab 2.12 0.23 G2 ZU
Dalotuzumab 7.42 0.93 G1 ZU Ramucirumab 3.01 1.00 G1 HU
Daratumumab 1.60 1.64 G1 HU Reslizumab 2.49 0.37 G4 ZU
Duligotuzumab 6.38 0.44 G1 ZU Rilotumumab 2.76 0.29 G2 HU
Eculizumab 7.04 1.26 G2 ZU Rituximab 2.96 1.70 G1 XI
Efalizumab 0.50 176 G1 ZU Secukinumab 2.02 0.36 G1 HU
Eldelumab 5.54 0.47 G1 HU Sifalimumab 2.55 0.18 G1 HU
Elotuzumab 5.95 1.06 G1 ZU Siltuximab 4.00 0.79 G1 XI
Emibetuzumab 4.02 0.19 G4 ZU Sirukumab 5.56 0.30 G1 HU
Etrolizumab 3.56 0.16 G1 ZU Tabalumab 1.70 1.67 G4 HU
Evolocumab 2.86 0.03 G2 HU Tanezumab 2.45 0.30 G2 ZU
Farletuzumab 2.87 0.43 G1 ZU Tigatuzumab 4.90 0.50 G1 ZU
Ficlatuzumab 5.07 0.47 G1 ZU Tocilizumab 4.66 0.85 G1 ZU
Figitumumab 4.20 1.36 G2 HU Trastuzumab 2.76 1.49 G1 ZU
Ganitumab 12.59 1.34 G1 HU Tremelimumab 3.45 0.27 G2 HU
Girentuximab 5.23 0.75 G1 XI Vedolizumab 2.10 2.18 G1 ZU
Golimumab 6.47 0.36 G1 HU Veltuzumab 1.00 0.54 G1 ZU

Figure 2. A. Box and whisker plots of calculated clearances separated by antibody origin (HU for human, XI for chimeric, ZU for humanized). A two-sided Wilcoxon rank 
sum test was used to determine the p-values shown. B. Box and whisker plots of calculated clearances separated by IgG isotype.
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itself, excluding ADA positive subjects or by investigating ADA 
positivity as a covariate in a population PK analysis.30,31 A high 
incidence of clearing ADA was not observed in clinical PK 
studies in drug-naïve subjects, for the fast clearing antibodies 
in our dataset.32–34 As consequently we can exclude ADAs, we 
attribute the difference we observe (Figure 2a) to different 
sequence motifs or biophysical properties of the chimeric anti-
bodies. In further support of this, another fast clearing mAb in 
our dataset is brentuximab vedotin, a chimeric antibody con-
jugated to the cytotoxin MMAE, which could increase its hydro-
phobicity, leading to a higher clearance.35 This underscores the 
fact that molecule properties affect the PK of antibody-based 
therapeutics, independently of origin.

We further compared clearance rates across different IgG 
isotypes. As Fc-receptor mediated elimination is thought to 
play a large role in linear clearance,30 differences in clearance 
across isotypes might be expected. No significant difference 
was observed between the isotypes, yet clearance of IgG1 
mAbs had the most variability and represented all antibodies 
with fast clearance (Figure 2b). As the sample size for IgG2 and 
IgG4 is small, it cannot be unequivocally determined if the 
absence of high clearance rates in these isotypes is meaningful. 
However, it remains possible and likely that the lack of high 
clearance rates observed among IgG2 and IgG4 may be due to 
their biological properties, for example reduced Fc receptor 
binding in these isotypes.36,37 Larger clinical datasets for these 
isotypes are needed to serve as a point of future exploration. In 
this study, we focus on the IgG1 isotype when appropriate, to 
ensure properties affecting clearance are not simply correlated 
with isotype.

