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Abstract: In this paper, the combined effect of the fluid rheology, finite-sized ions, and slippage
toward augmenting a non-reacting solute’s mass transport due to an oscillatory electroosmotic flow
(OEOF) is determined. Bikerman’s model is used to include the finite-sized ions (steric effects) in the
original Poisson-Boltzmann (PB) equation. The volume fraction of ions quantifies the steric effects
in the modified Poisson-Boltzmann (MPB) equation to predict the electrical potential and the ion
concentration close to the charged microchannel walls. The hydrodynamics is affected by slippage, in
which the slip length was used as an index for wall hydrophobicity. A conventional finite difference
scheme was used to solve the momentum and species transport equations in the lubrication limit
together with the MPB equation. The results suggest that the combined slippage and steric effects
promote the best conditions to enhance the mass transport of species in about 90% compared with no
steric effect with proper choices of the Debye length, Navier length, steric factor, Womersley number,
and the tidal displacement.

Keywords: steric effect; power-law fluids; boundary slip; oscillatory electroosmotic flow; mass
transport rate

1. Introduction

Lab-on-a-chip technology requires the manipulation and control of fluid flow to
transport, mixing, and separation of reagents in nanoliter volumes in microfluidic devices
widely used in chemical, medical, and biological applications, among others. These tasks
are typically difficult to achieve because the laminar viscous flow governs electrokinetic
transport phenomena (electroosmosis and electrophoresis) and due to the small mass-
diffusivities of the species. In these applications, a broad kind of fluids are handled
inside the microfluidic devices, from simple electrolytic solutions treated as Newtonian
fluids to complex cell suspensions, biological fluids, such as blood, saliva, and DNA
solutions, and polymer melts where viscosity is assumed to depend on the shear rate (i.e.,
the fluid is non-Newtonian). Therefore, understanding the fundamental behavior of the
combined effects of fluid rheology, interfacial phenomena (steric and slippage effects), and
the flow behavior in mass transport of a neutral solute through pure electroosmotic flow
(EOF) or oscillatory electroosmotic flow (OEOF) is essential for the analysis and design of
microfluidic components, such as microchannels, micro-mixers, and micro-pumps, that
can be implemented in the design of biochips.

Taylor [1] was the first to establish that dispersion of a soluble substance (solute) driven
by a Poiseuille flow in a circular cylindrical tube is controlled by the coefficient of diffusivity,
which can be calculated directly from the solute profile. Aris [2] reported alternative
treatments to Taylor’s analysis of simultaneous convection and diffusion in dispersion.
Likewise, when a solute is introduced into a pulsating flow through a circular tube, the
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solute has an increased mass transfer beyond molecular diffusion due to Taylor dispersion.
The transport and separation phenomena of mass species are critical steps in realizing
lab-on-a-chip. These steps are complicated because microfluidic devices manipulate flows
with Reynolds numbers small enough for inertial effects to be irrelevant and species with
small mass-diffusivity coefficients with magnitude D ∼ O(10−9)m2 s−1 [3]. In the case of
a pure EOF, where a typical plug-like velocity profile exists, it does not influence species’
transport and dispersion processes, and the mass transport is governed by pure diffusion.

Oscillatory and pulsating flows have mainly focused on enhancing the dispersion or
separation of a passive solute under different conditions [4–6]. Kurzweg and Jaeger [7]
performed the separation process with oscillatory flows of different species in which the
lower diffuser, under a specific frequency, travels faster than the rapid diffuser to achieve
the cross-over condition. Likewise, Thomas and Narayanan [8] showed how particles
subjected to oscillatory and pulsating motions have a zigzag movement during mass
transport, and that is why the transport of species is improved.

The dispersion of a neutral solute in an EOF was improved by oscillatory effects
induced in the flow, i.e., the mass transport is caused by an oscillatory electroosmotic flow
(OEOF) [9–12]. Despite the low diffusivity of the species in liquid solutions, time-periodic
electroosmotic flow (AC) has a significant advantage over pure electroosmotic flows (DC)
in biotechnology and physical separation methods. Hence, in this context, OEOF is a
good candidate as a viable mechanism to induce efficient separation processes [13] due
to the cross-over phenomenon between two solutes with two different mass-diffusivity
coefficients [14].

The steric effect is an interfacial phenomenon in electrokinetics that frequently occurs
in microfluidic confinements. EOF and OEOF are founded in electroosmosis, which refers
to ionized liquid’s motion relative to the stationary charged surface by an applied external
electric field. The ionic size effects are controlled by the mean volume fraction of each ion
in bulk given by ν = a3n0 [15], where a is the effective ion size, and n0 is the bulk number
concentration. Recently, studies have analyzed the steric effects using Bikerman’s modified
Poisson-Boltzmann (MPB) equation to account for the crowding of finite-sized ions in
EOF by considering: non-linear biofluids, such as solutions of blood, saliva, protein, DNA,
polymeric solutions, and colloidal suspensions; these fluids reveal non-linear rheology
encountered in biomicrofluidic systems using the power-law viscosity model [16]; step-
change in the wall temperature [17]; viscoelectric effects [18]; wall slip effects and steric
interactions [19]; and using OEOF few works have been conducted [20]. The vast majority
of theoretical work on colloidal electrokinetics using OEOF utilizes the Poisson–Boltzmann
equation, wherein ions are treated as point charges and non-interacting. The slip condition
is another interfacial phenomenon that enhances the electrokinetic effects (electrophoresis,
electro-osmosis, streaming current or potential, etc.) [21]. In the literature concerning mass
transport under slippage effect, Muñoz et al. [22] considered oscillatory electroosmotic flow,
and they found that the dispersivity may be maximized up to two orders of magnitude
compared with that obtained using the classical no-slip condition. Moreover, the mass
transport and separation of species in OEOF can be improved by controlling the external
electrical signal type [23].

The dispersion of solutes in physiological systems, where fluids are significantly more
viscous, the effects of non-Newtonian rheologies, such as shear thinning, could also be
considered, due to that the mass transport of neutral species is the result of an interaction
between transverse diffusion and the structure of the flow. Hydrodynamics and dispersion
phenomena of EOF were addressed in the context of non-Newtonian fluids [24–26]. For
instance, recently, the unsteady solute dispersion by electrokinetic flow was studied [27] by
considering wall absorption. Besides, some studies were conducted on the hydrodynamics
of the OEOF for non-Newtonian fluids [28–30], and, recently, the mass transfer of an
electroneutral solute in a concentric-annulus microchannel driven by an OEOF for a fluid
whose behavior follows the Maxwell model was reported by Peralta et al. [31]. However,
minimal effort has been devoted to understanding the fundamental physics that can serve
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us to improve mass transport and species separation under the influence of combined
effects of rheology, finite ion size, and slippage that are present in the microfluidic devices.

