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Simple Summary: The human body consists of trillions of cells and several million of them die daily.
These natural processes which determine the fate of a cell in the human body can be broadly defined
as programmed cell death (apoptosis and autophagy) and a non-programmed, passive cell death
(necrosis). The inherent genetic diversity in humans and differential expression of mRNAs belonging
to these cell death pathways can provide clinically actionable information. In this study, we have
discovered a differential 21-gene cell death signature that significantly separates lung cancer patients
based on their survival. The patients with increased expression of this genomic signature were found
to be at higher risk of dying early. Interestingly, this patient group showed significant perturbations
in the expression of cytokines and infiltration of immune cells within these tumors. Therefore, the
discovery of this novel genomic signature can be used for prognostication of lung cancer patients,
and most importantly we can tailor personalized novel immunotherapies for their treatment.

Abstract: Lung cancer is one of the leading causes of death worldwide. Cell death pathways such as
autophagy, apoptosis, and necrosis can provide useful clinical and immunological insights that can
assist in the design of personalized therapeutics. In this study, variations in the expression of genes
involved in cell death pathways and resulting infiltration of immune cells were explored in lung ade-
nocarcinoma (The Cancer Genome Atlas: TCGA, lung adenocarcinoma (LUAD), 510 patients). Firstly,
genes involved in autophagy (n = 34 genes), apoptosis (n = 66 genes), and necrosis (n = 32 genes)
were analyzed to assess the prognostic significance in lung cancer. The significant genes were used to
develop the cell death index (CDI) of 21 genes which clustered patients based on high risk (high CDI)
and low risk (low CDI). The survival analysis using the Kaplan–Meier curve differentiated patients
based on overall survival (40.4 months vs. 76.2 months), progression-free survival (26.2 months
vs. 48.6 months), and disease-free survival (62.2 months vs. 158.2 months) (Log-rank test, p < 0.01).
Cox proportional hazard model significantly associated patients in high CDI group with a higher
risk of mortality (Hazard Ratio: H.R 1.75, 95% CI: 1.28–2.45, p < 0.001). Differential gene expression
analysis using principal component analysis (PCA) identified genes with the highest fold change
forming distinct clusters. To analyze the immune parameters in two risk groups, cytokines expression
(n = 265 genes) analysis revealed the highest association of IL-15RA and IL 15 (> 1.5-fold, p < 0.01)
with the high-risk group. The microenvironment cell-population (MCP)-counter algorithm identified
the higher infiltration of CD8+ T cells, macrophages, and lower infiltration of neutrophils with the
high-risk group. Interestingly, this group also showed a higher expression of immune checkpoint
molecules CD-274 (PD-L1), CTLA-4, and T cell exhaustion genes (HAVCR2, TIGIT, LAG3, PDCD1,
CXCL13, and LYN) (p < 0.01). Furthermore, functional enrichment analysis identified significant
perturbations in immune pathways in the higher risk group. This study highlights the presence of
an immunocompromised microenvironment indicated by the higher infiltration of cytotoxic T cells
along with the presence of checkpoint molecules and T cell exhaustion genes. These patients at
higher risk might be more suitable to benefit from PD-L1 blockade or other checkpoint blockade
immunotherapies.

Cancers 2021, 13, 155. https://doi.org/10.3390/cancers13010155 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-5290-9289
https://orcid.org/0000-0002-0597-9305
https://orcid.org/0000-0001-5621-3724
https://orcid.org/0000-0002-8283-2403
https://doi.org/10.3390/cancers13010155
https://doi.org/10.3390/cancers13010155
https://doi.org/10.3390/cancers13010155
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13010155
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/2072-6694/13/1/155?type=check_update&version=2


Cancers 2021, 13, 155 2 of 18

Keywords: lung cancer; LUAD; gene expression; prognostic genes; cell death; apoptosis; necrosis;
tumor microenvironment; immunotherapy

1. Introduction

Lung cancer is one of the leading causes of cancer-related mortality worldwide [1].
Lung cancer is divided mainly into two subtypes: small lung cancer (SCLC) and non-
small cell lung cancer (NSCLC). NSCLC accounts for the majority (around 85%) of all
lung cancer cases and includes two major types. Among NSCLC, lung adenocarcinoma
(LUAD) and lung squamous cell carcinoma (LUSC) form 70% and 30% of all the total
cases, respectively [2]. Despite recent advances in surgery, chemotherapy, radiotherapy,
and immunotherapy, the 5-year survival of lung cancer patients remains dismally poor [3].
Therefore, novel prognostic methods to identify patients at higher risk are required that
can further assist in the design of new therapeutic options for LUAD patients.