Impact of developability parameters on clearance

The study by Jain et al.22 introduced a set of developability 
“red flags”, whereby highly correlated assays were clustered 

together, and for each antibody a binary score was assigned 
to each cluster, based on whether a poor developability 
measure was present among the assays. Approved antibo-
dies were shown to have the fewest total flags. In this study, 
we used the same clustering among in vitro assays and flag 
assignment and analyzed the relationship with clearance. 
Although all of our 64 study mAbs were represented in 
the set of 137 mAbs evaluated by Jain et al., they were 
expressed as IgG1 by the authors, regardless of their isotype 
in the clinic. We therefore restricted our analysis of in vitro 
properties on the 48 natively IgG1 antibodies in our full 
dataset, since measurements for the non-IgG1 antibodies 
may not be appropriate for assessing their impact on 
in vivo clearance. We observed that, for the 48 IgG1 
mAbs, which included 31 approved drugs, 7 in Phase 3, 
and 10 in Phase 2, those with no flags had overall signifi-
cantly slower clearance compared to those with one or 
more red flags (Figure 3). Considering that in order to 
progress to later stage clinical trials and eventually to mar-
ket approval, mAbs must achieve sufficient human exposure 
to support a therapeutic effect, it is consistent with Jain 
et al.’s methodology that clearance rates are lower in mAbs 
with fewer flags. It is intriguing that the set of biophysical 
properties22 that they chose to examine might be causally 
related to some clearance mechanisms, and we explore this 
further below.

Correlation of biophysical properties with mAb clearance

To study the relationship between mAb biophysical properties 
and clearance, we again leveraged the rich dataset published by 
Jain et al.22 using the results of 12 in vitro assay measurements. 
Assays performed in the study include measures of nonspecific 
binding, aggregation, hydrophobic interactions, expression, 
and thermal stability.

Figure 3. Boxplot comparing clearance rates for antibodies with zero developability flags vs one or more developability red flags. Approved antibodies are shown in red, 
Phase 2 antibodies in green and Phase 3 in blue.

e1932230-4 B. GRINSHPUN ET AL.



For each antibody, we additionally calculated in silico bio-
physical descriptors based on homology modeled structures of 
the variable fragment (Fv) domain obtained using the 
Molecular Operating Environment (MOE 2019.01).38 The 23 
descriptors calculated include various measures of hydropho-
bicity and charge, including hydrophobic patch area, and 
structure-based isoelectric point. The same homology models 
were then used to calculate five in silico descriptors for anti-
body developability included in the Therapeutic Antibody 
Profiler (TAP) developed by Raybould et al.,39 which were 
implemented internally. All properties can be found in 
Supplementary Table 1. Among our 40 total in vitro and in 
silico properties, we found no strong correlation of any single 
property with linear clearance (Figure 4), although the stron-
gest correlations that were observed were also statistically sig-
nificant (Supplementary Figure S3). When assessing the 
properties on the 48 IgG1 antibodies, the highest Pearson 
correlation observed is 0.51 for the PSR assay. Of the in silico 
descriptors, the highest absolute Pearson correlation observed 
is 0.31 for pI_3D (described below). This is not unexpected, as 
the biophysical factors determining clearance are expected to 
be complex and likely interdependent.

Next, we examined whether pairs of properties could be used 
to classify antibodies in a discrete fashion as having either fast or 
normal clearance. Determining a threshold for normal human 
clearance is a challenge because clinical-stage mAbs typically 
have been selected based on promising preclinical studies in 
non-human primates and are enriched for acceptable clearance 

rates. The lack of publicly shared preclinical datasets further 
limits the availability of additional information that could be 
used to probe the true range of observed mAb clearance during 
development. In this study, an appropriate linear clearance 
threshold was determined based on the distribution of the avail-
able clinical data. For the majority of antibodies, 59 of 64 mAbs, 
the clearance rate was below 8 mL/day/kg, in agreement with 
typical ranges that have been described for therapeutic 
antibodies,1,12,15 and followed a log-normal distribution 
(Figure 5). The remaining five mAbs had exceptionally high 
clearance rates and were excluded from the subsequent analysis. 
The mode of the log-normal distribution was at 2.53 mL/day/kg, 
matching closely with the 2.8 mL/day/kg clearance rate of an 
endogenous antibody reported by Ryman and Meibohm.1 

