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ABSTRACT
Rotavirus (RV) is the leading cause of diarrhea-related death in children worldwide and ninety-five
percent of rotavirus deaths occur in Africa and Asia. Rotavirus vaccines (RVV) can dramatically
reduce RV deaths, but have low efficacy in low-income settings where they are most needed. The
intestinal microbiome may contribute to this decreased RVV efficacy. This pilot study hypothesizes
that infants’ intestinal microbiota composition correlates with RVV immune responses and that RVV
responders have different gut microbiota as compared to non-responders.

We conducted a nested, matched case-control study comparing the pre-vaccination intestinal
microbiota composition between 10 6-week old Pakistani RVV-responders, 10 6-week old Pakistani
RVV non-responders, and 10 healthy Dutch infants. RVV response was defined as an
Immunoglobulin A of �20 IU/mL following RotarixTM(RV1) vaccination in an infant with a pre-
vaccination IgA<20. Infants were matched in a 1:1 ratio using ranked variables: RV1 dosing
schedule (6/10/14; 6/10; or 10/14 weeks), RV season, delivery mode, delivery place, breastfeeding
practices, age and gender. Fecal microbiota analysis was performed using a highly reproducible
phylogenetic microarray.

RV1 response correlated with a higher relative abundance of bacteria belonging to Clostridium
cluster XI and Proteobacteria, including bacteria related to Serratia and Escherichia coli. Remarkably,
abundance of these Proteobacteria was also significantly higher in Dutch infants when compared to
RV1-non-responders in Pakistan.

This small but carefully matched study showed the intestinal microbiota composition to correlate
with RV1 seroconversion in Pakistan infants, identifying signatures shared with healthy Dutch infants.
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Introduction

Rotavirus (RV) is one of the most important causes of
diarrhea-related death in children under the age of five
worldwide, particularly in Africa and Asia, where over
95% of RV deaths occur.1 Since their introduction, rota-
virus vaccines (RVV) have significantly reduced the
number of cases of serious rotavirus gastroenteritis in
developing country settings, however their effectiveness
is disappointingly low.2,3 In wealthy countries RVV

have an efficacy of as high as 85–98% against severe RV-
related gastroenteritis,4-7 however this efficacy drops sig-
nificantly in low-income countries.8 Well-performed
randomized controlled studies in Africa and Asia have
shown a combined vaccine efficacy ranging from 48 to
64% for the RotarixTM and RotaTeqTM vaccines and
53% for the human-bovine (116E) rotavirus vaccine in
India.9-12 RotarixTM is currently being introduced in
Pakistan’s Expanded Program on Immunization (EPI).
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Improving RVV efficacy in low-income settings
could save hundreds of thousands of children’s lives.13

Several studies have demonstrated that the etiology of
RVV’s diminished immunogenicity is likely multi-fac-
torial: due to interference from the first dose of co-
administered oral polio vaccine (OPV), host FUT2 and
FUT3 receptor status and HLA blood group antigen
type (HBGA), as well as RVV immune response sup-
pression from maternally derived antibodies.14-17 Yet
these explanations fail to completely explain how RVV
seroconversion can be even lower than 40% in some
settings like an urban slum in Karachi, Pakistan.18,19

Given that the intestinal microbiome differs signifi-
cantly in different geographic populations,20 evidence is
emerging that differences in the intestinal microbiome
may help explain this gap in RVV immunogenicity.21,22

This study describes a pilot to explore whether the
infant intestinal microbiota may correlate with RVV
immunogenicity in a poor urban slum setting. We
hypothesized that if the composition of the intestinal
microbiota is influencing RVV response, then RVV res-
ponders should have a different intestinal microbiome
composition as compared to non-responders. To test
this, we conducted an exploratory, nested, case-control
pilot study in Karachi, Pakistan comparing the differen-
ces in pre-vaccination fecal microbiota composition
between infants with and without an anti-rotavirus
Immunoglobulin (Ig) A seroconversion to RV1.