The tumor microenvironment (TME) consists of tumor cells and the surrounding area
which includes blood vessels, cytokines, chemokines, fibroblasts, extracellular matrix [4].
Cell death is an essential process that is necessary for the growth and development of
an organism. There are diverse cell death processes that are initiated in the tumor mi-
croenvironment due to the normal biological response, external stimuli, or response to
therapies. The resulting immune response due to alterations in the death activity of the
tumor, stromal, endothelial, and immune cells can significantly alter the trajectory of
tumor growth [5]. There are three classical cell death pathways: autophagy, apoptosis,
and necrosis [6]. Autophagy is the degradation of cellular macromolecules to generate
metabolites in the situation of cellular stress. Autophagy results in the formation of au-
tophagosome, a lipid bilayer vesicle which fuses with lysosomes for the degradation of
cellular organelles, proteins, etc. [7]. Autophagy is generally a pro-survival mechanism
but the chronic induction of stress can cause irreversible damage which might lead to
apoptosis or necrosis [8,9]. Apoptosis is a programmed cell death that mediates through
two pathways: the mitochondria-mediated intrinsic pathway and extrinsic pathway in-
volving death receptors (DRs) [10]. Its characteristics features are nuclear fragmentation,
membrane blebbing, and chromosomal condensation [11]. Necrosis is a form of cell death
that is non-physiological, non-specific and induced by stress [12]. Apoptosis is the active
dismantling of cells to prevent the release of inflammatory mediators whereas necrosis
results in the disruption of the cellular membrane, spilling inflammatory cellular contents
into the tumor microenvironment [13,14]. The dysregulation of cell death programs can
play a significant role in tumorigenesis [15].

NSCLC is one of the most heterogenous tumors with a varying degree of aggressive-
ness between its subtypes which require different treatment regimens [16]. In the absence
of activating ALK and EGFR mutations or ROS1 translocation, the first line of treatment
generally includes platinum-based chemotherapy [17]. The response rate of these thera-
pies is only between 15 and 30% [18]. Furthermore, 30% of the patients who experience
disease progression are provided with second-line therapies which include pemetrexed
and docetaxel along with EGFR TKI, erlotinib and gefitinib [19]. In 2015 and 2016, immune
checkpoint inhibitors targeting PD-1/PD-L1 axis, pembrolizumab and nivolumab were
approved by the FDA as therapeutic approaches [17]. Although immunotherapies have
begun to evolve as an attractive approach, the prognostic and predictive identification
of patients responsive to these immunotherapies are generally lacking [18]. Furthermore,
the benefits of these immunotherapies are not observed in all the patients because of the
variability in the patients [20]. Thus, new biomarkers or risk stratification methods are
required which could assist in the clinical management of LUAD patients.

The advancement of multi-omic analysis and differential expression profiles have
identified new prognostic biomarkers for LUAD patients [21,22]. Most of these bioinfor-
matics studies are mathematical analyses of whole-scale genetic or transcriptomic data
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which lack specialized focus on biological pathways [22]. In this study, LUAD patients
were stratified based on cell death-based gene signatures along with the characterization of
their immune response.