Antibodies with clearance below 2.5 mL/day/kg were defined 
as having slow clearance, but many approved antibodies above 
this threshold have acceptable clearance properties in the clinic. 
The mean clearance was 3.7 mL/day/kg and the standard devia-
tion was 1.7 mL/day/kg. We therefore selected as our clearance 
threshold a value of 5.4 mL/day/kg, corresponding to one stan-
dard deviation above the mean, which separated the data into 48 
(75%) normal clearing antibodies and 16 (25%) fast clearing 
antibodies. A linear clearance threshold of 10 mL/day/kg in 
cynomolgus monkeys was previously introduced by Hotzel and 
colleagues for fast clearing antibodies in this species.11 Applying 
allometric scaling, we determined that this threshold corre-
sponds to a human clearance of around 5.25 mL/day/kg, further 
supporting the value of 5.4 mL/day/kg used in this study.

Figure 4. Histogram showing the absolute value of the correlations between clearance and all 40 biophysical properties. The highest correlation found is 0.51 for PSR.
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In work performed by Sharma et al.,9 the authors proposed 
that either excess hydrophobicity or extreme charge values can 
potentially lead to nonspecific binding and cause faster clear-
ance. They identified criteria that distinguished between slow 
and fast clearing mAbs in cynomolgus monkeys using the net 
charge of the antibody Fv region at pH 5.5 (fvcharge5.5) and 
the sum of the hydrophobic index along several CDRs 
(HI_sum). We performed a similar analysis here for human 
clearance with the classification determined as described 
above, using the features identified as relevant by Sharma and 

colleagues, with values calculated with a custom implementa-
tion using MOE 2019.01. The criteria used for cynomolgus 
clearance captured only 24 (50%) of our normal clearing anti-
bodies (Figure 6a, solid-line red box), not indicating any sig-
nificant advantage in prioritizing antibodies within the box. By 
adapting the thresholds of the original model for cynomolgus 
monkeys such that antibodies with normal human clearance 
were required only to have HI_sum below 10 (Figure 6a, 
dashed red box), we captured 43 (90%) of the normal clearing 
antibodies (including identifying all but one of the very slow 

Figure 5. Histogram of calculated clearance rates with the log-normal fit to the data in red separating the data into 48 normal antibodies, and 16 fast clearing. 
A threshold of 5.4 mL/day/kg was selected, above which clearance is considered fast.

Figure 6. a. Fv charge at pH 5.5 and hydrophobic index sum (HI_sum) of L1, L3 and H3 as described in Sharma et al.9 The red solid box corresponds to the boundary for 
antibodies with normal clearance in cynomolgus monkeys as described by Sharma et al. The red dashed box indicates the extended area. Antibodies colored blue have 
clearance less than or equal 2.5 mL/day/kg, antibodies colored green have clearance between 2.5 and 5.4 mL/day/kg. Antibodies with fast clearance (>5.4 mL/day/kg) 
are colored in red. Marker size is proportional to the magnitude of the clearance. b. Cutoff criteria for Fv charge and HI_sum. The accuracy is presented, defined as the 
percentage of all mAbs that were correctly grouped using these criteria. c. Surface area of hydrophobic patches near CDRs (patch_cdr_hyd) and structure-based 
predicted isoelectric point (pI_3D). The red dashed box indicates boundaries for the enrichment box. Antibodies colored as in part A. d. Cutoff criteria and accuracy for 
patch_cdr_hyd and pI_3D.
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clearing mAbs, blue dots in Figure 5a) while excluding 8 (50%) of 
fast clearing antibodies. Thus, we achieved similar or somewhat 
improved performance for identifying antibodies with normal 
human clearance as Sharma et al. achieved for cynomolgus monkey, 
but with slightly poorer specificity for identifying fast clearing anti-
bodies. Furthermore, Figure 6a suggests that for this dataset, 
HI_sum does not help discriminate, as we had to adapt to a very 
large range (HI_sum <10) and this range still excluded slow clearing 
antibodies, including a very slow clearing mAb that would have 
been retained using only the fvcharge5.5 criteria.