In previous works, the analysis of dispersion and separation of neutral solutes has
been performed on OEOF using non-Newtonian fluids. In contrast, this paper analyzes the
combined effects of finite-sized ions, fluid rheology, and slippage on the mass transport of
a neutral solute; these effects are controlled by the steric factor ν, the power law-index n,
and the Navier slip length λN , respectively. A common non-linear rheological model for a
fluid with shear-dependent viscosity is the power-law model since it efficiently describes,
for engineering and microfluidics purposes, the rheology of many fluid substances over a
wide range of shear rates. Although the main deficiency of the power-law model is the
divergence of the effective viscosity in the limits of both zero and very large shear rates, it
has the advantage of both applicability and simplicity to justify its use in investigations of
shear-dependent flow behaviors. In general, lab-on-a-chip devices are designed to carry
out the following functions: sample introduction, injection, mixing, reaction, transport,
separation, and detection through a series of micrometre-scale channels [32]. In this context,
to understand the fundamental physics, as well as provide useful information and criteria
for designing micro-fluidic devices, the present study is, thus, aimed at the theoretical
investigation of the transport and separation phenomena of mass species in an OEOF in a
microchannel. Additionally, the start-up from the rest of the flow was analyzed, and, for
larger times after the initial transient has died out, the flow was periodic in time, and then
the concentration and mass transport rate were determined.

2. Problem Formulation

The sketch in Figure 1 represents the physical model of the OEOF through a long
horizontal microchannel. It consists of two parallel plates separated by a distance (height)
of 2h. The length of the microchannel is L, and the depth in the z-direction is W, both
assumed to be much larger than the height, i.e., L, W >> 2h; therefore, the flow field is
assumed independent of the z coordinate. The origin of the cartesian coordinate system (x,
y) is located at the left end and at the center of the microchannel. The microchannel is filled
with a non-Newtonian liquid that obeys the power-law rheological model, which connects
two reservoirs at the ends, such that the concentration c(x, y, t) of the non-reacting solute
at the left-reservoir is maintained at a constant concentration C1, while the other extreme is
found to a prescribed uniform concentration C2 and assuming that C1 > C2. Besides, the
effect of a certain degree of slip at the microchannel walls, quantified by the slip length λN ,
is also considered [33]. The OEOF will occur in the microchannel under the simultaneous
influence of the externally imposed oscillatory electric field Ex(t) and the induced electric
field into the non-overlapping EDLs. The microchannel walls are charged with a uniform
high zeta potential ζ enough to cause crowding of ions of the dilute solution near the
surface walls [15]. In this context, the zeta potential is several times higher than the thermal
voltage kBT/ze in the MPB with ν 6= 0 (representing ionic size effects), and z, e, kB, and
T are the valency of ions, the magnitude of the fundamental charge on an electron, the
Boltzmann constant and the absolute temperature, respectively. The start-up of this OEOF
from rest occurs, and, for sufficiently long times after imposition of Ex(t), the velocity field
is strictly periodic.

Figure 1. Schematic depiction for mass transport due to an oscillatory electroosmotic flow.
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2.1. Electrical Field: Steric Effects

When an electrolyte solution is in contact with a uniformly charged surface, electrical
(zeψ) and chemical (kBT ln n±) effects modify the electro-chemical potential µ± (±denotes
the sign of the charge ze); then, the electrochemical potential derives in µ± = ±zeψ −
kBT ln n±, where ψ is the electric potential, and n± is the ionic concentration in the diffuse
electric double layer. Positive and negative ions are separated within the diffuse double
layer by Boltzmann distribution n± = n0e∓zeψ/kBT , where an equilibrium exists between
external electric and osmotic forces. The electrical potential ψ is determined with the
classical complete Poisson-Boltzmann equation ε∇2Φ = −ρe. Here, Φ = φ(x, t) + ψ(y)
is defined by the linear superposition [34] of the local electric potential φ(x, t) and the
corresponding potential ψ(y) induced into the EDL, ε is the permittivity of the solution.
The volume charge density ρe in the neighborhood of the surface is ρe = ze(n+ − n−).
However, the above treatment is valid if ions are treated as electric charges having no
volume [35] and no other individual effects [36]. The present investigation involves large
potentials; then the Poisson-Boltzmann equation has shortcomings because it neglects steric
effects. The modified PB equations that consider the steric effects in n± due to finite-sized
ions [15] is derived from the modified chemical potential µ± using Bikerman’s model [37],
given by

µ± = ±zeψ− kBT ln n± − kBT ln(1− n+a3 − n−a3). (1)

The third term on the right-hand side of Equation (1) considers the finite-sized ions.
Under equilibrium conditions, the ions’ electrochemical potential is constant ∇µ±=0, and
it derives in:

∇n±

n±
− ∇(1− n+a3 − n−a3)

1− n+a3 − n−a3 = ∓ ze
kBT
∇ψ. (2)

Integrating Equation (2) from a point in the bulk solution (where ψ = 0 and n± = n∞)
leads to the modified Boltzmann distribution:

n± =
n0 exp(±zeψ/kBT)

1 + 2ν sinh2(zeψ/2kBT)
. (3)

Substituting ion distribution n± into the volume charge density ρe takes the
following form:

ρe = −2zen0
sinh(zeψ/kBT)

1 + 2ν sinh2(zeψ/2kBT)
, (4)

where ν = 2a3n0 is the bulk volume fraction of ions. To account for steric effects associated
with the finite-sized ions and solvent molecules, Equation (3) was combined with the
complete Poisson equation yielding the MPB equation:

∇2Φ =
2zen0

ε

sinh(zeψ/kBT)
1 + 2ν sinh2(zeψ/2kBT)

. (5)

Equation (5) is essentially a modified form of the PB equation considering finite-
sized ions effects. The omission of the temporal term in Poisson’s equation is because the
characteristic time scale (∼10−12 s) of the electro-migration in the EDL is much less than
the corresponding time-scale (∼10−2 s) for the viscous diffusion [38].

For a long microchannel, L � h, the term ∂2Φ/∂x2 in Equation (5) may be ne-
glected [39]. One gets the simplified version of the MPB equation given by

d2ψ

dy2 =
2zen0

ε

sinh(zeψ/kBT)
1 + 2ν sinh2(zeψ/2kBT)

. (6)
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The boundary conditions of Equation (6) are dψ/dy = 0 at y = 0 and ψ = ζ at y = h.
Using the following dimensionless variables ȳ = y/h and ψ̄ = zeψ/kBT into Equation (6),
it derives in:

d2ψ̄

dȳ2 = κ̄2 sinh ψ̄

1 + 2ν sinh2(ψ̄/2)
, (7)

with the corresponding boundary conditions,

ψ̄ = κψ at ȳ = 1, (8)

and
dψ̄

dȳ
= 0 at ȳ = 0. (9)

The parameter κ̄ = κh is the ratio of the microchannel height to the Debye length,
defined by κ−1 = εkBT/2e2z2n0. The competition between the wall ζ potential and the
thermal potential is given by κψ = zeζ/kBT. When κψ < 1, it means low ζ potentials. In
contrast, for κψ >> 1, it represents the case of high ζ potentials. In this work, κψ = 2, and
high zeta potentials κψ = 10 were considered since, in dilute liquids, the steric effects are
visible at high zeta potentials at which high ionic concentrations at the microchannel wall
cause extreme accumulation of counterions [40].