A second hypothesis was that if there are biologi-
cally significant differences in microbiome composi-
tion between vaccine responders and non-responders
within Pakistan, one would expect similar differences
in microbiome composition to exist between develop-
ing and developed country infants (with assumed high
RV1 seroconversion rate). Specifically, one would
assume a positive or negative gradient in microbiome
differences across populations – developed country,
then Pakistani responders then Pakistani non-res-
ponders. To test this hypothesis, we additionally com-
pared the microbiome composition of Pakistani
infants to a cohort of healthy Dutch infants.

Results

Study population

A total of 88 infants with pre-vaccination fecal samples
were available from the original clinical trials. Of these,
14 children were excluded: 11 children migrated out of
the catchment area, 2 children had guardians refuse

consent, and 1 died. Seventy-four children were screened
for their anti-RV IgA response, and 2 had evidence of
previous RV natural exposure and one child had no
post-vaccination IgA measurement available. Therefore,
71 children were eligible and enrolled in this study.

Sufficient and good-quality DNA was obtained from
66 of the 71 fecal samples (93%) and these were further
characterized using phylogenetic microarray analysis.

Ten (15%) of the 66 infants had an IgA � 20 IU/mL
and classified as RV1 responders and these infants
were then carefully matched based on six relevant var-
iables to an equal number of RV1 non-responders (see
Table 1 for baseline characteristics). No significant dif-
ferences between the vaccine responders and non-res-
ponders were identified for any of the variables
including malnutrition indices.

Microbiota composition

When evaluating the microbiome composition as a
whole, a significantly higher ratio of Gram-negative to
Gram-positive bacteria was observed in vaccine res-
ponders as compared to non-responders (2.6-fold
higher, p D 0.03). Subsequently, when evaluating
microbiome composition at the phylum level, RV1
responders had significantly higher levels of Firmi-
cutes, in particular bacteria belonging to the abundant
Clostridium cluster XI (p 0.02, FDR 0.36), and Proteo-
bacteria (p 0.04, FDR 0.36) than non-responders.
(Supplementary Table 1 and Figs. 1A-B, and 2).

When evaluated at the genus-like level, several bac-
teria differed between responders and non-responders.
The most notable difference observed was in the rela-
tive abundance of Gram-negative bacteria related to
Serratia and Escherichia coli, which were positively
associated with vaccine response and were approxi-
mately 2 and 4-fold reduced, respectively in the non-
responders (p 0.01, FDR 0.19 for Serratia and p 0.00,
FDR 0.05 for E. coli) (Supplementary Table 2,
Figs. 1C, and 2).

Pakistani infants compared to healthy dutch infants

In a second analysis, we hypothesized that if microbial
differences identified between RV1 responders and
non-responders in Pakistan were actually influencing
vaccine response, then similar differences should exist
between vaccine non-responders in Pakistan and chil-
dren in wealthier countries, with high levels of RVV
protection. First we compared all Pakistani infants to a
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set of 154 age-matched Dutch infants. Multivariate
analysis demonstrated a significantly different overall
microbial composition between all Dutch infants and
Pakistani infants (p D 0.014), as expected by geography
(See Supplementary Fig. 1). We then made a response

index (Pakistani non-responders 1, responders 2, and
Dutch infants 3) to evaluate with a heat tree which bac-
teria correlated with hypothetical RVV response (Illus-
trated in Fig. 3). Subsequently, to limit potential
confounding, we matched 10 Dutch infants to 10

Figure 1. Distribution of the relative abundance of bacteria between Pakistani responders and non-responders. The relative abundance
(%) for all phyla (class for Firmicutes) (1A), significantly different phyla (p < 0.05) (1B), and significantly different bacteria at the genus-
like level (FDR < 0.5) (1C) are illustrated. Bean plots compare Pakistani responders (1, orange) and non-responders (0, red). The horizon-
tal black line is the median and the height of each bean plot illustrates the distribution of the values for abundance within each group.

Table 1. Baseline characteristics RV1 Non-responders and Responders.