2. Methods
2.1. Gene Expression Analysis to Determine Cell Death Index (CDI)

To identify the prognostic association of cell death genes in lung adenocarcinoma, the
Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases
were accessed through the Gene Set Enrichment Analysis (GSEA) website to access the
relevant gene lists (https://www.gsea-msigdb.org). The KEGG dataset of autophagy
(n = 34 genes), apoptosis (n = 86 genes) and GO gene list of necrosis (n = 49 genes) were
downloaded. These genes were analyzed in cBioportal to quantify the perturbations in The
Cancer Genome Atlas: TCGA—lung adenocarcinoma (LUAD) (https://www.cbioportal.
org/) (TCGA-LUAD RNA Seq, V2 n = 510 patients). cBioportal is an online platform to
analyze aberrations and variations in gene expression across all major cancers analyzed
in the TCGA project [23]. Survival information of individual genes was analyzed using
a log rank test on n = 510 patients. Subsequently, 150 patients in each cell death group
were picked based on the higher or lower expression of specific cell death pathway genes
(75 with the highest z-score and 75 with the lowest z-score in all the individual pathways).
Additionally, significant genes from each cell death pathway were selected to generate a
combined 21 gene signature to form a cell death index (CDI). From 510 patients, 59 patients
showing the highest expression of cell death genes (CDI high group) and 49 patients with
the lowest expression of cell death genes (CDI low group) were selected for further analysis.
Kaplan–Meier survival analyses were performed to compare the overall survival (OS),
disease-free survival (DFS), disease-specific survival (DSS) and progression-free survival
(PFS) data in the two cohorts.

2.2. Clinico-Pathological Analysis

Clinico-pathological characteristics of lung cancer patients were downloaded from
TCGA (https://gdc.cancer.gov/). The numeric values were split at the median and com-
pared between high- and low-risk groups. Pearson’s chi-square (χ2) test was used to
compare these sets of categorical variables.

2.3. Cox-Proportional Hazard

Univariable and multivariable Cox proportional hazards models were used to analyze
clinico-pathological variables (CDI, tumor stage, lymph node, distant metastasis, age, sex,
and radiation therapy). The hazard ratios (HR) with 95% confidence intervals (CI) were
based on overall survival (OS).

2.4. Differential Expression of Genes and Principal Component Analysis (PCA)

RNA-Seq data of TCGA-LUAD RNA Seq, V2 n = 510 patients, were downloaded from
the National Cancer Institute portal (https://gdc.cancer.gov/). DESeq2, a R programming
statistical package was used to analyze differentially expressed genes between the high
CDI and low CDI group (https://bioconductor.org/packages/DESeq2.html) [24].

2.5. Immune Cell Infiltration Analysis

There are multiple computational deconvolution methods that can be utilized to
quantify the proportion of immune cells from heterogenous samples [25]. In this study,
the microenvironment cell-population (MCP)-counter method was used to quantify the
infiltration of immune cells using the TIMER: Tumor IMmune Estimation Resource portal
(http://timer.cistrome.org/) [26]. The MCP-counter algorithm estimates the number of
infiltrated immune and stromal cells in the samples by quantifying cell-specific transcripts.
These signatures are validated using RNA mixtures and immunohistochemistry (IHC)
measurements [27]. In this study, normalized RNA-Seq values of patients in High CDI and

https://www.gsea-msigdb.org
https://www.cbioportal.org/
https://www.cbioportal.org/
https://gdc.cancer.gov/
https://gdc.cancer.gov/
https://bioconductor.org/packages/DESeq2.html
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Low CDI patients were used as input for the MCP-counter algorithm using the TIMER
portal. MCP-counter has been utilized in several gene expression studies to quantify the
abundance of immune cells in diverse samples [28–32].

2.6. Evaluation of Cytokines, Checkpoint Molecules and T Cell Exhaustion Genes

To evaluate immune activity in patients, the z-scores of different cytokines were down-
loaded from cBioportal. Cytokine genes information were downloaded using keyword:
‘KEGG cytokine-cytokine receptor interaction’ (n = 265 genes) (https://www.gsea-msigdb.
org) (Table S6) [33]. Functional enrichment analysis was performed using string-DB portal
(https://string-db.org/). The T cell exhaustion markers genes were analyzed as previously
published (HAVCR2, TIGIT, LAG3, PDCD1, CXCL13, LAYN) [34].

2.7. Functional Enrichment Analysis

Gene level functional enrichment was performed using g:Profiler program (https:
//biit.cs.ut.ee/gprofiler) [35]. It quantifies and maps genes to the corresponding enriched
pathways based on statistical significance. The data sources used for this analysis included:
Gene Ontology (GO): Molecular Function (MF), GO: Biological Processes (BP), GO: Cellular
Components (CC), Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome (REAC),
WikiPathways (WP), Transfac (TF), miRTarBase (MIRNA), Human Protein Atlas (HPA),
CORUM protein complexes (CORUM) and Human Phenotype Ontology (HP).