2.2. Velocity Field

By assuming that the microchannel is very long and focusing on the central region,
away from the microchannel entry and exit, it is assumed that the flow is unidirectional
and fully developed. Therefore, the momentum equation is given by

ρ f
∂u
∂t

=
∂τxy

∂y
+ ρeEx(t). (10)

Here, u(y, t) is the velocity component in the x direction, ρ f is the mass density and
τxy represents the shear stress. Equation (10) is subject to the symmetry boundary condition
of the velocity (∂u/∂y = 0) at the center of the microchannel. The Navier slip boundary
condition at the interface between the fluid and the microchannel wall is considered, given
by us = λN{D · n− [(D · n) · n]n} [41]. Here, us is the fluid velocity at the microchannel
wall, n represents the unit vector normal to the microchannel surface pointing toward the
fluid, the rate of strain tensor is defined as D = ∇u + (∇u)tr, u is the velocity field, and
tr denotes the transpose of ∇u. For the present problem, the slip boundary condition is
simplified to

u = −λN
∂u
∂y

at y = h. (11)

Besides, it is assumed that the fluid is at rest for t = 0, that is,

u = 0 at t = 0, for − h 6 y 6 h. (12)

The shear stress τxy for non-Newtonian fluids where the dynamic viscosity η(γ̇) is
a function of the strain rate γ̇, is defined as τxy = η(γ̇)γ̇. For the unidirectional and fully
developed OEOF, γ̇ = ∂u/∂y, and the dynamic viscosity η(γ̇) is a function of the velocity
gradient, according to the power-law model as follows [42]:

η(γ̇) = m
(

∂u
∂y

)(n−1)
, (13)

where m denotes the consistency index, and n is the power-law index. Thus, substituting
ρe defined in Equation (4) and Ex(t) into (10), it derives in
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ρ f
∂u
∂t

=
∂

∂y

{
η

∂u
∂y

}
− 2zen∞ sinh(zeψ/kBT)

1 + 2ν sinh2(zeψ/2kBT)
E0 sin(ωt). (14)

Using the following dimensionless variables, ū = u/UHS, ȳ = y/h, τ = ωt/2π, where
UHS = −εζ0E0/µ is the Helmholtz-Smoluchowski velocity. Therefore, the dimensionless
version of the momentum Equation (14) is as follows:

Wo2

2π

∂ū
∂τ

= m̄
[

η̄
∂2ū
∂ȳ2

]
− κ̄2

κψ

sinh ψ̄

1 + 2ν sinh2(ψ̄/2)
sin(2πτ), (15)

where the dimensionless dynamic viscosity is defined as

η̄ =

(
∂ū
∂ȳ

)(n−1)
. (16)

The parameter m̄ = n(m/µ)(UHS/h)n−1 is the dimensionless consistency index and
relates the characteristic shear stresses for Non-Newtonian and Newtonian fluids. The
Womersley number is defined as Wo = h

√
ω/ν0 and relates the ratio of the viscous diffu-

sion time-scale to the oscillation time-scale, where ν0 = µ/ρ f . Here, it is important to note
that the Womersley is based on physical properties of a Newtonian fluid. This is because
in the process of nondimensionalizing the mathematical problem, the characteristic scale
for the velocity, UHS, corresponds to the classical Helmholtz-Smoluchowsky velocity [39],
where the viscosity µ of a Newtonian fluid is considered. However, the non-Newtonian
parameters of the Power-Law fluid are taken into account in the definitions of the dimen-
sionless parameter m̄. Equation (15) is subject to the following dimensionless boundary
and initial conditions:

∂ū
∂ȳ

= 0 at ȳ = 0, (17a)

ū = −δ
∂ū
∂ȳ

at ȳ = 1, (17b)

ū = 0 at τ = 0 for − 1 6 ȳ 6 1. (17c)

Here, δ = λN/h denotes the ratio between the Navier length and the microchannel
height.

2.3. Concentration Field

For the fully developed OEOF described in Section 2.2, diffusion and convection
mechanisms govern the mass transport of passive species. Assuming that the transport
phenomenon is not affected by any of the electrical potentials, and the particles do not
interact with each other, the concentration field of the solute c(x, y, t) with constant molecu-
lar diffusion coefficient D can be found by solving the species conservation equation, given
by [39]

∂c
∂t

+ u
∂c
∂x

= D
(

∂2c
∂x2 +

∂2c
∂y2

)
. (18)

The boundary and initial conditions associated to Equation (18) are
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c(y, t) = C1 at x = 0, (19a)

c(y, t) = C2 at x = L, (19b)

∂c(x, t)
∂y

= 0 at y = h, (19c)

∂c(x, t)
∂y

= 0 at y = 0, (19d)

c(x) = C1 + (C2 − C1)(x/L) at t = 0. (19e)

In Equations (19a) and (19b), C1 and C2 are fixed values of c(y, t) at the left and right
reservoirs, respectively. As depicted in Figure 1, C1 > C2. Equations (19c) and (19d) de-
note the impermeability and symmetry conditions, respectively. Here, a linear profile of the
concentration distribution is imposed at t = 0, prescribed in Equation (19e). Because of the
linearity of Equation (18), it is often convenient to use the Chatwin approximation [4,43], given
by the superposition of a linear distribution for the concentration and other corresponding
with convective effects by the oscillatory motion of the fluid, which is given by

c(x, y, t) = C1 +
C2 − C1

L
x + cu(y, t). (20)

This approximate solution is invalid near the microchannel ends due to that
Equation (20) does not satisfy the boundary conditions at both ends taking into account
that cu(y, t) is different to zero. However, it is valid for long microchannels (L� h) where
any end effects are neglected [13,43]. Substituting Equation (20) into Equation (18) yields

∂cu

∂t
+ u

(
C2 − C1

L

)
= D

∂2cu

∂y2 (21)

with the following boundary and initial conditions,

∂cu(t)
∂y

= 0 at y = h, (22a)

∂cu(t)
∂y

= 0 at y = 0, (22b)

cu(y) = 0 at t = tω. (22c)

In Equation (22c), tω refers to the value of t when the initial transient step has died
out. Introducing the dimensionless concentration of species as c̄u = cu/(C2 − C1) and the
dimensionless variables defined before, Equation (21) can be rewritten in the following form:

Wo2Sc
2π

∂c̄u

∂τ
+ PeDαū =

∂2 c̄u

∂ȳ2 , (23)

where Sc = ν0/D is the Schmidt number that measures the competition between the momen-
tum and the mass diffusivities. PeD = UHSh/D is the diffusive Péclet number, measuring the
ratio of the convective to the diffusive transport rate. Here, in a similar manner as the definition
of the Womersley number, the Schmidt and Péclet numbers are based on physical properties
of a Newtonian fluid. However, in the convection-diffusion Equation (23), the influence of the
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fluid’s reology is taken into account in the velocity profile ū(ȳ, τ̄). Hence, the dimensionless
form of the boundary and initial conditions (22a)–(22c) are:

∂c̄u

∂ȳ

∣∣∣
ȳ=1

= 0, (24a)

∂c̄u

∂ȳ

∣∣∣
ȳ=0

= 0, (24b)

c̄u(ȳ, τ = τω) = 0. (24c)

In Equation (24c), τω denotes the value of the dimensionless time τ from which
the flow becomes periodic, i.e., the transient stage has died out. In physical units, such
condition is achieved when the time t assumes a value of the characteristic scale of the
viscous diffusion time-scale (t ∼ h2/ν0). On the other hand, for the periodic condition
of the flow, 1/ω ∼ h2/υ, and, taking into account the definition of the dimensionless
time, it yields that τω = tωω/2π ∼ O(101). This value of τω is used for all the numerical
calculations.