In an effort to apply the same biophysical theory but to 
improve the performance further, we evaluated whether the 
structure-based features calculated from homology models 
would improve discrimination compared to sequence-based 
features. For hydrophobicity, in place of HI_sum we selected 
patch_cdr_hyd, which is the surface area of the hydrophobic 
patches near the complementarity-determining regions 
(CDRs) averaged over a conformational ensemble, and has 
previously been shown to be correlated with developability.40 

In place of the fvcharge5.5, we used the structure-based pI 
prediction where the residue pKa values are influenced by 
their 3D environment, and the values are averaged over the 
same conformational ensemble (pI_3D). Using these structure- 
based descriptors with the thresholds shown in Figure 6c and 
D, we improved discrimination of fast clearing antibodies, 
excluding 11 of 16 (69%) while retaining 86% of very slow 
clearing mAbs (blue dots, Figure 6c). However, correct identi-
fication of normal human clearance was not improved using 
these features and thresholds (67% correctly identified).

Application of machine learning algorithm to identify 
biophysical properties influencing human clearance

As neither single biophysical properties nor pairs of properties 
previously identified for preclinical clearance data appeared to 
optimally discriminate normal and fast human clearance, we 
turned to machine learning to identify more complex relation-
ships between biophysical properties and human clearance. 
While the available data are insufficient to build a true pre-
dictive model, our goal was simply to identify properties that 
have significant influence and potentially meaningful, testable 
relationships with human clearance.

We implemented the random forest machine learning algo-
rithm to identify biophysical properties that most strongly 
discriminate linear clearance. In brief, the random forest used 
as input features the in vitro and in silico biophysical properties 
to train a large number of decision trees, each of which tries to 
predict the linear clearance of mAbs. While a single tree pro-
duces high bias for the input data, a collection of many trees 
constructed from subsampled data and subsets of input fea-
tures can be averaged to make a classification with minimal 
bias. The extent to which each individual tree is accurate for 
classifying the data in the training dataset is used to rank the 
features in order of importance (Supplementary Figure S4). 
Due to the relatively small size of our dataset, we used the 
random forest to perform a classification task, rather than 
regression, binning mAbs into two groups corresponding to 
normal clearance and fast clearance, with a threshold of 5.4 ml/ 
day/kg described above.

Since the in vitro assay values22 are only appropriate to use 
for IgG1 antibodies, we trained our random forest model on 
only the IgG1 antibodies, which consisted of 34 normal clear-
ing and 14 fast clearing antibodies. Multiple runs of the ran-
dom forest produced variation among top properties, likely 
because of the small size of the training set. We therefore 
performed 10,000 repetitions of the random forest and tabu-
lated the number of times a biophysical property was ranked 
among the top five most important. This yielded a consistent 
set of top-ranked properties for classification (Supplementary 
Figure S5). The top ranked biophysical property was the in 
silico calculated sequence-based isoelectric point (pI_seq). 
However, we noticed that many of the top properties were 
strongly correlated. In particular, among the properties occur-
ring most frequently in the top 10, four were strongly corre-
lated with pI_seq, resulting in other properties having lower 
rank. We therefore clustered all properties by Spearman corre-
lation (Supplementary Figure S6), and iteratively selected the 
best property in each cluster. The final tabulated collection of 
random forest runs produced a set of rankings of uncorrelated 
properties, with isoelectric point (pI_seq) and poly-specificity 
reagent (PSR) appearing among the top five uncorrelated prop-
erties in every run (Figure 7a). Notably, both pI_seq and PSR 
have been identified as predictive of preclinical clearance in 
previous studies.10,13,41

While the random forest algorithm is able to determine 
important features, it does not provide a specific set of thresh-
old values for mAb classification (Supplementary Figure S7), 
We therefore again plotted the clearance values as above, this 
time using the features identified by the random forest as the 
axes (Figure 7b). Using this visualization, we were able to 
identify threshold values for the PSR assay and pI_seq 
(Figure 7c) that captured 83% of antibodies with normal 
human clearance (similar to the performance of HI_sum and 
fvcharge5.5 for normal cynomolgus clearance9), including cap-
turing all but one of the very slow clearing antibodies (blue 
dots, Figure 7b). Furthermore, 63% of fast clearing antibodies 
were excluded using these features and thresholds. It is notable 
that this performance applied to all isotypes in the dataset, 
although the algorithm was run on only the subset of 48 IgG1 
antibodies.