2.8. Statistical Analysis

The statistical significance of OS, DFS, PFS and DSS was computed using the Long-
rank t-test through cBioportal. For the comparison of clinico-pathological parameters,
Pearson’s chi-square (χ2) test was applied (p < 0.05). The DEGs were analyzed by the
DEseq2 package in R. The results were interpreted in R using ‘plotPCA’ function for Princi-
pal component analysis and volcano plot was generated using ‘enhancedvolcano’ pack-
age (http://bioconductor.org/packages/EnhancedVolcano.html). The cytokines z-scores
were compared between each group using an unpaired t-test corrected for multiple com-
parisons using Holm–Sidak method (p < 0.05). For the comparison of immune cells and
T cell exhaustion markers, unpaired t-test with Welch correction was used (p < 0.05). The
statistical analyses were performed using R (R Foundation for Statistical Computing, Vi-
enna, Austria, version 3.6.1) (http://www.R-project.org/), JMP-Pro (version 14.0.0, SAS
Institute, Cary, NC, USA) and GraphPad Prism (version 8 GraphPad Software, La Jolla,
CA, USA). P values < 0.05 were considered statistically significant.

3. Results
3.1. Survival Analysis of Patients Using Cell Death Index (CDI)

Higher expression of genes was studied for prognostic association with OS, DFS, DSS
and PFS. In Autophagy gene list (n = 34 genes) ATG12, GABARAPL1, IFNA17, IFNA8
showed association with survival (Table S1) (p < 0.05). For apoptosis (n = 86 genes),
BCL2L1, CASP9, CHP2, CYCS, EXOG, IL1A, IL1R1, IL1RAP, IL3RA, NFKBIA, PIK3CA,
PIK3CD, PIK3CG, PIK3R1, PIK3R2, PRKAR1B, TNFRSF10A, TNFRSF10B, TNFRSF10D,
TNFRSF1A showed association with survival (p < 0.05) survival (Table S2). For necrosis,
(n = 49 genes), DNML1, GSDME, IPMK, MLKL, RBCK1, TICAM1, YBX3 showed associated
with survival (Table S3). BAX, BIRC3, FADD and FAS overlapped between apoptosis and
necrosis. To identify the multi-gene prognostic signature of individual cell death pathway,
various combinations of genes were tried which resulted in three separate gene signatures.
In combination, the five-gene autophagy signature, nine-gene apoptosis signature, and
seven-gene necrosis signature showed prognostic association with lung cancer (Table 1).
The z-scores of patients showing the highest and lowest expression of these gene signatures
were split into two groups and the differences in the median z scores of autophagy (0.75
and −0.74), apoptosis (1.51 and −0.50), necrosis (0.97 and −0.59) (Figure 1a). The patients

https://www.gsea-msigdb.org
https://www.gsea-msigdb.org
https://string-db.org/
https://biit.cs.ut.ee/gprofiler
https://biit.cs.ut.ee/gprofiler
http://bioconductor.org/packages/EnhancedVolcano.html
http://www.R-project.org/
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which were included in ≥2 cell-death pathways were selected and split based on gene
expression CDI (Figure 1b).

Table 1. The prognostically significant gene signature within each category of cell death in lung adenocarcinoma.

Cell Death Process Gene Gene ID Gene (Full Name)

Autophagy

PRKAA2 5563 Protein Kinase AMP-Activated Catalytic Subunit
Alpha 2

ATG12 9140 Autophagy Related 12
ULK2 9706 Unc-51 Like Autophagy Activating Kinase 2
ATG5 9474 Autophagy Related 5

GABARAPL1 23710 GABA Type A Receptor Associated Protein Like 1

Apoptosis

BCL2L1 598 B-Cell Lymphoma 2 Like 1
CASP9 842 Caspase 9
CYCS 54205 C, Somatic
IL1A 3552 Interleukin 1 Alpha