2.4. Mass Transport Rate

The time-averaged mass transfer in the system Qx was evaluated during one period
of oscillation, defined by [43]:

Qx =
1

4h
ω

π

∫ h

−h

∫ tω+
2π
ω

tω

Jxdtdy, (25)

where Jx represents the total flux density defined as the sum of convective jx,conv and
diffusive jx,di f f flux densities in the x-direction, as follows:

Jx = jx,conv + jx,di f f = u(y, t)c(x, y, t)− D
∂c(x, y, t)

∂x
. (26)

Substituting Equation (26) into Equation (25), the dimensionless rate of mass transport
Q̄x in terms of dimensionless variables is as follows

Q̄x = 1− PeD
2α

∫ 1

−1

∫ τω+1

τω

ūc̄udȳdτ. (27)

Here, Q̄x = QxL/(C1 − C2)D. Due to the flow’s oscillatory character, the Helmholtz-
Smoluchwosky velocity UHS, and the corresponding Péclet number, PeD, will no longer remain
constant for particular values of the angular frequency ω, or consequently Wo. To show the
frequency dependence of Q̄x, it is necessary to use the concept of tidal displacement4z. This
quantity is defined as the cross-stream averaged maximum axial distance for which the fluid
elements travel during the one-half period of the oscillation [13],

4z =
1

2hπ

∣∣∣ ∫ h

−h

∫ tω+
π
ω

tω

u dt dy
∣∣∣. (28)

After introducing the dimensionless variables, ū = u/UHS, ȳ = y/h, and τ = ωt/2π
into Equation (28), can be simplified in the following form:

4z =
UHS

ω

∣∣∣ ∫ 1

−1

∫ τω+1/2

τω

ū dτ dȳ
∣∣∣. (29)

From Equation (29), the Helmholtz-Smoluchwosky velocity UHS is obtained as:

UHS =
ω∆z∣∣∣ ∫ 1

−1

∫ τω+1/2
τω

ū dτ dȳ
∣∣∣ , (30)
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where it is evident the frequency dependence of UHS. Substituting Equation (30) into the Péclet
number definition, it provides a relationship as a function of Sc, Wo, and ∆Z, as follows:

PeD =
Wo2Sc4Z∣∣∣ ∫ 1

−1

∫ τω+1/2
τω

ū dτ dȳ
∣∣∣ . (31)

For different fixed values of the dimensionless tidal displacement4Z = 4z/h, signif-
icant changes in PeD are obtained for each flow situation. In this context, the concentration
field and the overall mass transfer will be affected by the frequency.

3. Numerical Scheme

Figure 2 shows a flowchart of the methodology used to solve the formulated problem.
The algorithm was developed in Fortran PowerStation version 4.0 with Microsoft Developer
Studio software; the process is described more precisely as indicated below.

Figure 2. Schematic diagram of the numerical algorithm.

3.1. Electric Potential Field

The MPB equation (7) was approximated by the second-order centered-space differ-
ence, it derives in

ψ̄i+1 − (2 + ∆ȳ2κ̄2Ωg)ψ̄i + ψ̄i−1 = 0, (32)

where
Ωg = sinh(ψ̄i)/ψ̄i

[
1 + 2ν sinh2(ψ̄i/2)

]
. (33)

For an initial guess value in Ωg, the equation system in (32) can be solved simultane-
ously by applying the Thomas algorithm [44]. Using the solution obtained for ψi, the value
of Ω is recalculated according to (33), and the new value replaces the previous one. This
process is repeated until a numerical error value of 1 × 10−10 is reached.

3.2. Velocity Field

Equation (15) was solved using the Crank-Nicolson method, applying a central differ-
ence scheme [44]. The resulting discretization of Equation (15) is as follows:

− θ1ūl+1
i+1 + θ2ūl+1

i − θ1ūl+1
i−1 = θ3, (34)
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where θ1, θ2, and θ3 are defined as:

θ1 =
η̄gγ

24ȳ2 , (35a)

θ2 = 2θ1 +
1
4τ

, (35b)

θ3 =
ūl

i
4τ

+ θ1(ūl
i+1 − 2ūl

i + ūl
i−1) + Λ, (35c)

and

η̄g =

( ūl
i+1 − ūl

i
4ȳ

)2
( n−1

2 )

. (36)

Here,4τ and4ȳ are the time step and the size step in the ȳ direction, respectively. In
this work, a4ȳ-step of 2 × 10−3 and4τ-step of 1 × 10−4 have been used in all numerical
essays. The parameters γ and Λ in Equations (35a) and (35c) are defined as follows:

γ =
2πm̄
Wo2 , (37)

and

Λ =
2πκ̄2

Wo2κψ

sinh ψ̄i

1 + 2ν sinh2(ψ̄i/2)
sin(2πτl). (38)

The numerical value of ψi is provided in (38) by the iterative procedure described
in (32) and (33). To solve the velocity field a similar procedure to that explained in the
previous section was applied. The solution begins by providing an initial guess value to η̄g.
To solve the non-linear equation system generated by (34), a tridiagonal matrix algorithm
(TDMA) was used. With the values obtained for the velocity field ūl+1

i+1, the term η̄g is
recalculated at the next iteration and the process is repeated until the required relative error
is achieved. Given that Equation (36) is a function of ȳ, it was recalculated for each node
in the space and time. This solution procedure is useful because, when ∂ū/∂ȳ = 0 with
an index n smaller than unity, the value of η̄g is undetermined; thereby, a numerical value
very close to zero is assigned to η̄g when ∂ū/∂ȳ→ 0 to avoid a singularity.

3.3. Concentration Field and Mass Transport Rate

After solving the electrical potential and the velocity field, the Péclet number has
to be determined. Average velocity is required as it is indicated in Equation (31), this
average was calculated using the multiple-trapezoid rule. The concentration field in
Equation (23) was approximated by using the second-order central-difference formula for
the second derivative diffusion term and the forward difference formula for the first-order
time derivative. Then, the concentration equation can be discretized as follows:

− β2 c̄n+1
u,i+1 + (1 + 2β2)c̄n+1

u,i − β2 c̄n+1
u,i−1 = β1, (39)

where

β1 = −2β2∆ȳ2Peωαūn
i + c̄n

u,i + β2
(
c̄n

u,i+1 − 2c̄n
u,i + c̄n

u,i−1
)
, (40a)

β2 =
π∆τ

Wo2Sc∆ȳ2 . (40b)

Finally, with the results obtained for ū and c̄u, the dimensionless rate of mass transport
Q̄x defined in Equation (27) is calculated by applying the multiple-trapezoidal rule. The
dimensionless initial condition Tω for the concentration field can be any value of the non-
dimensional time in such a way that the transient stage for the velocity field has diet out.
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A description of the validation process between the numerical solution and the analyt-
ical solution of the velocity field reported by Huang and Lai [13] is presented. The main
differences between both studies are the following: The flow configuration considered by
Huang and Lai [13] is a two-dimensional rectangular microchannel of length L and width
h filled with a Newtonian liquid which is an electrolyte. The coordinate system (x, y) is
located on the lower wall at the microchannel inlet. The associated boundary conditions
for the velocity are the no-slip condition at the channel walls.