Discussion

Antibody PK involves complex interactions between an anti-
body and its physiological environment. Publicly available 
datasets describing human PK of mAbs are limited in the 
number of antibodies described and lack expert curation to 
ensure that reported experimental conditions and values are 
directly comparable. Although a well-curated database of PK 
properties for therapeutic mAbs does not exist, we have shown 
that thoughtful selection and curation of a large dataset are able 
to provide comparable and reasonably accurate values of linear 
clearance that can be used for further analysis. Our approach 
relies on the observation that, for most therapeutic mAbs 
showing TMDD, the clearance decreases with dose, reaching 
a plateau at a higher dose when all receptors are saturated. 
While this work does not attempt to measure effects of target 
mediated clearance, an accurate model of clearance as 
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a function of the dose could provide such insight as well, which 
has potential for improving clearance prediction in preclinical 
and clinical studies. We focused here on linear clearance, as 
a basis for understanding antibody intrinsic, non-target 
mediated effects on clearance. By compiling a large amount 
of human PK data, carefully standardizing the units, and 
applying a stringent statistical modeling approach, we were 
able to approximate linear clearance for 64 mAbs of varied 
isotype and clinical phase, the most comprehensive such data-
set for human clearance values published as of now, to the best 
of our knowledge.

In this panel of 64 mAbs for which biophysical properties 
were characterized, we did not observe in human clearance 
values the strong correlations between clearance and the PSR 
and ACSINS assays that have previously been shown in C57BL/ 
6 and Tg32 mice,12,13,42 nor any strong correlation with 40 
measured in vitro and calculated in silico properties (Figure 2 
and Supplementary Figure S3). Using criteria shown to be 
useful in discriminating normal and fast clearance in cynomol-
gus monkey,9 while adapting the threshold values, yielded 
reasonable discrimination of antibodies with normal clearance, 
and better than random but not very good discrimination of 
fast clearing antibodies (Figure 6a,b). Discrimination of fast 
clearing antibodies was somewhat improved by using struc-
ture-based properties calculated in silico using MOE (Figure 
6c,d). Overall, it is challenging even with this well-curated 
dataset to identify properties that may discriminate fast and 
normal clearance, not least because the dataset is heavily 
skewed (75%) toward antibodies with normal and slow clear-
ance, as expected for marketed and late-stage therapeutics.

Given the skewed dataset and the combinatorially large 
number of potentially useful properties and property combina-
tions, we used a machine learning algorithm to systematically 
evaluate the influence of each property on clearance, while 
accounting for correlated properties. Using this approach, the 
algorithm identified PSR and pI_seq as properties that most 
strongly influence the rate of linear clearance in humans, in 

line with previous observations.10,13,41 We were able to deter-
mine threshold values that displayed reasonably good perfor-
mance in identifying antibodies with normal clearance and 
especially at excluding antibodies with fast clearance (Figure 
7). Even if not all normal clearing antibodies can be identified 
(existence of false negatives), it would be very useful to simply 
filter out fast clearing antibodies at an early discovery stage, 
where many diverse hits will meet the desired pharmacological 
profile but are generally uncharacterized in relevant PK models 
until much later. While we obtained similar performance as 
reported previously for cynomolgus PK data, the precise proper-
ties that give the best performance on each preclinical or clinical 
dataset vary, perhaps due to subtle species-specific differences. 
While preclinical models, especially non-human primates, 
remain a powerful tool to predict human clearance, these results 
highlight the importance of investigating the biophysical causes 
and correlates of human clearance rates directly on human 
datasets.

