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Abstract: Although antibiotics have been indispensable in the advancement of modern medicine,
there are downsides to their use. Growing resistance to broad-spectrum antibiotics is leading to an
epidemic of infections untreatable by first-line therapies. Resistance is exacerbated by antibiotics
used as growth factors in livestock, over-prescribing by doctors, and poor treatment adherence
by patients. This generates populations of resistant bacteria that can then spread resistance genes
horizontally to other bacterial species, including commensals. Furthermore, even when antibiotics
are used appropriately, they harm commensal bacteria leading to increased secondary infection risk.
Effective antibiotic treatment can induce bacterial survival tactics, such as toxin release and increasing
resistance gene transfer. These problems highlight the need for new approaches to treating bacterial
infection. Current solutions include combination therapies, narrow-spectrum therapeutics, and
antibiotic stewardship programs. These mediate the issues but do not address their root cause. One
emerging solution to these problems is anti-virulence treatment: preventing bacterial pathogenesis
instead of using bactericidal agents. In this review, we discuss select examples of potential anti-
virulence targets and strategies that could be developed into bacterial infection treatments: the
bacterial type III secretion system, quorum sensing, and liposomes.

Keywords: antibiotics; anti-virulence; resistance; type III secretion system; quorum sensing; liposomes;
commensal bacteria

1. Introduction

Before the serendipitous discovery of penicillin in 1929, the three leading causes
of death in the United States were all infectious diseases: influenza, pneumonia, and
tuberculosis [1,2]. Pathogenic bacteria, although no longer leading causes of death due
to antibiotics, continue to be a global health threat, with a billion infections worldwide
and nearly 15 million deaths every year [3–5]. The prevalence of antibiotic-resistant
bacterial pathogens is a serious and growing problem. The CDC estimates that the rate
of antibiotic-resistant infections in the United States has increased by 40% from 2014 to
2019 [6]. Moreover, the observance of resistance to each new antibiotic is never far behind
the commercial release of the drug [6]. This contributes to a slowing of novel antibiotics
coming to market, with 78% of major drug companies shown to decrease or stop antibiotic
research between 1990 and 2019 [7].

Deleterious effects of antibiotic use, other than resistance, have become more well
understood over time. Antibiotics can destroy commensal bacterial colonies, leading to an
increased risk of infection and other health complications [8–10]. They may also induce
bacterial SOS tactics, which can include toxin release and increased transfer of resistance
genes [11,12]. Although there are mediation methods, such as combination therapies,
narrow-spectrum antibiotics, and stewardship programs, the root cause of these issues
is that antibiotics directly kill bacteria. An alternative to antibiotic treatments could be
anti-virulence therapies. Anti-virulence therapies target the pathogenic mechanisms of
bacteria rather than killing bacteria outright. In this review, we present lesser-known
evidence of the detrimental effects of antibiotics and discuss promising anti-virulence
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targets and strategies. These targets and strategies include the bacterial type III secretion
system [13–15], quorum sensing [16–18], and liposomes [19–21].

2. Downsides of Broad-Spectrum Antibiotic Use

Antibiotics have been crucial to the rise in life expectancy over the last century [22,23].
They are used to treat approximately 2.5–3 million infections per year in the US and are a
hallmark of modern medicine [2]. Unfortunately, resistance to these agents is a growing
problem, as 70% of infections are caused by pathogenic bacteria that contain at least one
resistance gene [7]. In this section, we will review resistance as well as other downsides to
the use of these agents that have also become more obvious in recent years. This includes
the reduced ability to fight infections and other adverse side effects directly related to
killing bacteria.