Conversely, in the present study, the microchannel consists of two parallel plates
with a length L and distant by 2 h. The origin of the cartesian coordinate system (x, y) is
located to the left end of the microchannel center. A non-Newtonian liquid that obeys the
power-law rheological model flows through the microchannel. For the hydrodynamics, the
problem formulation includes the effects of slip, which enter the problem through a Navier-
slip model, and the symmetry boundary condition at the microchannel’s midplane. The
dimensionless velocity distribution across the channel-width with a Womersley number
W = 5 and a dimensionless Debye length λ∗ = 70 reported by Huang and Lai corresponds
to the velocity profile with Wo = 2.5 and κ̄ = 35 in the present study assuming the slippage
is absent, δ = 0, with a power-law index n = 1. An excellent agreement between both
solutions is observed in Figure 3.

Figure 3. Comparison of the analytical solution [13] and the numerical solution (present work) for
the dimensionless velocity ū across the microchannel in a Newtonian fluid.

4. Results and Discussion

This section highlights the numerical solution of the MPB, momentum, and conserva-
tion species equations, and mass transport rate provided in a microchannel due to an OEOF
of power law fluids by considering the steric and slippage effects. For pertinent results,
the appropriate dimensionless parameters are highlighted in Table 1, by considering the
relevant geometrical and physicochemical properties, as shown in Table 2.

In Figure 4, the absence and the presence of the steric effect and the slippage or the
combined effects on the evolution over time of the velocity ū for Newtonian and non-
Newtonian fluids is presented. The blue, black, and green lines represent the flow solution
for Shear-thinning (with n = 0.8), Shear-thickening (with n = 1.4), and Newtonian (with
n = 1) behavior of the fluid, respectively. Once the electric field Ex(t) is applied, the flow
initiates the transient state where the oscillatory effects have no relevance; that is, the
velocity exhibits a gradual increase in its magnitude, and the periodic flow behavior starts
when τ ∼ O(10−1), as shown in Figure 4a–d.
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Table 1. Order of magnitude of the dimensionless quantities.

Dimensionless Quantities Definition Order of Magnitude

Sc Schmidt number, (ν0/D) ∼O(102–103)

Wo Womersley number,
(h
√

ω/ν0)
∼O(1)

α Aspect ratio, (h/L) ∼O(10−3)

m̄
Consistency index,

n(m
µ )(

UHS
h )n−1 ∼O(10−1–100)

∆Z Tidal displacement, (4z/h) ∼O(1)
δ Slip lenght, (λN/h) ∼0.05

κψ Potential ratio, (zeζ/kBT) ∼2, 10
κ̄ Electrokinetic parameter, (κh) ∼10, 20
ν Steric factor, (2a3n0) ∼O(0–0.4)

Table 2. Physical properties and geometrical parameters used for estimating the dimensionless
parameters from the present analysis.

Parameter Definition Value

a Ion size ∼2 nm [15]
c0 molar concentration ∼(50–100) mol m−3 [15]
D Diffusion coefficient ∼(10−9–10−8) m2 s−1 [45]
e Electron charge ∼1.602 × 10−19C ∗

E0 Electric field ∼103 V/m [46]
h Microchannel half-height ∼(5–100) µm ∗

kB Boltzmann constant ∼1.38 × 10−23 J K−1 ∗

L Micro-channel length ∼10−2 m
m Consistency index ∼(10−3–10−4) Pa sn [47]
n Power-law index (0.8, 1, 1.4) [42]
n0 Ionic concentration ∼1025 m−3 [15]
NA Avogadro number ∼6.022 × 1023 mol−1 ∗

T Absolute temperature ∼298 K ∗

ε Permittivity of the solution 6.95 × 10−10 C2N−1m−2 ∗

ζ Zeta potential ∼(50–260) mV [48]
κ−1 Debye length ∼(15–300) nm ∗

λN Navier length ∼(10−9–10−6) m [49]
µ Newtonian viscosity ∼10−3 Pa s ∗

ρ f Fluid density ∼103 kg m−3 ∗

ω Angular frequency ∼400 Hz–5 kHz [50]
∗ Values taken from Reference [34].

Figure 4. Evolution over time of the dimensionless velocity ũ at ȳ = 0.9, affected by the slippage (δ)
and the finite-sized ions (ν). Here, Wo = 0.5, κ̄ = 20, and κψ = 10. (a) ν = 0, δ = 0; (b) ν = 0.4, δ = 0;
(c) ν = 0, δ = 0.05 and (d) ν = 0.4, δ = 0.05.
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As the dimensionless time τ goes on, the flow begins a state of damping; the am-
plitude begins by growing in this way but eventually settles down to a constant value,
acquiring an oscillatory and periodic state. Figure 4a,b show the cases when the slippage
is absence (δ = 0), the velocity decreases with the finite-sized ions (ν) in Newtonian and
non-Newtonian flows. In Figure 4c,d shows the effect of the slippage (δ = 0.05), and
the velocity is reduced up to one order of magnitude by considering the finite-sized ions
(ν = 0.4). That reduction in the velocity is attributed to the fact that the finite ionic volumes
give rise to the reduction of the ionic concentration inside EDL, therefore decreasing the
oscillatory electroosmotic body force. Hydrophobic condition promotes the increment
in the flow velocity affected by the steric effect, as shown in Figure 4b,d. It is illustrated
in Figure 4d, with δ = 0.05, the dimensionless velocity at τ ∼ O(101) when the periodic
state is reached, ū ≈ 1.4, representing an increase of approximately 75% with respect to
the no-slippage case, where ū ≈ 0.8, as is shown in Figure 4b. In shear-thinning fluids
(Figure 4a,c), due to the shear-rate dependent viscosity, the start-up transient motion will
die out in a faster dimensionless time τ ∼ O(100) because of the viscosity decreases (see
Figure 5a, blue curve) when the shear rate increases. That is due to the ions are treated as
electric charges having no volume into the EDL, increasing the electroosmotic body force
and consequently modify the shear rate of the fluid. Conversely, the finite-sized ions in
shear-thinning fluids delayed the transient state to tend to its periodic-state in a dimen-
sional time of order ∼O(101), as shown in Figure 4b,d. In Newtonian and shear-thickening
fluids, the transient state will tend to its periodic-state much faster than shear-thinning
fluids in a dimensional time of order ∼O(10−1), as shown in all the panels of Figure 4.
Therefore, this paper is mainly focused on the transport of neutral solutes in the periodic
-state. A dimensionless time of order τ = 40 was selected to ensure all initial transients
have died out in the flow. The hydrodynamic and the concentration of species presented in
Figures 5–8, and the rate of mass transport shown in Figures 9–12, are all referred to the
periodic state of the OEOF.

Figure 5. Variation of dynamic viscosity across the microchannel with and without the influence of
steric effects. (a) Shear-thinning and (b) shear-thickening fluids.