It is notable that in studies of both preclinical8–11,13,15 and 
clinical clearance,12 nonspecific binding, hydrophobicity and/ 
or charge appear to be relevant to clearance. Sharma et al.9 

did not perform poly-specificity assays, but commented that 
regions of high hydrophobicity and extreme charge can cause 
nonspecific binding leading to faster clearance, and found 
that HI_sum and fvcharge5.5 together can separate antibodies 
having fast clearance from those having normal clearance in 
cynomolgus monkeys. Kelly et al.13 performed nonspecificity 
assays and found that the higher the level of PSR binding, the 
faster the measured clearance for 16 antibodies in mice 
(Pearson correlation of 0.73). However, when they applied 
HI_sum and fvcharge5.5, the properties were not able to 
separate or enrich for slow, normal, or fast clearance. In the 
work by Igawa et al.,10 it was determined that unusually high 
pI values correspond to fast clearance in cynomolgus mon-
keys for human IgG4 antibodies. However, Kingsbury et al.14 

observed no correlation between measured or calculated pI 
values to human clearance and half-life values obtained from 

Figure 7. A. Properties with highest impact on clearance after 10000 runs of the random forest. B. Sequence based isoelectric point using the modeled Fv region 
(pI_seq) plotted against the poly specificity reagent (PSR). Antibodies colored blue have clearance less than or equal 2.5 mL/day/kg, antibodies colored green have 
clearance between 2.5 and 5.4 mL/day/kg. Antibodies with fast clearance >5.4 mL/day/kg are colored in red. Marker size is proportional to the magnitude of the 
clearance. Marker type indicates antibody isotype. C. Cutoff criteria and accuracy for separating normal clearing and fast clearing antibodies for pI_seq and PSR.
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the package inserts of about 40 antibodies, similar to our 
observation (Supplementary Figure S3). They included the 
TAP parameters39 in their analysis and found they were not 
useful for predicting either solution behavior or PK; similarly, 
we found that the TAP charge descriptors SFvCSP, PPC, PNC 
do not appear to be useful for PK predictions. For the current 
dataset of 64 clinical-stage antibodies, we found that PSR 
binding in combination with the calculated pI_seq was the 
most useful predictor for clearance in humans and can enrich 
for slow clearance and separate the fast clearing antibodies 
from those with normal clearance. The HI_sum and 
fvcharge5.5 descriptors together were able to enrich for nor-
mal clearance versus fast; however, HI_sum makes no con-
tribution and the enrichment is entirely driven by 
fvcharge5.5. We found that the patch_cdr_hyd descriptor is 
able to filter some fast clearing antibodies while retaining all 
slow clearing antibodies, and, when used in combination with 
pI_3D, can enrich for slow clearance versus fast almost as well 
as PSR/pI_seq, but perhaps not as well for normal clearance 
as does fvcharge5.5.

Overall, when selecting therapeutic antibody candi-
dates, they would ideally not have high measured values 
of PSR binding nor a high calculated hydrophobicity or an 
extreme charge. In the absence of PSR binding or other 
poly-specificity experiments, an in silico Fv charge descrip-
tor such as pI_3D can likely enrich for slow clearance and 
filter out fast clearing antibodies, while an Fv hydropho-
bicity descriptor such as patch_cdr_hyd may filter addi-
tional fast clearing antibodies, as we have demonstrated 
with the current dataset. Furthermore, antibodies with 
high values for patch_cdr_hyd or other hydrophobicity 
descriptors are best avoided due to developability con-
cerns such as aggregation40,43,44 and because human IgG1 
antibodies with relatively low charge descriptor values for 
the variable region have been shown to have increased 
viscosity.9,45–47 Selected candidate mAbs may be further 
optimized for longer half-lives by determining variants 
that bind in pH-dependent manner to the FcRn7 and 
demonstrate relatively low nonspecific binding11,13 or by 
investigation using animal models.8,15