2.1. Resistance
2.1.1. Proliferation and Mechanisms

Resistance to antimicrobial agents is not a new process. For eons, bacteria have
produced secondary metabolites for self-defense purposes to aid in their survival [24].
Bacteria that produce these antibiotic compounds have naturally become resistant to
them, with resistance genes often being incorporated into gene clusters with the genes for
the antibiotic itself. As one example, D’costa et al. discovered 30,000-year-old bacterial
DNA that encodes resistance to β-lactam, tetracycline, and glycopeptide antibiotics [24].
There is also present in the environment a number of resistance genes, even in minimally
human-impacted areas [25]. This ‘intrinsic resistance’ has been proposed to make up
approximately 3% of the bacterial genome [26]. The spontaneous frequency of mutations
conferring resistance to an antibiotic is 10−9–10−6 dependent on species and strain, making
resistance formation inevitable [27]. Now that humans have entered the evolutionary “arms
race” with the clinical use of antibiotics, the prevalence of resistant bacteria is rising with
the widespread use of these agents [28]. Davies and Davies have reviewed the resistance
formation timeline to common FDA approved agents [29]. It is estimated that by the
year 2050 that 10 million people will die from infections that can no longer be treated by
available antibiotics [30].

Along with the natural borne resistance leaking into human-populated areas and
reaching pathogenic bacteria, resistance can be spread through several other mechanisms
(Figure 1). This includes resistance originating from the use (and often misuse) of antibiotics
to treat active infection in humans or animals such as pets or livestock, as well as antibiotic
use as growth factors in agriculture. From these two origins, antibiotic resistance genes
can proliferate and spread within communities and around the world. It often starts when
a member of a family obtains an infection (Figure 1A) and goes to a medical care facility
(Figure 1B) to obtain an antibiotic to use as a treatment (Figure 1C). The family member
takes the antibiotic as prescribed, but a small number of pathogenic bacteria survive due
to resistance genes (Figure 1D). The immune system can kill off these pathogens, but not
before they spread their resistance genes to commensal bacteria [31]. The patient then
leaves the medical facility to return home, where they spread small numbers of the newly
resistant commensal bacteria with family members, including their pets (Figure 1A) [32–34].
The pets then interact with wildlife nearby and spread the resistance genes into the nearby
forest, creating a reservoir for the genes (Figure 1E) [32,35,36]. The family also decides to
take a trip overseas to visit family, thereby spreading the resistant commensals to a new
country (Figure 1G) [32].
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Figure 1. Mechanisms of resistance gene transfer and spread. (A) the greater community including 
the populace and their pets; (B) health care facilities including hospitals, long term care facilities, 
and other medical offices; (C) antibiotics prescribed by healthcare workers to treat infections; (D) 
bacteria mutates to become resistant to antibiotics; (E) wildlife serves as a reservoir for resistance 
genes obtained through pet interactions with animals (A), wastewater from health care facilities (B) 
and agriculture (F); (F) antibiotics are used as growth factors for livestock; and (G) travel can intro-
duce resistance genes to communities where they were previously absent. 

Resistance genes can also be exchanged between wildlife and livestock, meaning that they 
can transmit from one species to another, including the commensal bacteria of those animals 
[37]. Many industrial animals are reservoirs for bacteria commensal to the animal but are 
pathogenic to humans [38,39]. For example, pigs, chickens, and cattle are often carriers of 
Salmonella spp. and E. coli [40–42]. This pathogenic reservoir problem is worsened by the 
increased resistance genes found in animals. This is due to the use of antibiotics for growth 
promotion and prophylaxis leading to resistance genes to form at high rates among the 
bacterial populations within these animals (Figure 1F) [38,39]. As mentioned previously, 
wildlife and the environment can also serve as a reservoir for antibiotic resistance genes 
[39]. This can be due to interactions between companion animals with wildlife or due to 
pollution from health care facilities. Hospital wastewater is rife with antibiotics and their 
metabolites as well as bacteria. In one study by Yao et al., they found a 100% incidence 
rate of the antibiotic ofloxacin in the wastewater of three hospital wastewater treatment 
plants in China. There was also a high relative abundance of pathogenic bacteria (e.g., 
Acinetobacter, Klebsiella, Aeromonas, and Pseudomonas) in comparison to commensals [43]. 
This is especially troubling because antibiotic genes can be auto-replicative, meaning they 
increase over time [44,45]. 