Figure 5 shows the influence of the finite-sized ions in the fluid’s rheology by con-
sidering the hydrophobic condition. Both Figure 5a,b were determined with δ = 0.05,
Wo = 1, κ̄ = 10, κψ = 10, and τ = 49.4. In Figure 5a (shear-thinning fluids), the absence
of the steric effect gives rise to a non-linear variation of the dynamic viscosity across the
microchannel given in Equation (16), and it decreases from the centerline up to the wall.
The steric effect’s presence promotes higher values of dynamic viscosity than when the
steric effect is absent. That increment in the dynamic viscosity is due to the finite-sized
ions reducing the ion-concentration into the EDL and, consequently, the electric body
force, offering the fluid greater resistance to deformed. In shear-thickening fluids, dynamic
viscosity increases from the centerline up to the wall with and without steric effects, as
is shown in Figure 5b. The dynamic viscosity near walls by considering ν = 0 is higher
than that obtained with ν = 0.4; this occurs due to velocity gradients strongly affected
with finite-sized ions be discussed later in Figure 6b,d. Interestingly, it is observed that, in
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specified values of δ = 0.05, Wo = 1, κ̄ = 10, κψ = 10, τ = 49.4, the fluid acts as an inviscid
flow at the centerline for the special case of n = 1.4.
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Figure 6. The velocity profiles are shown for shear-thinning and shear-thickening fluids. (a): κψ = 2,
and Wo = 0.5. (b): κψ = 10, and Wo = 0.5. (c): κψ = 2, and Wo = 1.0. (d): κψ = 10, and Wo = 1.0.

In Figure 6, the influence of κψ = 2, and high zeta potentials (κψ = 10), with two
different values of the Womersley number on the velocity profiles ū, as a function of
the coordinate ȳ for shear-thinning (n = 0.8), Newtonian (n = 1), and shear-thickening
fluids (n = 1.2) are plotted. All panels were determined with δ = 0.05, κ̄ = 10, and
τ = 49.2. Dashed, solid, and dotted lines correspond to shear-thinning, Newtonian and
shear-thickening fluids, respectively. Curves in blue do not consider the finite-sized ions
(steric effects), and black curves consider the steric effects. In Figure 6a, the steric effect
promotes a decrease in non-Newtonian and Newtonian fluids’ velocity; that behavior
is more representative in shear-thinning fluids. This reduction in hydrodynamics can
be avoided and can even be exceeded by applying high zeta potentials of the order of
κψ ∼ O(101), keeping fixed Wo, as shown in Figure 6b. It is evident from Figure 6a,b that
the velocity increases in one order of magnitude by increasing κψ from 2 to 10; however,
with κψ = 10 (Figure 6b), the velocity’s reduction by steric effects in Newtonian and Non-
Newtonian fluids is more significant than that obtained by considering κψ = 2. That occurs
because the body electric forced is reduced by the finite-sized ions into the EDL; this causes
a significant decrement in the slippage velocity at the walls changing the velocity profiles
from concave to convex shape (Figure 6b,d). In addition, steric effects give rise to a strong
reduction in the velocity gradients near the microchannel walls offering the fluid a high
resistance to be deformed. The rheology of the power-law fluids plays an important role in
reducing velocity gradients due to the dynamic viscosity increases with the steric effect
being more pronounced this behavior in shear-thinning fluids, as shown in Figure 5a.

According to Equation (16) and confirmed in Figure 5, in shear-thinning fluids (n < 1),
the dynamic viscosity is infinite at channel center due to the absence of velocity gradient,
as shown in Figure 6a–d, and decreases at channel wall where higher velocity gradients
are reached, while the opposite is true for shear-thickenings (n > 1). In this context,
the shear-thinning behavior is more remarkable when Wo increases from 0.5 to 1, as
depicted in Figure 6a,c, maintaining fixed the zeta potential κψ = 2. For shear-thickening
fluids (Figure 6c), the steric effect does not modify the velocity profiles, becoming a little
concave in the center of the channel, and the important changes in velocity occur in the
neighborhood of the sidewalls, as shown in Figure 6a,c. In Figure 6d, steric effects in
Newtonian and power-law fluids provoke a representative decrease in the velocity on the
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microchannel cross-section. That reduction in velocity is more significant in shear-thinning
fluids in one order of magnitude in comparison when the steric effects are absent. In
addition, steric effects modified the shape of the velocity profiles from concave to convex
due to the rheology of power-law fluids explained in Figure 5.

Figure 7. (a,c): Velocity profiles ū across the microchannel at one period of oscillation. (b,d): Distribu-
tion of the convective concentration c̄u across the microchannel due to the hydrodynamic in (a,c),
respectively.

The combined effects of the hydrophobic surface condition and the finite-sized ions
on the velocity and species concentration fields are shown in Figure 7. All panels were
determined with n = 0.8, Wo = 1, κ̄ = 10, κψ = 10, δ = 0.05, Sc = 500, α = 0.001. Because
a pure AC electric field drives the electroosmotic flow, the movement of the flow acquires
an oscillatory behavior, as shown in Figure 7a,c, and, consequently, the corresponding
concentration field, as depicted in Figure 7b,d. The velocity ū is plotted over one period
of oscillation τ (=49.1–50) as a function of the transversal coordinate ȳ, for shear-thinning
fluids with n = 0.8, Wo = 1, κ̄ = 10, κψ = 10, Sc = 500, and α = 0.001, by considering a
dimensionless Navier slip length, δ = 0.05. When the ions are treated as point charges, i.e.,
ν = 0, the high zeta-potential κψ = 10 magnifies the slippage effect on the hydrodynamics
of the OEOF, as indicated in Figure 7a. That is because, in the absence of the ionic size
effects, shear-thinning fluids (n < 1) exhibit smaller viscosity at the wall than that with
steric effects, as pointed in Figure 5a. That explains why the fluid has a low resistance
to be deformed, causing high-velocity gradients in the walls’ vicinity. According to the
oscillatory electroosmotic body force included in Equation (15),

ρ̄eĒx(τ) =
κ̄2

κψ

sinh ψ̄

1 + 2ν sinh2(ψ̄/2)
sin(2πτ), (41)

when the steric effect is absent (ν = 0) in Equation (41), and considering fixed values in κ̄
and ψ̄ = κψ, the electric body force at the wall, where A is a constant, ρ̄eĒx ∼ A sin(2πτ)
promotes the highest velocity gradients, namely for half-period τ (=49.1–49.4) the flow
moves in the positive axial direction and the body force A sin(2πτ) > 0, while, for τ
(=49.6–49.9), the flow moves in the opposite direction and the function A sin(2πτ) < 0; in
both scenarios described before, the velocity profiles acquire concave shape in the flow
direction. At specific times τ (=49.5 and 50), the electric body force A sin(2πτ) = 0, causing
a significant decrease in velocity and velocity gradients. Then, velocity profiles acquired a
convex shape, and the velocity is close to zero in the neighborhood of the sidewalls, as is
shown in Figure 7a. On the other hand, in Figure 7c, the finite-sized ions (ν 6= 0) affect the
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slippage condition at the wall, giving rise to a reduction in the velocity up to one order of
magnitude, and consequently, the velocity gradients are smaller than that obtained with
ν = 0. That reduction in velocity gradients is attributed to reducing the ionic concentration
inside EDL as stated in Equation (3), decreasing the oscillatory electroosmotic body force
in Equation (41). For example, an estimation of ρ̄eĒx(τ)|ȳ=1 near the microchannel-wall,
where κ̄ ∼ O(101), κψ ∼ O(101), and ψ̄ ∼ κψ; for a specific τ = 49.2, when ν = 0 the
electric body force ρ̄eĒx(τ)|ȳ=1 ∼ O(104), and when steric effects are considered with
ν = 0.4, the electric force ρ̄eĒx(τ)|ȳ=1 ∼ O(101).