We expect that the true relationships between the bio-
physical properties of antibodies and their in vivo PK is 
driven by a complex combination of multiple factors; 
therefore, large and diverse datasets are necessary in 
order to improve the predictive power of machine learn-
ing approaches. It is unlikely that any single entity (e.g., 
biopharmaceutical company, academic group) currently 
possesses sufficient data to generate robust results to this 
challenging problem. The value of understanding the rela-
tionship between biophysics and PK of mAbs will enable 
the more efficient use of drug development resources, 
thereby facilitating the development of more efficacious 
therapies for patients in need. To achieve these insights, 
the biopharmaceutical industry would greatly benefit from 
having additional data available through precompetitive 
sharing, and by maintaining a single database of high- 
quality PK data for clinical-stage antibodies. Further 
investigation of preclinical and especially clinical mAbs 
clearance on larger datasets is required. We believe this 

analysis, based on curated clinical PK data for 64 
advanced and approved mAbs, may serve as a useful 
resource of linear clearance data for different antibodies 
in humans and seed further cooperation and investiga-
tions in this important area.

Materials and methods

Selecting antibody PK data

All PK data for mAbs were collated from the Integrity database 
from Clarivate Analytics and PharmaPendium from 
Elsevier.23,24 These databases contain data on drug development 
from a variety of published primary sources, and provide multi-
ple values for dose, clearance, and method of administration for 
antibody drugs. The units reported varied by study and were 
converted to standard units of mg for dose, and milliliters 
per day per kilogram for the clearance rate, with an assumed 
75 kg as the average adult weight and 1.65 m2 for the body 
surface area. Our analysis focuses on clearance rather than half- 
life because it is a primary PK parameter, and because neither 
half-lives nor volumes of distribution were explicitly reported in 
these databases. Additionally, in order to avoid discrepancies in 
the relationship between the administered dose and the reported 
clearance due to method of administration, we focus only on 
data associated with intravenous injection of the drug.

Outlier removal of antibody clearance rates

Selected antibody clearance data were analyzed on a log scale. 
Measurements of clearance were required to be within two times 
the interquartile range (IQR) of the entire dataset. For 78 anti-
bodies, clearance rates below 0.35 and above 72.8 mL/day/kg were 
excluded. The interquartile range is the difference between the 25th 

and 75th percentile of the data, and therefore includes the middle 
50% of the dataset. Using a threshold based on IQR provides 
a measure of variability from the median and captures both the 
range and density of the data, without assuming a probability 
distribution. The other eight antibodies had a median that lay 
outside these bounds, likely due to intrinsically higher clearance, 
and no outlier removal was applied. Several of these were removed 
from further analysis, as they were antibody fragments or murine 
monoclonals rather than human Fc-containing monoclonals.

Determining linear clearance

Since mAb clearance often depends on dose, a statistical model 
was used to obtain the linear clearance from the data. 
Clearance ( CL�!) and dose (~D) for individual antibodies were 
fitted by a non-linear least-squares regression using the stats 
package in the R language for statistical computing 

nls CL�!,aþ b
~D
;weights ¼ 1

CL�!

� �

1ð Þ

The asymptote, a, estimates the clearance at dose ranges at which 
the receptor is presumably saturated and the PK disposition is 
apparently independent of receptor concentration. This approach 
captures the relationship between dose and clearance without 
assuming a specific PK model for each drug, and thus provides 
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an unbiased estimate across multiple therapeutics. Antibodies 
were retained for further analysis if at least three data points 
were available and a positive value for the asymptote was returned.

Linear regression was used to compare with available pub-
lished values, using the “lm” function in R to obtain the 
equation of the line and residual standard error.

Fitting a clearance probability distribution

A histogram of the clearance data was produced in R, using 23 
bins based on the Freedman-Diaconis rule:48 

Number of breaks ¼
max CL�!
� �

� min CL�!
� �

h 2ð Þ

where h is the bin width as determined by the IQR 

h ¼
2�IQR CL�!