Resistance to antibiotics forms even when they are used correctly, however, over-
prescription and misuse can accelerate the problem. Approximately 30% of antibiotics 
prescribed at emergent or urgent care facilities in the US are unnecessary [46], and in the 
UK approximately 50% of patients with respiratory tract infections (RTIs) are treated with 
antibiotics even though over 70% of RTIs are viral [47]. In another study, it was discovered 
that some intensive care patients in South Africa were on up to 10 different antibiotics 
concurrently [48]. Many patients with RTIs directly request antibiotics as part of their care 
and physicians feel obligated to fulfill the request either to ensure patient satisfaction or 
to be over-cautious about the cause of infection [49]. 

Along with over-prescription of antibiotics, misuse of antibiotics is a large problem. 
Many patients do not adhere to the medication treatment as prescribed, often stopping 
the course after their symptoms are alleviated and discarding or saving the remaining 
pills. This is of particular importance when it comes to antibiotics, as storage of the unused 

Figure 1. Mechanisms of resistance gene transfer and spread. (A) the greater community including
the populace and their pets; (B) health care facilities including hospitals, long term care facilities, and
other medical offices; (C) antibiotics prescribed by healthcare workers to treat infections; (D) bacteria
mutates to become resistant to antibiotics; (E) wildlife serves as a reservoir for resistance genes
obtained through pet interactions with animals (A), wastewater from health care facilities (B) and
agriculture (F); (F) antibiotics are used as growth factors for livestock; and (G) travel can introduce
resistance genes to communities where they were previously absent.

Resistance genes can also be exchanged between wildlife and livestock, meaning
that they can transmit from one species to another, including the commensal bacteria of
those animals [37]. Many industrial animals are reservoirs for bacteria commensal to the
animal but are pathogenic to humans [38,39]. For example, pigs, chickens, and cattle are
often carriers of Salmonella spp. and E. coli [40–42]. This pathogenic reservoir problem
is worsened by the increased resistance genes found in animals. This is due to the use
of antibiotics for growth promotion and prophylaxis leading to resistance genes to form
at high rates among the bacterial populations within these animals (Figure 1F) [38,39].
As mentioned previously, wildlife and the environment can also serve as a reservoir for
antibiotic resistance genes [39]. This can be due to interactions between companion ani-
mals with wildlife or due to pollution from health care facilities. Hospital wastewater is
rife with antibiotics and their metabolites as well as bacteria. In one study by Yao et al.,
they found a 100% incidence rate of the antibiotic ofloxacin in the wastewater of three
hospital wastewater treatment plants in China. There was also a high relative abundance
of pathogenic bacteria (e.g., Acinetobacter, Klebsiella, Aeromonas, and Pseudomonas) in com-
parison to commensals [43]. This is especially troubling because antibiotic genes can be
auto-replicative, meaning they increase over time [44,45].

Resistance to antibiotics forms even when they are used correctly, however, over-
prescription and misuse can accelerate the problem. Approximately 30% of antibiotics
prescribed at emergent or urgent care facilities in the US are unnecessary [46], and in the
UK approximately 50% of patients with respiratory tract infections (RTIs) are treated with
antibiotics even though over 70% of RTIs are viral [47]. In another study, it was discovered
that some intensive care patients in South Africa were on up to 10 different antibiotics
concurrently [48]. Many patients with RTIs directly request antibiotics as part of their care
and physicians feel obligated to fulfill the request either to ensure patient satisfaction or to
be over-cautious about the cause of infection [49].
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Along with over-prescription of antibiotics, misuse of antibiotics is a large problem.
Many patients do not adhere to the medication treatment as prescribed, often stopping
the course after their symptoms are alleviated and discarding or saving the remaining
pills. This is of particular importance when it comes to antibiotics, as storage of the unused
medication often leads to self-medication at a later date when it is unnecessary, resulting
in the increased emergence of bacterial resistance [50]. Approximately 28.5% of patients
prescribed an antibiotic for an RTI are non-adherent to effective dosing with about 10.6%
of those patients stopping the regimen before taking half of the doses given [51]. Of note,
these negative trends increase with complexity and frequency of dosing. For example, of
those given a three times-daily antibiotic regimen less than 10% had excellent adherence
and less than 20% had acceptable adherence in comparison to 80% with excellent adherence
for those given once-daily regimens [51].