Figure 8. Distribution of dimensionless convective concentration c̄u across the microchanne at
different Womersley numbers Wo. (a) Shear-thinning fluids. (b) Shear-thickening fluids.

The dimensionless concentration c̄u plotted in Figure 7b,d corresponds to the velocity
field ū in igure 7a,c over the same period of oscillation. Figure 7b shows the concentration,
c̄u, without steric effects. In the first half period of oscillation τ (=49.1–49.6), the concave
flow profile causes transversal concentration gradients, and the neutral dilute solute
diffuses from the centerline of the microchannel to lateral walls. During the second half
interval of time τ (=49.7–50), the flow profile is reversed, and the solute moves from the
boundary walls to the centerline, where the solute’s concentration is small compared to
its value at the neighborhood of the walls. Figure 7d shows the concentration distribution
with the steric effect. Due to a strong decrease in the slip-velocity at the walls originated
by steric effects, the values of c̄u near the walls are small compared to its value at the
centerline; therefore, neutral dilute solute diffuses from the lateral walls to the centerline of
the microchannel.

The rheology plays an essential role on the distribution of the concentration of the
solute c̄u, as shown in Figure 8. For instance, higher concentration gradients across the
microchannel-width appear with shear-thinning fluids (Figure 8a) in comparison against
those present in shear-thickening fluids (Figure 8b). It occurs when Wo increases from 0.5 to
0.8, keeping fixed ν = 0.4, κψ = 10, κ̄ = 10, Sc = 500,4Z = 1, δ = 0.05, and α = 0.001. In
Figure 8a, the distribution in c̄u is more dissimilar as Wo increases. This consequence arises
from the non-uniformity in the velocity flow becoming stronger in shear-thinning fluids, as
shown in Figure 6d. The concentration c̄u in shear-thickening fluids is less affected by the
Womersley number Wo as presented in Figure 8b in comparison with shear-thinning fluids,
due to a significant resistance offering by the fluid to be deformed, as shown in Figure 6d,
where the velocity is reduced by about 30% concerning that obtained in shear-thinning
fluids under the influence of steric effects.

Oscillatory flows become a subject of considerable interest due to their potential to
provide significant advantages in the manipulation of the transport of species, causing that
those with low diffusivities can be transported faster than species with higher diffusivities,
and vice versa. In this context, the rate of mass transport Q̄x is shown in Figure 9a,b as
a function of the Womersley number Wo with κ̄ψ = 10, κ̄ = 10, δ = 0.05, α = 0.001 and
∆Z = 1. Dashed, solid, and dotted lines correspond to shear-thinning, Newtonian and
shear-thickening fluids, respectively. Curves in blue do not consider the finite-sized ions
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(steric effects), and black curves consider the steric effects. Figure 9a analyzes a fast diffuser
(Sc = 500), while Figure 9b analyzes a slow diffuser (Sc = 2000).

Figure 9. Rate of mass transport Q̄x as a function of Wo at different flow behavior indices n and the
steric factor ν. (a) Sc = 500 and (b) Sc = 2000.

The mass transport Q̄x, in a fast diffuser in the absence of steric effects, Wo does
not influence on Q̄x in the interval 0.3 . Wo . 0.6 in fluids with n (=0.8, 1.0, 1.4), as
indicated in Figure 9a. Shear-thinning fluids with Wo & 0.6 promote a rapid increase in Q̄x
while Newtonian and shear-thickening fluids remain unaltered with Wo. That occurs in
fluids with n < 1 because of high slippage velocity at the walls and the concave shape of
velocity profiles in the flow direction with one order of magnitude higher than fluids with
n = (1, 1.4) where the velocity profiles acquire flattened shape, as shown in blue curves
in Figure 6b. Conversely, in the presence of steric effects, Wo enhances Q̄x in fluids with
n (=0.8, 1.0, 1.4), as indicated by black-curves in Figure 9a. It is observed that independently
of the value that Wo takes, the convex-shape (black lines, in Figure 6b,d) of the velocity
profiles in fluids with n (=0.8, 1.0, 1.4) remain in the same order of magnitude. However,
the shear-thickening fluid is a candidate to transport more species due to shear-thinning
fluids offer greater resistance to being deformed in the presence of steric effects, as it is
demonstrated in Figure 5a. Figure 9b shows how the importance of the hydrodynamic
behavior mentioned above in benefiting and enhance the mass transport of the slow diffuser
(Sc = 2000) with a shear-thickening as a carrier fluid in the presence of steric effects. That is,
species with low diffusivity (Sc = 2000) can be transported up to 64.6% faster than species
with high diffusivity (Sc = 500) when the steric effect is considered. Contrarily, when the
steric effect is neglected, the more diffusive species travel slightly faster up to 21.5%.

Figure 10. Rate of mass transport Q̄x as a function of Wo at different flow behavior indices n and the
steric factor ν. (a) Sc = 500 and (b) Sc = 2000.

Figure 10 highlights the effect of the zeta potential κ̄ψ = 2 on Q̄x, with κ̄ = 10, δ = 0.05,
α = 0.001, and ∆Z = 1. As expected, the zeta potential attenuates the mass transport of fast
and slow diffusers with shear-thickening fluid as carrier compared to high-zeta potential,
as described in Figure 9. However, the zeta potential improves Q̄x with shear-thinning
fluids, as shown in Figure 10. In addition, the steric effect enhances the mass transport in
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fast and slow diffusers when Wo increases. The reason is that independently the value Wo
takes, the reduction in velocity by steric effects remains in the same order of magnitude,
except in shear-thickening fluids where steric effects are tiny, as shown in Figure 6a,b.

Furthermore, Figures 10a and 11a were compared to analyze the influence of tidal
displacement ∆Z on the mass transport rate Q̄x. A tidal displacement ∆Z = 2 causes
an increment in the mass transport rate about two times with κ̄ψ = 2 compared to that
obtained with ∆Z = 1, and that increment was estimated up to four times higher when
high zeta potentials (κ̄ψ = 2) were considered (see Figures 9a and 11b). From Equation (31),
it is evident that the tidal displacement influences the concentration c̄u through Peω ; as can
be deduced from Equation (39), c̄u will affect the mass transport rate, Q̄x. Then, the tidal
displacement increases the convective effects in the concentration field and enhances the
mass transport rate in comparison when a smaller tidal displacement is used.

Figure 11. Rate of mass transport Q̄x as a function of Wo at different flow behavior indices n and the
steric factor ν. (a) κψ = 2 and (b) κψ = 10.

Figure 12. Rate of mass transport Q̄x as a function of the steric effect factor ν, at different flow
behavior indices n. (a) κψ = 2 and (b) κψ = 10.