RV1 Non-responders RV1 Responders p-value Dutch infants p-values (NL-NR; NL-R)

N 10/66 (15%) 10/66 (15%) NA 10 NA
Gender 0.65
Male 6/10 (60%) 5/10 (50%) 6/10 1.0; 0.65
Female 4/10 (40%) 5/10 (40%) 4/10

RV1 dosing 0.82
6/10 wks 1/10 (10%) 2/10 (20%) NA
10/14 wks 1/10 (10%) 1/10 (10%)
6/10/14 wks 8/10 (80%) 7/10 (70%)

Rotavirus Season 1.000 NA
Yes 4/10 (40%) 4/10 (40%)
No 6/10 (60%) 6/10 (60%)

Location of delivery 0.64
Home 4/10 (40%) 3/10 (30%) 4/10 1.0; 0.64
Healthcare 6/10 (60%) 7/10 (70%) 6/10

Mode of delivery 1.00
Vaginal 9/10 (90%) 9/10 (90%) 10/10 0.29; 0.29
C-section 1/10 (10%) 1/10 (10%) 0/10

Feeding 1.00
Breastfeeding 9/10 (90%) 9/10 (90%) 7/10 0.35; 0.35
BF C Formula 1/10 (10%) 1/10 (10%) 2/10
Formula 0/10 (0%) 0/10 (0%) 1/10

Malnutrition
(Z score<¡2)
Length-for-age 1/10 (10%) 1/10 (10%) 1.00 0/10 0.22; 0.22
Weight-for-length 1/10 (10%) 1/10 (10%) 0/10
Weight-for-age 1/10 (10%) 1/10 (10%) 0/10

Note. Baseline characteristics of the infants enrolled in the nested study and differences between the Pakistani RV1 non-responders and responders as determined
by the Chi-square test. Baseline characteristics of the matched Dutch infants and differences between Dutch and Pakistani RV1 non-responders and responders,
respectively as determined by the Chi-square test. Abbreviations: RV1, Rotavirus vaccine; NL, Dutch infants.
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Pakistani non-responder infants (Table 1). Bacterial
correlations with RVV response were very similar in
the matched and unmatched analyses. There were no
differences in diversity, richness, or evenness. Gram-

negative Proteobacteria had significantly higher abun-
dance in the Dutch infants (10-fold higher, FDR 9 £
10¡12), especially the Gammaproteobacteria (15-fold
higher, FDR 9 £ 10¡12) which includes bacteria such
as Serratia, E. coli, Klebsiella, and Enterobacter. (See
Supplementary Table 3). In addition, Dutch infants
had higher abundance of bacteria related to Staphylo-
cocci (4-fold increase, FDR 0.003) and the phylum Ver-
rucomicrobiae (5-fold increase, FDR.0002).
(Supplementary Table 3)

Discussion

In a cohort of 66 Pakistani infants, we observed only
10 to be seroconverted after RV1 vaccination, con-
firming the low response often reported in low-
income countries. The pre-vaccination (6 weeks)
microbiota of the 10 responding infants was compared
with that of a carefully matched group of non-
responding Pakistani infants. We observed that the
RV1 response was positively correlated with increased
ratio of Gram-negative over Gram-positive bacteria,
notably reflected in an approximately 3-fold increased
abundance of the Proteobacteria related to Serratia
and E. coli. Interestingly, when the intestinal micro-
biota of matched Dutch infants with assumed high
RVV immunogenicity was compared with that of the
Pakistani RV1 non-responders, again significantly
higher abundance of Proteobacteria was observed,
particularly Gammaproteobacteria which include bac-
teria related to Serratia and E. coli.