The mechanism of resistance to antibiotics is highly versatile and dependent on the
class of antibiotics used (Figure 2). Resistance to antibiotics is commonly thought of as
point mutations to the antibiotic’s target that prevent antibiotic binding (Figure 2C). Some
bacteria have evolved enzymes that inactivate the antibiotic through chemical means or
physical degradation (Figure 2D) or modify the antibiotic through methylation, acylation,
phosphorylation, etc. that makes it unable to bind to the active site (Figure 2E). Bacteria
could also become resistant by circumventing the pathway affected by the antibiotic by
utilizing a separate pathway (Figure 2F). Bacteria can also become resistant to a broad-
spectrum of antibiotics by upregulating the production of efflux transporters (Figure 2G)
and/or reducing permeability mechanisms (Figure 2H) [52–54]. Quinolones [55], tetracy-
clines [56,57], β-lactams [58], macrolides [59–61], and several other antibiotic classes are
vulnerable to efflux by bacteria.
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Resistance mechanisms are often used in concert to achieve multidrug resistance, and 
dangerous multidrug-resistant (MDR) pathogens are increasingly becoming more preva-
lent. Klebsiella pneumoniae becomes highly resistant to drugs like imipenem, ceftazidime + 
avibactam, and temocillin with a combination of β-lactamase production, decreased porin 
production and increased efflux transporter expression [62,63]. Some strains of MDR P. 
aeruginosa have become resistant to all fluoroquinolones, carbapenems, and aminoglyco-
sides [6,64]. Although antibiotic stewardship practices such as stricter guidelines for pre-
scriptions, prescriber education programs, and delayed prescriptions can slow the spread 
of resistant bacteria, the resistance problem is not going away soon [65,66]. The Centers 
for Disease Control and Prevention (CDC) has identified several antibiotic-resistant 

Figure 2. Mechanisms of antibiotic resistance. (A) Untreated bacterial infection; (B) Antibiotic treat-
ment before resistance formation; (C) Mutation to the binding pocket to prevent antibiotic binding;
(D) Recruitment of enzymes to degrade or inactivate the antibiotic; (E) Modification of antibiotic
(e.g., methylation, acylation, phosphorylation, etc.) to prevent antibiotic binding; (F) Circumvention
of the antibiotic target through a secondary pathway; (G) Upregulation of efflux pumps to remove the
antibiotic; and (H) Decreasing cell permeability so the antibiotic does not reach MIC within the cell.
Abbreviations: OM: Outer bacterial membrane; PG: Peptidoglycan; IM: Inner bacterial membrane.

Resistance mechanisms are often used in concert to achieve multidrug resistance, and dan-
gerous multidrug-resistant (MDR) pathogens are increasingly becoming more prevalent. Kleb-
siella pneumoniae becomes highly resistant to drugs like imipenem, ceftazidime + avibactam,
and temocillin with a combination of β-lactamase production, decreased porin production
and increased efflux transporter expression [62,63]. Some strains of MDR P. aeruginosa
have become resistant to all fluoroquinolones, carbapenems, and aminoglycosides [6,64].
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Although antibiotic stewardship practices such as stricter guidelines for prescriptions,
prescriber education programs, and delayed prescriptions can slow the spread of resis-
tant bacteria, the resistance problem is not going away soon [65,66]. The Centers for
Disease Control and Prevention (CDC) has identified several antibiotic-resistant bacteria
as “urgent” threats, including Clostridioides difficile, carbapenem-resistant Acinetobacter,
drug-resistant Neisseria gonorrhoeae, and carbapenem-resistant Enterobacteriaceae. Many
others like drug-resistant Streptococcus pneumoniae and methicillin-resistant Staphylococcus
aureus are classified as “serious” threats.

There is, however, a cost to the bacteria associated with developing these resis-
tances [67]. Resistant bacteria often grow slower than their antibiotic-susceptible ances-
tors [68]. For example, bacteria may evolve hyper-accurate ribosomes to resist ribosomal
targeting antibiotics. While this leads to less antibiotic binding, and thus antibiotic activity,
the ribosome functions slower, leading to an attenuated growth rate [69]. Although rare,
some bacteria have even become dependent on these antibiotics for their survival [70–72].
For example, a strain of P. aeruginosa was found to be dependent on the antibiotic sul-
famethoxazole. Wolter et al. showed this dependence was due to changes made in the
bacteria’s membrane by sulfamethoxazole that allowed for the incorporation of an other-
wise toxic phospholipid [70].