� �

ffiffiffiffiffiffiffiffiffiffiffi

CL�!
�
�
�

�
�
�

3

r # 3ð Þ

The parameters of the log-normal distribution were calculated from 
the logarithm transformed bulk data, using values up to the first gap 
among bins, which occurred at clearance of 8 mL/day/kg. 

μ ¼ meanðlogðCL< 8ÞÞ;s ¼ sdðlogðCL< 8ÞÞ 4ð Þ

where μ ¼ 1:20 and s ¼ 0:52. A log-normal distribution was 
then generated in R using the “rlnorm” function in the stats 
package with 5000 data 
points: rlnorm 5000;mean ¼ μ; sd ¼ sð Þ.

Allometric scaling for evaluating human clearance

The human clearance threshold assessed in this study was 
compared to data published by Hotzel et al.11 by simple allo-
metric scaling between cynomolgus monkeys and humans 
using the following equation as described by Deng et al.15 

CLhuman ¼ CLcyno �
BWhuman
BWcyno

� �w
5ð Þ

where CL is the clearance rate for an antibody, BW is the body 
weight, and w is an allometric scaling exponent. The average 
body weight used was 3 kg for cynomolgus and 75 kg for 
humans, with allometric exponent of 0.8 as previously 
described.19

Antibody homology model generation

Homology models of the variable region of the antibodies 
studied were created using the Antibody Modeler application 
in MOE 2019.01 with default settings.38 For each model, the Fv 
sequence was supplied and the framework structure from the 
Protein Data Bank (PDB)49 with highest identity to the query 
used as the template. For each CDR, the CDR template struc-
ture of the same type and length and highest identity to the 
query from the PDB was grafted onto the template. Any 
remaining mutated residues were modeled by sidechain pack-
ing rotamer exploration, and the final model was energy mini-
mized with the Amber10 forcefield.50 Of the 64 antibodies 

modeled, 27 were 100% identical to their respective chimeric 
template and the average identity of the 37 remaining antibo-
dies to their light- and heavy-chain templates ranged from 87% 
to 100%. Also, using these CDR-grafted chimeric templates 
ensures that there are no gaps in the alignments used for 
homology modeling. This automated method in combination 
with property calculations based on conformational sampling 
averages was shown to be effective by Jetha et al.40 for modeling 
antibodies and performing developability calculations.

Property calculations on 3D models

In silico biophysical properties of the antibodies were cal-
culated on the Fv models using the Protein Properties 
application in MOE 2019.01. For each, the ensemble sam-
pling method was used to produce 100 conformations with 
LowModeMD51 and Protonate3D,52 allowing flexible CDRs 
and sidechains as well as alternate protonation states. The 
descriptors calculated were averaged over this ensemble of 
100 conformations for each antibody to provide values 
based on averaged models and reduce potential sensitivity 
from using a single homology model. In particular, the 
sequence based pI_seq descriptor is calculated using the 
algorithm of Sillero and Ribeiro,53 as is the pI_3D descrip-
tor but with pKa values obtained by the PROPKA method54 

on the ensemble of Fv models. The patch_cdr_hyd descrip-
tor is calculated as the sum of the surface area of the 
hydrophobic patches involving any part of the CDR surface 
averaged over the 100 ensemble conformations.

Five additional properties from the Therapeutic Antibody 
Profiler39 (TAP) were calculated using an internal implemen-
tation written in Python. TAP properties are described in the 
Supplementary Table 1.

Random forest analysis

The random forest analysis was performed in R (randomForest 
package), using 1000 decision trees trained on the 48 IgG1 
antibodies classified as normal or fast clearing. The number 
of properties selected for each tree was determined by the 
square root of the total number of biophysical properties in 
the analysis, the recommended approach for random forest 
classification.55 For the initial dataset, this yielded six proper-
ties, which decreased to three for the uncorrelated properties. 
Uncorrelated properties, determined by Pearson correlation, 
were selected by running the random forest 10000 times and 
selecting the most important property among correlated 
groups (Supplementary Figure S6). This step was done itera-
tively in order to allow for changes due to removal of properties 
in the previous runs. The top five most influential properties 
were considered for enrichment analysis.
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