PIK3CG 5294 Phosphatidylinositol-4,5-Bisphosphate 3-Kinase
Catalytic Subunit Gamma

TNFRSF10D 8793 Tumor Necrosis Factor Receptor Superfamily
Member 10D

FADD 8772 Fas Associated Via Death Domain

Apoptosis and Necrosis BIRC3 330 Baculoviral IAP Repeat-Containing Protein 3
FAS 355 Fas Cell Surface Death Receptor

Necrosis

DNM1L 10059 Dynamin 1 Like
GSDME 1687 Gasdermin E

IPMK 253430 Inositol Polyphosphate Multikinase
MLKL 197259 Mixed Lineage Kinase Domain Like Pseudokinase

RBCK1 10616 RANBP2-Type and C3HC4-Type Zinc Finger
Containing 1

TICAM1 148022 Toll Like Receptor Adaptor Molecule 1
YBX3 8531 Y-Box Binding Protein 3

Figure 1. Cont.
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Figure 1. (a) Difference in the median z-scores in each cell death pathway (autophagy, apoptosis and
necrosis) identifying patients with the higher expression (z-score); (b) combined cell death index
(CDI) was generated, which included patients with the highest expression of genes involved in
autophagy, apoptosis, and necrosis.

3.2. RNA-Seq Analysis of Patients

There were 943 differentially expressed genes, of which 329 genes were upregulated
at >2-fold in high-risk patients compared to the lower risk group (Table S4). In the low-
risk group, a total of 614 genes were upregulated at >2-fold compared to the high-risk
group (Table S5). The principal component analysis (PCA) showed a distinct separation
between the high-risk group and low-risk group based on CDI (Figure 2a). The volcano
plot of differentially expressed genes between high-risk and low-risk patients is depicted
in Figure 2b.

Figure 2. (a) Principal component analysis (PCA) showing distinct clustering between the RNA-seq expression of high CDI
patients compared to low CDI patients; (b) volcano plot showing the differential expression of genes between high CDI and
low CDI (p < 0.01, log2 fold-change > 2).
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3.3. Clinico-Pathological and Survival Analysis

Among clinical parameters, stage, lymph node involvement, aneuploidy score, sur-
vival status (OS, PFS, DFS, DSS) were found to be significantly different in the high and
low-risk group (Table 2a). In univariate Cox proportion hazard analysis, the high-risk
group was associated with worse survival (Hazard ratio: H.R 1.75, 95% CI: 1.28–2.45,
p < 0.001). Other significant variables associated with poorer survival were stage III + IV
group patients (H.R 2.68, 95% CI: 1.95–3.63, p < 0.001), patients with the tumor spread to
lymph node (N1 + N2 + N3) (H.R 2.61, 95% CI: 1.94–3.52, p < 0.001), patients with distant
metastasis (H.R 2.12, 95% CI: 1.19–3.52, p < 0.01) and patients with radiation therapy (H.R
2.02, 95% CI: 1.36–2.90, p < 0.001). In multivariate Cox proportion hazard, only three
variables showed association with poorer survival: -High CDI (H.R 1.62, 95% CI: 1.11–2.36,
p < 0.01), stage III + IV group patients (H.R 2.13, 95% CI: 1.39–3.25, p < 0.001), and patients
with lymph node spread (N1 + N2 + N3) (H.R 2.25, 95% CI: 1.59–3.19, p < 0.001).

Table 2. (a) Comparison of the clinico-pathological features of patients with high CDI (n = 301 patients) and low CDI (n = 209
patients) using Pearson’s chi-square analysis.(b) Univariate and multivariate cox regression analysis of clinicopathological
variables associated with the cell death index (CDI). Statistically significant values are shown in bold.

(a)

Clinical Variable High CDI (n = 301) Low CDI (n = 209) Pearson χ2 p-Value

Age
<66 years 137 101 0.63
>66 years 151 102

Ethnicity
African American 29 23 0.72

Caucasian 224 160

Sex
Female 154 120 0.16
Male 147 89

Stage
I + II 225 173 0.01

II + III 76 34

Lymph Node Involvement
N0 174 154 0.01

N1 + N2 + N3 122 49

Distant Metastasis
No Metastasis M0 214 127 0.78

Metastasis M1 15 10

Aneuploidy Score
<16 127 114 0.01
>16 166 90

Fraction Genome Altered
<0.23 135 107 0.22
>0.23 156 99

Overall Survival (OS)
<5 years 267 177 0.06
>5 years 25 28

OS Status
Living 174 151 0.01

Deceased 127 58

Progression-Free Survival (PFS)
<5 years 277 186 0.06
>5 years 17 21

PFS Status
No progression 165 139 0.01

Progression 136 70
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Table 2. Cont.