Finally, the dependency of the rate of mass transport Q̄x on the steric factor is studied
and Figure 12 displays the results with κ̄ = 10, δ = 0.05, α = 0.001, Sc = 500, ∆Z = 1,
and Wo = 1. When the ions are assumed to have finite volumes, the mass transport in
power-law and Newtonian fluids is an ascending function of the steric factor, ν, for κ̄ψ = 2,
and high (κ̄ψ = 10) zeta potentials, as it is shown in Figure 12a,b. In Figure 12a, the
values of Q̄x for ν = 0 and ν = 0.4 with the power-law index n (=0.8, 1.0, 1.4) correspond
to the values of Q̄x in Figure 10a with Wo = 1. In Figure 12a, the mass transport Q̄x in
shear-thickening fluids is higher than in Newtonian and shear-thinning fluids. This is due
to in shear-thickening fluids there is a little influence of the steric factor on the velocity
profiles, while, for Newtonian and shear-thinning fluids the velocity profiles are reduced
by steric effects, as shown in Figure 6c. This occurs because, fluids with n > 1 offer more
resistance to be deformed in comparison with Newtonian and shear-thinning fluids. This
is confirmed in Figure 5, the steric effect in fluids with n = 1.4 has a little impact on the
apparent viscosity (see Figure 5b), while, in fluids with n = 0.8, an important increment in
the viscosity distribution occurs due to steric effects, as shown in Figure 5a.



Micromachines 2021, 12, 539 19 of 23

In Figure 12b, the values of Q̄x as a function of ν with the power-law index n (=0.8, 1.0,
1.4) and κψ = 10 are plotted. The increase of Q̄x with ν is more pronounced with κψ = 10
than with κψ = 2. That is due to near the wall, the reduction of the body force due to steric
effects is significant; consequently, a higher zeta potential gives rise to a smaller velocity,
as it is shown in Figure 6d, where for fluids with n = 0.8, the velocity is reduced in one
order of magnitude, and fluids with n = 1.0 and n = 1.4, the reduction in the velocity are
maintained in the same order of magnitude.

5. Conclusions

The effects of non-Newtonian rheology, steric effect, and slippage on an OEOF were
analyzed. The start-up condition for the flow was considered, and after all initial transients
have died out and the flow is periodic, the mass concentration and transport of species were
determined numerically. The influence of the main parameters that describe the dynamic
behavior of the flow is the steric factor ν, the normalized slip length, δ, an electrokinetic
parameter κ̄, the normalized zeta potential κψ, the Womersley (Wo) and Schmidt (Sc)
numbers, and the power-law index n. The ionic size effects were controlled by the mean
volume fraction of each ion in bulk given by the factor ν = 2a3n0. The numerical results
are compared against an OEOF solution for a Newtonian fluid without slippage, and steric
effects, previously reported by H. Huang and C. Lai [13]. The following conclusions from
this study were drawn:

1. In shear-thinning fluids, the steric effect under hydrophobic conditions has a no-
ticeable impact on the rheology of the fluid, causing higher values in the dynamic
viscosity, η̄, compared with the absence of finite-size ions. In shear-thickening fluids,
since steric effects reduce the oscillatory electroosmotic body force up to three orders
of magnitude compared with no steric case, the dynamic viscosity decreases near the
microchannel wall.

2. Finite-size ions reduce oscillatory electroosmotic body force by preventing EDL from
being highly concentrated. As a result, steric effects result in a decrease in velocity
in shear-thinning fluids up to one order of magnitude compared with no steric case,
with κψ = 10. However, in shear-thickening fluids, the steric effects are negligible on
the velocity when κψ = 2.

3. The suggested values of Wo ∼ O(10−1), κψ = 10 and ν = 0.4 promote the best
conditions for the mass transport Q̄x for any Sc number values. A value of ν = 0.4
with κψ = 10 increases the value of Q̄x in about 90 % compared with no steric effect.
In a similar way, in about 20 % the value of Q̄x was increased with κψ = 2.

4. The steric effect enhances the mass transport in fast and slow diffusers when Wo
increases by using κ̄ψ = 2 or high zeta potentials (κ̄ψ = 10). However, at high zeta
potentials (κ̄ψ = 10), Q̄x increases up to one order of magnitude compared with
that obtained with κ̄ψ = 2. Additionally, steric effect promotes that slow diffusers
(Sc = 2000) can travel faster than fast diffusers (Sc = 500) at Wo < 1, as shown in
Figure 9 (black lines). The opposite behavior occurs in the absence of steric effects.

5. A wide variety of different physical and chemical phenomena could also be included
in the model to examine their effects on mass transport with non-Newtonian fluids.
Possibilities include the depletion of macromolecules near the microchannel walls,
the presence of a reversible reaction or mass exchange between the microchannel
wall and the fluid. In physiological systems, which can be significantly more impor-
tant viscoelastic effects than higher purity for typical aqueous solutions, could be
considered.
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Nomenclature

a Ion size, m
c Concentration field of the solute, mol m−3

c0 Molar ion concentration of the electrolyte solution, mol m−3

C1, C2 Fixed concentration values at the ends of the microchannel, mol m−3

cu Convective species concentration, mol m−3

c̄u Dimensionless convective species concentration
D Diffusion coefficient, m2 s−1

D Rate of strain tensor
e Electron charge, C
Ex(t) External electric field, Vm−1

E0 Intensity of the applied electric field, Vm−1

h Microchannel Half-Height, m
jx,conv Convective flux density, mol m2 s−1

jx,di f f Diffusive flux density x, mol m2 s−1

Jx Total flux density, mol m2 s−1

KB Boltzmann constant, J K−1

L Microchannel length, m
m Fluid consistency index, Pa sn

m̄ Dimensionless consistency index
n Power-law index
n Unit vector normal to the microchannel surface
n0 Ionic concentration, m−3

PeD Diffusive Péclet number
Qx Flow rate, mol m−2 s−1

Q̄x Dimensionless flow rate
Sc Schmidt number
t Time, s
tω Periodic time, s
T Absolute temperature, K
u Longitudinal velocity component, m s−1

us Fluid velocity at the microchannel wall, m s−1

UHS Helmholtz-Smoluchowsky velocity
ū Dimensionless longitudinal velocity component
Wo Womersley number
x, y Space coordinates, m
x̄, ȳ Dimensionless space coordinates
z valency of both the ions
Greek symbols
α Aspect ratio
γ̇ Strain rate
∆z Tidal displacement, m
∆Z Dimensionless tidal displacement
δ Dimensionless slip lenght
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ε Permittivity of the solution, C V−1 m−1

ζ Zeta potential, V
η Apparent viscosity of the fluid, Pa s
κ−1 Debye length, m
κψ Relation between the wall ζ potential and the thermal potential
κ̄ Ratio of the microchannel height to the Debye length
λN Navier length, m
µ Viscosity of a Newtonian fluid, Pa s
ν Bulk volume fraction of ions
υ0 Kinematic viscosity, m2 s−1

ρ f Fluid density, kg m−3

ρe Electric charge density, C m−3

τ Dimensionless time
τω Dimensionless periodic time
τxy Unidirectional shear stress
Φ Total electric potential, V
φ External electric potential, V
ψ Electric potential, V
ω Angular frequency, rad s−1

Subscripts and superscripts
i Nodal position in x̄ coordinate
j Nodal position in ȳ coordinate
l Nodal position in time
tr Matrix transpose
Abbreviations
AC Alternating current
DC Direct current
DNA Deoxyribonucleic acid
EDL Electrical double layer
EOF Electroosmotic flow
MPB Modified Poisson-Boltzmann
OEOF Oscillatory electroosmotic flow
PB Poisson-Boltzmann
TDMA Tridiagonal matrix algorithm
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