2.1.2. Gene Transfer

Bacteria can undergo natural selection to evolve resistance genes when placed under
selective pressure by an antimicrobial compound. This is known as vertical gene transfer
(VGT). Bacteria can also transfer their genetic material, including their resistance genes, to
other populations of bacteria by transformation, transduction, or conjugation [73]. This
process is known as horizontal gene transfer (HGT). The use of HGT mechanisms means
that a bacterial population that has never been exposed to a particular antibiotic may
still become resistant to it. For example, it is believed that the gene causing vancomycin
resistance in vancomycin-resistant S. aureus (VRSA) originally developed in Enterococcus
faecalis and was later transferred via HGT to S. aureus strains [74].

Not only do antibiotics apply selective pressure, but they may also increase the rate at
which mutations occur by inducing HGT, aiding bacteria in the development of subsequent
antibiotic resistance (Figure 3) [75–77]. Antibiotics can also select for bacteria that have
a higher rate of mutation, essentially training them to develop resistance faster [78]. For
instance, treatment with sub-MIC fluoroquinolones and dihydrofolate reductase inhibitors
promotes the transfer of plasmids conferring resistance to chloramphenicol, sulfamethoxa-
zole, trimethoprim, and streptomycin [12]. Stress from certain antibiotics, or combinations
thereof, can also induce the SOS response in some bacteria which exponentially increases
conjugation efficiency [75]. Zhang et al. demonstrated this by showing the dramatic effect
of certain combinations of low doses of antibiotics on the transfer of an RP4 plasmid
between two E. coli strains (Figure 3A) [75]. More evidence of this phenomenon was
observed when Prudhomme et al. showed that antibiotic stress from multiple classes of
bacteria-induced genetic transformability in Streptococcus pneumoniae, a bacterium that
does not have an SOS-response [76]. They tested four different antibiotics (mitomycin,
norfloxacin, kanamycin, and streptomycin) at sub-therapeutic concentrations and found
that they all induced the production competence-stimulating peptide (CSP) as monitored
by luciferase assay (Figure 3B).
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2.2. Reduced Ability to Fight Infections

One of the major downsides to antibiotic use is a reduction in the ability to fight
infection after treatment, mainly due to the collateral killing of commensal bacteria. This
phenomenon was demonstrated in 1950 when Terramycin proved to alter the gut mi-
crobiota in patients undergoing bowel surgery [79,80]. Antibiotics are often prescribed
during hospital stays for severe infection treatment or infection prevention after surgery
or in those immunocompromised. This high abundance of antibiotics and co-locality of
many pathogenic bacteria within a hospital environment contributes to over 1.7 million
hospital-acquired infections every year and over 100,000 deaths in the US [81]. Changes
to gut microbiota due to antibiotic use, such as total volume loss and species composi-
tion ratio disruption, can last for years after the exposure [82,83] and the loss of certain
commensals can be permanent [84]. One study by Roubaud-Baudron et al. indicates that
early-life antibiotic exposure can increase susceptibility to infection later in life as well as
increase infection severity for infections obtained during adulthood [8]. This is of particular
significance as children are prescribed more antibiotics than adults [85,86].