(a)

Clinical Variable High CDI (n = 301) Low CDI (n = 209) Pearson χ2 p-Value

Disease-Free Survival (DFS)
<5 Years 139 121 0.39
>5 Years 17 20

DFS Status
Disease-free 102 111 0.01

Recurred/progressed 56 31

Disease-Specific Survival (DSS)
<5 years 267 177 0.06
>5 years 25 28

DSS Status
Tumor free 194 167 0.01

Dead with tumor 84 29

(b)

Clinical
Variable

Univariate Multivariate

Hazard Ratio 95% CI p-Value Hazard
Ratio 95% CI p-Value

Cell death
index (CDI

High, CDI low)
1.75 1.28–2.45 <0.001 1.62 1.11–2.36 <0.01

T, Stage
(III + IV, I + II) 2.68 1.95–3.63 <0.001 2.13 1.39–3.25 <0.001

N, Lymph
Node

involvement
(N1 + N2 +

N3, N0)

2.61 1.94–3.52 <0.001 2.25 1.59–3.19 <0.001

M, Distant
Metastasis
(M1, M0)

2.12 1.19–3.52 <0.01 1.68 0.93–3.03 0.07

Age
(>66, <66 years) 1.2 0.89–1.62 0.21

Sex
(Male, Female) 1.05 0.71–0.78 0.71

Radiation
therapy

(Yes, No)
2.02 1.36–2.90 <0.001

Using Kaplan–Meier analyses, patients in the high-risk group were differentiated
from low-risk based on CDI. The overall survival difference observed in both the risk
groups for OS was 40.41 vs. 76.21 months (log-rank test, p < 0.001) (Figure 3a). For DFS,
62.23 vs. 158.20 months (log-rank test, p < 0.001) (Figure 3b), for DSS 49.28 high-risk patients
(low CDI patients did not reach the survival months threshold) (log-rank test, p < 0.001)
(Figure 3c), and for PFS, 26.24 vs. 48.69 months (log-rank test, p < 0.001) (Figure 3d).
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Figure 3. Kaplan–Meier curves of patients with high CDI vs. low CDI: (a) overall survival (OS), (b) disease-free survival
(DFS), (c) disease-specific survival (DSS), (d) progression-free survival (PFS).

3.4. Cytokine Gene Expression Analysis

In the autophagy group, the expression of BMPR1A, KIT, TGFBR1 and IFNGRI was
found to be higher in the high-risk group, whereas the expression of CX3CL1 and TNFSF11
was found to be higher in a low-risk group (Figure 4a). Similar analyses were performed on
the apoptosis and necrosis group (Figure 4b,c). In the CDI group, the expression of IL15RA,
IL-15, IL-7, IL4R, IL-18, FAS, TNFSF13B, TNFSRF1A, CXCL10 among others were found to
be higher in patients in a high-risk group whereas, the expression of LIFR, IL6R, EPOR,
KITLG, ACVR2B and IL11RA was found to be higher in the low-risk group (Figure 4d).
Functional enrichment analysis revealed a higher proportion of inflammatory cytokines in
the high CDI group (Figure 4e,f).
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Figure 4. Volcano plot showing the differential expression of cytokines (n = 265 genes) between patients in the high and low
gene expression of individual cell death pathways (p < 0.05) (a) autophagy, (b) apoptosis, (c) necrosis, (d) cell death index
(CDI); (e,f) Gene Ontology (GO) functional enrichment of genes with higher expression in low CDI and high CDI group,
respectively, (False Discovery Rate: FDR).
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3.5. Immune Cell Analysis

MCP-counter algorithm demonstrated that greater T cell and CD8+ T cell infiltra-
tion correlated with high apoptosis, necrosis, and high cell death index patient groups
(Figure 5a,b). NK cells infiltration was found to be higher in patients with high necrosis
(Figure 5c). B cells infiltration did not show any significance with any group (Figure 5d).
Macrophages showed higher infiltration with high apoptosis, necrosis, and high CDI
group (Figure 5e). Myeloid dendritic cells showed significantly higher infiltration in high
autophagy group only (Figure 5f).