The results of this pilot study are best regarded as pre-
liminary and hypothesis-generating for an under-devel-
oped research field. Gram-negative bacteria, such as
Proteobacteria, can stimulate specific innate immune
responses, such as through their expression of flagella or
toxigenic LPS. In this Pakistani infant population, Pro-
teobacteria or their cell envelope components may there-
fore be acting as natural immune adjuvants. Murine
models have demonstrated that bacterial flagella can cure
RV infections through an activation of the innate
immune system via TLR5 and NLRC4.23 Accordingly,
early exposure to Proteobacteria-expressing flagella may
augment innate and subsequent adaptive immune
response to RV1. An additional hypothesis is that a
higher abundance of LPS derived from E. colimay also be
augmenting RV1 immune responses in responders –
accumulating data demonstrates that E.coli-derived LPS
has stronger immune-stimulatory capacity than LPS in

Figure 2. Phylogenetic Heat Tree illustrates the differences in rel-
ative bacterial abundance between Pakistani non-responders and
responder infants. Colored blue are bacteria where a lower abun-
dance associates with RVV response and colored red are bacterial
groups where a higher abundance correlates with RVV response.

Figure 3. Phylogenetic Heat Tree illustrates the differences in rel-
ative bacterial abundance between all Pakistani non-responder,
Pakistani responder and Dutch infants when indexed by
response. Each group’s RVV response is indexed (Pakistani non-
responder 1, responder 2, and Dutch infants 3) and those bacteria
with significant linear associations with index are colored.
Colored blue are bacteria where a lower abundance associates
with RVV response and colored red are bacterial groups where a
higher abundance correlates with RVV response.
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the cell walls of other gram-negative organisms such as
those in the Bacteroidetes phylum.24,25 In a parallel study
correlating RV1 response with microbiome composition
in rural Ghana, we recently observed that a high abun-
dance of Bacteroidetes in the fecal microbiome was nega-
tively correlated with RV1 seroconversion.21 While
undeniably speculative, these two studies may comple-
ment one another – Proteobacteria and E. coli- derived
LPS might boost RV1 responses in some populations
whereas Bacteroidetes-derived, and potentially inhibi-
tory, LPSmight inhibit RV1 responses in others.

Alternatively, more abundant neonatal colonization
with Proteobacteria could have a role in educating the
innate immune system. While a high abundance of Pro-
teobacteria is often correlated with an inflammatory gut
profile,26 some evidence exists that E. colimay be particu-
larly important in strengthening adaptive B cell immu-
nity. Early colonization with E. coli was associated with
higher numbers of memory CD20C B cells at 4 and
18months of age in a Swedish cohort.27

Finally, HBGA interactions may be modulating vac-
cine strain replication. Bacteria might be expressing
blood group antigens or glycans needed for RV replica-
tion, as has been demonstrated with norovirus.28 Given
the known association betweenHBGAs andmicrobiome
composition29 as well as HBGA and rotavirus immuno-
genicity,17,30 host genetics could be interacting with both
microbiome composition and viral replication.

This exploratory study has significant limitations
restricting the generalizability of our findings despite
having high internal validity. The study is primarily
limited by power – the low vaccine response (15%)
among infants with an available fecal sample meant
that we were only able to evaluate 10 RV1 responders
in depth. Additionally, in the original dosing study, RV
IgA seroconversion was 36% to 39%, depending on
study arm, so the cohort of RV1 responder infants that
we were able to examine might be a skewed patient
population. Anti-RV IgA sero-conversion is also only a
correlate of vaccine protection, and clinical vaccine
efficacy would require larger sample sizes and follow-
up. Additionally, the infant microbiome is character-
ized by a low diversity and high inter-individual vari-
ability with large microbiome fluctuations over time.20

We examined one time point directly prior to RV1 vac-
cination and our study is unable to account for varia-
tion over time. Nevertheless, we believe that the time
point directly prior to RV1 vaccination is the most
important window into the potential interaction

between the rotavirus vaccine and the infant’s micro-
biome. A potential technical limitation is that the
HITChip phylogenetic microarray used in this study,
while validated in 1000s of subjects, has never been
tested in a developing country setting like Pakistan and
may not identify novel bacterial phylotypes. Since most
if not all intestinal genera are covered on this microar-
ray, we expect that the cross-hybridization that occurs
would permit detection of the most abundant micro-
bial populations, even if some phylotypes are not cov-
ered by the used probes. However, a similar problem
could also occur with sequencing techniques: sequen-
ces are mapped to a reference database. If the reference
database does not contain a phylotype because it is
novel the phylotype will be identified as the most simi-
lar, known phylotype, which is the same as what occurs
with HITChip cross-hybridization.