The main cause for increased risk of infection after antibiotic treatment is the loss of
total volume of commensal bacterial populations throughout the body, especially in the
gastrointestinal tract. In normal circumstances, these commensals provide competition that
keeps opportunistic pathogens in check [87]. When they are lost or significantly reduced,
other species of bacteria can flourish in this niche. This phenomenon is well understood,
but the extent of the problem is often not appreciated. The infectious dose of Salmonella
enterica required to infect 50% of mice (ID50) is typically upwards of 10,000,000 individual
cells. However, 24 h after a singular treatment of 10 mg/kg of the antibiotic streptomycin,
the ID50 of S. enterica is reduced to <10 cells (Figure 4) [88]. In context, this is the difference
between eating an entire improperly cooked infected chicken breast to touching a properly
washed cutting board [89].
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It has also been shown that acute antibiotic exposure increases the risk of traveler’s di-
arrhea (caused most commonly by Salmonella spp., Campylobacter spp., and enterotoxigenic
Escherichia coli) for a year or more after treatment and multiple treatments in a short time
can prevent the recovery of the microbiome indefinitely [90]. The odds of having received
antibiotic treatment within 3 months before a Salmonella infection is twice that of baseline
and is 50% higher for a year [91]. This is of particular importance because food-borne
bacterial infections, such as traveler’s diarrhea, are of a higher likelihood to carry resistance
genes [31]. For example, approximately one-third of the two most common species of
Campylobacter are resistant to ciprofloxacin (28% of C. jejuni and 38% of C. coli) and a study
by Koningstein et al. showed overall Campylobacter resistance to fluoroquinolones was
21.7% and to macrolides was 2.3% [92].

The importance of these commensals in preventing secondary infection and disease
is through simple competition as well as their assistance in host metabolism [31,84]. For
example, many commensal bacteria are responsible for converting primary bile acids
produced in the liver (cholic acid and chenodeoxycholic acid) into secondary bile acids
(deoxycholic acid, lithocholic acid, and others). These bile acids play a role in secondary
infection risk, like C. difficile infections (CDI). Higher levels of primary bile acids correlate
with higher CDI rates in patients. In comparison, healthy patients typically have more
secondary bile acids than primary [93,94]. It has also been shown that bile acids have
both direct and indirect antimicrobial effects on the gut microbiome composition and
volume [95,96]. The majority of antibiotics are known to decrease the number of bile
acid-converting bacteria in the human gut [97].

Modulation of gut bacteria is not inherently malicious to host outcomes. For example,
two clinically effective drugs for treating diabetes, metformin and berberine, modulate
the gut microbiota and may contribute to beneficial effects on the host. Both drugs al-
leviated the negative effects of high-fat diet-induced changes by reducing gut microbial
diversity, but increasing short-chain fatty acid (SCFA)-producing bacteria (Allobaculum,
Bacteroides, Blautia, Butyricicoccus, and Phascolarctobacterium) were increased [97]. It is
known that increased production of SCFA’s contribute to cardiovascular health and pro-
vide anti-obesity effects [98,99]. Antibiotics such as ampicillin, on the other hand, have
been shown to decrease these bacteria, which reiterates the detrimental effect they have on
the human microbiome [100].
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Case Study: Clostridioides difficile Infection (CDI)

In 1974, it was seen that 21% of patients treated with clindamycin (a lincosamide)
developed diarrhea and 50% of those with diarrhea had pseudomembranes in their
feces—a sign of CDI [101]. In the US alone, C. difficile cases required approximately
224,000 hospitalizations and caused at least 12,800 deaths in 2017 [102,103]. This high inci-
dence is partly due to the significant number (estimates range from 3–26%) of people who
are asymptomatic carriers of the pathogen [6]. C. difficile is a spore-forming bacteria, making
it resistant to heat, UV, and many antibiotics. Disease symptoms, mainly caused by toxins
A and B, range from diarrhea and fever in mild cases to colitis, toxic megacolon, multi-
organ failure, and even death in more severe cases [104]. In total, 10–30% of patients have
recurrent infections with increased risk after each occurrence [105,106], and ~20% of cases
go undiagnosed due to lack of clinical suspicion or sub-optimal laboratory methods [107].

Antibiotic exposure, especially by penicillins, cephalosporins, clindamycin, and flu-
oroquinolones, is the highest risk determinant for CDI, with an 8–10 fold higher risk of
CDI during treatment and 3-fold higher for 2 months after treatment [108,109]. Other
significant factors include hospital stay length [110–112], age [108,113], and asymptomatic
carriage [109,110,114–116]. CDI is becoming harder to treat over time due to a multitude of
factors. Metronidazole is a 1st line treatment for CDI and currently has a clinical cure rate of
~66% [117], with >20% of infections being non-responsive [118,119]. Further exacerbating
factors include increases in recurrent CDI rates [119] and the emergence of hypervirulent
strains [120]. For example, the hypervirulent strain NAP1/027 represented 0.2% of all cases
before 2001 [121], but now represents 51% in the US [122] and 84% in Canada [121].