Figure 5. Cont.
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Figure 5. Immune cell distribution in patients with the high and low gene expression of individual cell death pathways:
(a) total T cells; (b) CD8+ T cells; (c) natural killer cells; (d) B cells; (e) macrophages; (f) myeloid dendritic cells; (g) neutrophils;
(h) endothelial cells; (i) cancer-associated fibroblast (CAFs); (j) heatmap of lymphocytes distribution in cell death groups
(median values); and (k) the heatmap of other immune cells in different cell death groups (median values) (* p < 0.05).

Neutrophils showed higher infiltration in all the groups except the autophagy group
(Figure 5g). Endothelial cells and cancer-associated fibroblasts showed higher presence in
the high cell death groups except for endothelial cells in the autophagy group (Figure 5h,i).
These differences are presented in the heatmap of lymphocytes and other cells in different
cell death groups (Figure 5j,k).

3.6. Immune Suppression and T-Cell Exhaustion Markers

The expression of CD274 and CTLA4 was found to be higher in high apoptosis,
necrosis, and CDI groups (Figure 6a,b). T cell exhaustion marker genes (HAVCR2, TIGIT,
LAG3, PDCD1, CXCL13, LAYN) showed a higher expression in high autophagy, apoptosis,
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necrosis, and the CDI group (Figure 6c). The heatmap of all the median values reflected
the higher expression of T cell exhaustion genes in the high-risk group (Figure 6d).

Figure 6. Immune suppressive features of patients with a high cell death index (CDI): (a) CD274 gene expression; (b) CTLA4
gene expression; (c) expression of T-cell exhaustion genes in patients with high CDI compared to lower CDI; and (d) the
heatmap depicting the higher expression of T-cell exhaustion genes in high CDI group (median values) (* p < 0.05).

3.7. Enrichment Analysis

Functional enrichment analysis of differential gene expression analysis between high
and low CDI group revealed 943 genes with an inclusion filter of >2-fold for the differen-
tially expressed genes. Among these, 329 genes were upregulated in high-risk patients
while 614 genes were in the lower risk group (Figure 7a,b). The patients in the low CDI
group had significant immune-related pathways whereas, the high CDI group lacked
enrichment in immune pathways. The enriched Gene Ontology terms in low CDI groups
were receptor ligand activity, signaling, cytokine and chemokine activity (Figure 8a,b).
The enriched Gene Ontology terms in high CDI groups predominated by transmembrane
transporters and gated channel activity (Figure 8c,d).
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Figure 7. Functional enrichment analysis of highly expressed genes (log2 fold-change > 2) in the (a) low CDI group; and
(b) high CDI group.

Figure 8. Cont.
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Figure 8. Pathways enriched in low and high CDI groups: (a,b) Molecular Function (GO: MF) and Biological Process
(GO: BP) of the low CDI group and (c,d) the high CDI group.

4. Discussion

Cell death is an essential component which plays a central role in the normal growth
and development of an organism, however, its imbalance can result in several diseases
including cancer [15]. Autophagy, apoptosis, and necrosis form three classically known
cell death pathways. These pathways are active in the tumor microenvironment and
can assist in tumor growth and metastasis [36]. Autophagy plays a dual role during the
development and tumor progression. In the early stage, autophagy plays an anti-tumor
role as it curtails inflammation while at the later stage, autophagy promotes tumorigenesis
by fueling the energy and nutrient demands of cancer cells [37]. Furthermore, cancer cells
show perturbation in the balance of pro-apoptotic and anti-apoptotic molecules affecting
the apoptosis pathway [6]. Furthermore, tumor necrosis has been associated with the
aggressive spread of cancer and reduced survival in lung cancer patients while apoptosis
has shown mixed results [38]. In this study, we performed a prognostic evaluation of genes
involved in cell-death pathways and its correlation with immune mediators and cells.