Confirming these intriguing study results in other low-
income settings could help substantiate a role for the
intestinal microbiome in influencing rotavirus vaccine
efficacy. Identification of key bacterial phylotypes that
correlate with RVV response could also be the first step
designing an intervention to improve RVV efficacy. Such
a future intervention could have several theoretical forms
– modulation of the infant microbiota prior to vaccina-
tion with targeted antibiotics (not an ideal strategy in
infant populations), evidence-based probiotic ormodula-
tion via targeted bacteriophage therapy. Alternatively,
understanding of which bacteria elicit rotavirus vaccine
immunogenicity could support testing for novel adjuvan-
tation of this oral vaccine. Finally, microbiota profiles
might be used to predict which infants are at risk for
RVV failure and in need of additional vaccine doses or
targeted education.

Methods

Study design and participants

All participating Pakistani infants were healthy, 4–6weeks
of age at enrolment, with a birth-weight > 1500g (exact
gestational age unknown), and had been previously
enrolled in a phase IV, open-label randomized clinical
trial of RV1 immunogenicity (NCT01199874, clinical-
trials.gov) examining the effect of different RV1 dosing
schedules (6/10/14, 6/10 and 10/14 weeks) and withhold-
ing breastfeeding around the time of vaccine administra-
tion on RV1 immunogenicity.18,19

The trial was conducted in a peri-urban, low-
income slum along the seacoast in Karachi, Pakistan.
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Serum samples were collected prior to the first dose of
vaccine and 28 days following the last dose of vaccine
(14 or 18 weeks depending on study arm) for anti-
rotavirus IgA antibody measurements. Fecal samples
were collected directly (0–2 days) prior to and in the
week following vaccination for the first 88 infants
enrolled in these trials, further fecal sample collection
was halted due to logistical issues.

Infants were included in the current study if guardians
had provided informed consent in the original phase IV
study and additionally consented to collection of a new
fecal sample collection (results not described here). Fur-
ther inclusion criteria specified the availability of a base-
line, pre-vaccination (0–2 days preceding vaccination)
fecal sample, and that there was no evidence of natural
RV infection prior to vaccination (a pre-vaccination IgA
�20 IU/mL). IgA seroconversion to greater than 20 IU/
mL following vaccination was considered a surrogate
marker for RV1 protection against severe rotavirus gas-
troenteritis.31 Participating infants were grouped as either
RV1 responders (post-vaccination 14 and/or 18 week
anti-RV IgA antibody� 20 IU/mL in infants with a pre-
vaccination IgA < 20 IU/mL) or non-responders and
matched in a 1:1 ratio using the ranked variables: RV1
study arm (dose and breastfeeding arms), RV season in
Karachi (defined as the date of the 28 days post-vaccina-
tion serum IgA falling between December 1st, 2011 and
February 1st, 2012), mode of delivery (vaginal or caesar-
ean section), breastfeeding practices (exclusive breast-
feeding, breastfeeding and formula, or formula only),
place of delivery (home or health care facility), age of fecal
sample collection (in weeks), and sex.

The nested trial was approved by the institutional
review board of Aga Khan University and was conducted
in accordance with good clinical practice guidelines.