Some new treatments have shown promise against CDI. Bezlotoxumab, an anti-
toxin B monoclonal antibody, was FDA approved in 2016 as a combination therapy with
antibiotics for the treatment of CDI [123]. Fidaxomicin is a narrow-spectrum antibiotic
that was FDA approved for CDI treatment in 2011. It targets only Gram-positive bacteria,
shows a low physiological effect on gut flora, and has been shown to decrease recurrent
infection [124,125]. These medications are promising CDI treatments that are important
developments for infection treatment, however, they do not address the root cause of the
infections. Fecal microbiota transplants (FMT) have recently been used to decrease risk
and treat recurrent CDI. FMT has been shown to be more effective at treating CDI than
vancomycin when administered via nasoduodenal tube [126] and colonoscopically [127].

2.3. Adverse Side-Effects

In the US alone there were a reported 142,505 emergent care visits for drug-related
adverse events that were traced to antibiotic use [128]. In addition, 20% of all hospitalized
patients who received an antibiotic experienced an adverse drug event [129], and antibiotic-
associated diarrhea (ADD) affects an estimated 5–39% of antibiotic users [10]. Although the
majority of these can be contributed to allergic reactions (nearly 80%), a significant portion
were due to other adverse effects [128]. These effects can be the result of bacterial survival
tactics (often called SOS responses) induced by the antibiotic itself.

2.3.1. Bacterial SOS Response Induction by Antibiotics

A prototypical example of an SOS response is the increased production of Shiga
toxin by Shigella spp. or Shiga toxin-producing E. coli (STEC) in reaction to environmental
factors, including antibiotic treatment [130]. Shiga toxin (Stx) is one of the most potent
biological exotoxins known. A single molecule of Stx is sufficient to kill a human cell
via protein synthesis inhibition and eventual apoptosis [131]. Systemic exposure to Stx
causes fluid accumulation in ileal loops and renal damage in animal models and is lethal
when injected directly. Humans infected with Stx-producing bacteria manifest in hemolytic
uremic syndrome (HUS), a disease characterized by a triad of symptoms that all stem
from the apoptotic mechanism of Stx: reduced serum platelet levels (thrombocytopenia),
hemolytic anemia, and renal damage [132–134].
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Although Stx is consistently produced by Shigella spp. and STEC, the rate of that
production can be exponentially increased when the bacterial population is exposed to an-
tibiotics that activate their SOS responses. This effect was demonstrated by Zhang et al. in
E. coli O157:H7 in vitro (Figure 5) [135]. Three hours after 30 ng/mL ciprofloxacin addition
to an E. coli culture there was a 17-fold increase in Stx concentration (Figure 5B). They did
find, however, that not all antibiotics tested caused the SOS response (e.g., Fosfomycin).
They then tested the effect of inducing bacterial SOS response has on survival in vivo.
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After treatment with ciprofloxacin, there was a 3-fold decrease in fecal CFUs in
comparison to the PBS control group. In contrast, mice treated with ciprofloxacin had an
increase in fecal Stx in comparison to the control mice. Of note, the mice with the highest
fecal Stx levels died. These mice included 67% of the ciprofloxacin-treated mice and none
of the control mice [135]. Every year in the US there are approximately 17,000 shigellosis
and 18,500 STEC-caused deaths [2]. The majority of these deaths occur after the patient
has undergone treatment which lends to the question: Were the deaths caused by the
infection or by complications induced by antibiotic treatment, such as toxins released
through bacterial SOS responses?