In the literature, there are several gene expression-based biomarkers which can stratify
patients at high-risk which can be benefited from personalized therapy, but their accuracy
and predictive potential remain limited [39–41]. However, most of these studies are the
differential analysis of genomic or transcriptomics features which lack focus on biological
pathways [22]. In this study, we explored the RNA-Seq data of LUAD patients for variations
in cell death specific gene expression and its association with immune cells. We found that
patients at high risk with a high cell death index (CDI) were associated with advanced stage
and the involvement of the lymph node. This group also showed worse overall survival,
progression-free survival and disease-specific survival. The positive correlation of CDI
with clinicopathological parameters and survival outcome hints that the CDI is effective in
the prognosis of LUAD patients. Further in this study, CD 8+ T cells, macrophages, and
CAFs were found to be enriched in patients with high CDI. Neutrophils and endothelial
cells were found to be enriched in patients with low CDI. Multiple studies have pointed
to the fact that the tumor microenvironment can be modulated by tumors to propagate
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their own survival [42]. Even in the presence of T-cells, immunosuppressive molecules
like CTLA4 or CD274 receptors can limit the responsive ability of T cells [43]. CTLA4
is present on the T cell surface and competes with the co-stimulatory receptor (CD28)
present on T cells to bind to CD80/CD86 expressed by MHC-II present antigen-presenting
cells (APCs) [44]. In our analysis, CD274 and CTLA4 were found to be expressed at
a higher level in the high CDI patient group. CTLA4 has higher affinity compared to
CD28 and thus can initiate a cascade of events which lead to the inhibition of the T cell
response [45]. Moreover, T-regulatory cells constitutively express CTLA4 which further
plays a critical role in the dampening of anti-tumor immunity [46]. In lung cancer, the
infiltration of CD8+ T cells showed a higher expression of PD-1 and immunosuppressive
functions [47]. The expression of CD274 has also been found to be upregulated in lung
tumors and positively correlates with unfavorable prognosis [48,49]. Tumor-infiltrating
lymphocytes (TILs), predominantly composed of CD8+ T cells have been found to be
significantly associated with size, grade, vascular invasion and correlated with better
clinical outcome [50]. However, these T cells can become dysfunctional or exhaustive,
which is characterized by the high expression of inhibitory receptors. This exhaustive
state results in the reduced production of immune response against cancer neoantigens
and the impaired proliferation of these cells [51]. In our study, T cell exhaustion genes
(HAVCR2, TIGIT, LAG3, PDCD1, CXCL13 and LYN) showed higher expression in the high-
risk group (high CDI). Furthermore, the pathway analysis identified a lower expression
of diverse molecular and biological pathways in the high CDI patient group compared to
patients in the low CDI group. As studied previously, variations in the functional immune
network can lead to perturbations in anti-tumor response, immunoediting and the escape
of cancer cells [52]. The tumor microenvironment biology is complex with features such as
the inherent heterogeneity of tumors, variable density and the location of immune cells,
temporal and spatial variations in the inflammatory and immunosuppressive response of
same immune cells. This heterogeneity of the tumor immune microenvironment provides
a unique opportunity to design targeted therapies [53]. In this study, the patients in the
high CDI group characterized by the presence of T cell exhaustion genes and perturbed
molecular and biological network provide a unique subset which can greatly benefit from
checkpoint blockade immunotherapies.

5. Conclusions

In conclusion, this study identified patients at higher risk of mortality based on expres-
sion of cell-death based gene signature. Furthermore, in high-risk patients, the presence
of the immunocompromised microenvironment indicated by the higher infiltration of
cytotoxic T cells along with the presence of checkpoint molecules and T cell exhaustion
genes presents a unique subgroup which could be targeted by checkpoint inhibitors. These
patients at higher risk might be more suitable to benefit from the PD-1/PD-L1 or CTLA-4
blockade. Further evaluation of these findings using a prospective cohort is essential to
assess the validity of these gene signatures. With further validation, this clinical signature
can be explored as prognostic and predictive biomarker panel to design personalized
therapies for LUAD patients.
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