In parallel, we anonymously compared the micro-
biota of healthy, full-term Dutch infants to our Pakis-
tani RV1 non-responders and responders. These
healthy Dutch infants had not received RVV as RVV
is not included in the Dutch national vaccination pro-
gram, but it was assumed that if they had, their RVV
seroconversion rate would be well over 90% based on
extensive efficacy and effectiveness data for RVV in
Northern Europe.4,7 Only Dutch infants without colic,
co-morbidities, or maternal stress were eligible for
inclusion. The Pakistani infants were compared to an
age-matched only cohort of 154 infants and then com-
pared to Dutch infants matched for gender, age at
fecal sample collection (4–5 weeks of age), place of

delivery, mode of delivery, breast-feeding practices,
and birth weight. Fecal samples from Dutch infants
were collected as part of a previously published study
(Bibo study) in which infants and mothers were fol-
lowed from the third trimester to 5–6 years of age. All
infants’ fecal samples were stored, processed for DNA
extraction and further analysed in an identical proto-
col using the Human Intestinal Tract Chip (HITChip)
phylogenetic microarray (see below).32,33

Laboratory evaluations

IgA assay

Serum obtained 0–2 days prior to vaccination and
28 days post last RV1 dose was evaluated for anti-RV
IgA antibody. Anti-RV IgA antibody was measured in
serum using an enzyme-linked immunosorbent assay
(ELISA) described elsewhere, expressed as interna-
tional units per milliliter (IU/mL).34

Fecal microbiota analysis

Fecal samples obtained 0–2 days prior to vaccination,
were kept at 0–4C after collection and were frozen to
¡80C within 24–48 hours of collection. Total DNA
was extracted from the fecal material by a repeated
bead beating procedure using a modified protocol for
the QiaAmp DNA MiniStool Kit (Qiagen, Hilden,
Germany) as previously described.35

Analysis of the microbiota composition was per-
formed using the HITChip phylogenetic microarray,
which contains oligonucleotide probes for hypervariable
regions on the 16S rRNA gene.36 The HITChip is a com-
prehensive and highly reproducible phylogenetic
microarray that enables the parallel profiling and the
semi-quantitative analysis of over 1100 phylotypes repre-
senting all major intestinal phyla grouped in 130
genus-like groups described for the human intestinal
microbiota. Hybridization of extracted DNA from sam-
ple to the oligonucleotide probes on the HITChip yields a
signal intensity per probe and can thereby provide a
quantitative and qualitative phylogenetic profiling of the
microbiome composition. The HITChip has been used
in over a dozen studies and validated in analyses of over
1000 subjects.32,37

All samples were analyzed on two independent micro-
array experiments and the data only passed the quality
control if the inter-experiment Pearson correlation was
>0.97. The signal intensities were normalized using the
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fRPA method38 and summarized at different levels of
phylogenetic resolution: species, genus, and phylum,
except for the Firmicutes, which was further divided to
Clostridium clusters and Bacilli. This high-throughput
technique has been bench marked with ultra-deep
sequencing of 16S rRNA and next-generation parallel
sequencing of intestinal metagenomes.39,40

Statistical analysis

Cases were defined as RV1 responders – infants with a
serum RV IgA < 20 IU/mL pre-vaccination and IgA �
20 IU/mL post-vaccination. Controls were defined as
RV1 non-responders – infants with a serum RV
IgA< 20 IU/mL pre-vaccination and post-vaccination.

A Chi-square test was used to determine statistically
significant differences in baseline characteristics between
RV1 responders (case) and non-responders (controls).

Comprehensive multivariate statistical analyses were
performed using Canoco 5.0 software for Windows.41

Principal coordinate (PCA) and redundancy analyses
(RDA) were used to evaluate differences in the overall
microbial composition between the study groups. The
130 genus-like bacterial groups targeted by the HITChip
were used as biological variables and environmental var-
iables were the matching variables named above. Monte
Carlo permutation testing (MCPT) assessed the signifi-
cance of the effect of these variables in the data set.

The relative abundance of specific bacterial groups
in the fecal microbiota was determined at the genus-
like level and at the phylum level (class for the Firmi-
cutes). Generalized linear model with negative bino-
mial distribution or generalized least squares model
were used to determine significant differences in com-
position and p-values were corrected for false discov-
ery rate (FDR) by the Benjamini-Hochberg method.

Graphical representations and modelling of the rel-
ative abundance and correlations with RVV response
were performed with the package mare42 within R,43

utilizing the packages nlme,44 MASS,45 bean plot,46

metacoder,47 and vegan.48
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