2.3.2. Endotoxin Release after Antibiotic Treatment

Exotoxins, such as Stx, are actively secreted by bacteria. Some endotoxins are only
released from bacterial cells when it is disrupted or lysed, such as by antibiotics [136].
These toxins are often lipopolysaccharides (LPS) on the exterior of Gram-negative bac-
teria, with three distinct regions: Lipid A, an R polysaccharide, and an O polysaccha-
ride. Bordetella pertussis, Escherichia coli, Enterobacter spp., Klebsiella spp., Neisseria spp.,
Salmonella spp., Shigella spp., Proteus spp., Pseudomonas spp., and Vibrio cholerae are all
pathogenic endotoxin-producing bacteria [136,137]. Symptoms of endotoxin exposure
range from fever, changes in white blood cell counts, disseminated intravascular coagu-
lation, and hypotension, to shock and death. Injection of fairly small doses of endotoxin
results in death in most mammals with disease progression following a regular pattern:
(1) latent period; (2) physiological distress (diarrhea, prostration, shock); (3) death [136].
These toxins are also unable to be destroyed by boiling or distillation, making them very
difficult to remove from wastewater and multiuse medical devices [136,138]. The FDA has
a bacterial endotoxin limit of 0.5 EU/mL for medical devices and 0.25 EU/mL for sterile
injectables [137], but deadly contamination still occurs [134].
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Endotoxins are of particular importance when discussing antibiotics as the majority
of antibiotics cause the release of these endotoxins upon bacterial cell death [136,139,140].
The Jarisch Herxheimer reaction (JHR) is specifically characterized as occurring within 24 h
of antibiotic treatment of a spirochete infection and usually manifests as fever, chills, rigors,
nausea and vomiting, headache, tachycardia, hypotension, hyperventilation, flushing,
myalgia, and exacerbation of skin lesions [139]. Penicillins, tetracyclines, erythromycin,
cephalosporins, levofloxacin, ciprofloxacin, clarithromycin, meropenem, and azithromycin
can all cause JHR [139]. In sepsis, bacterial endotoxin exposure results in complications
such as adult respiratory distress syndrome disseminated intravascular coagulation, and
shock [141], often observed only after antimicrobial therapy has been administered [142].
In these cases, the antibiotic therapy causes a release of bacterial endotoxins and results in
a Jarisch Herxheimer-like reaction [139,140].

2.4. Current Mediation Methods

Mediation methods, such as combination therapies, point of care and resistance
susceptibility testing, narrower-spectrum therapies, and antibiotic stewardship programs
have been used to mitigate issues that arise due to antibiotic use, such as resistance,
reduced ability to fight infection, and adverse side effects [65,66,143–147]. These often
help to prevent prolonged infections resulting from ineffective treatment or target specific
bacterial infections to reduce side effects [148].

2.4.1. Combination Therapies/Adjuvating

Combination therapy consists of using a cocktail of antibiotics and adjuvants with
different mechanisms and/or spectrums of action. This is to ensure the elimination of
the pathogen by overwhelming or circumventing the potential resistance mechanisms
present in the patient [149,150]. Unfortunately, this can result in additional resistance
gene formation in the commensal bacteria of the patient, resulting in an inability to treat
infections with those antibiotics in the future [151]. These combinations are often carried
out using antibiotics that are not otherwise used in treatment due to harsh side effects
or toxicity risks [152]. Many of these harsher antibiotics and/or antibiotic combinations
also have to be administered via IV injection, resulting in higher discomfort to the patient
than if the doses could be taken orally [151,152]. This also means the time a patient must
remain in a hospital is increased as they have to stay for the duration of the treatment,
again raising their risk for secondary infection and mortality [110–112]. Another downside
to combination therapy is the potential to increase the risk and severity of side effects.
Allison et al. showed that using a combination therapy of piperacillin-tazobactam or
vancomycin-cefepime resulted in an >150% increase in kidney disease in comparison to
vancomycin monotherapy [153].

Combination therapies also include combining antibiotics with adjuvating compounds
that increase the efficacy of the antibiotic through different methods. One common exam-
ple of this is the use of β-lactamase inhibitors in combination with β-lactam antibiotics.
Clavulanic acid, sulbactam, and tazobactam are all commonly irreversible β-lactamase
inhibitors that act as suicide substrates, covalently binding to the β-lactamase active site
so it is no longer functional [154]. Ceftolozane is a 5th generation cephalosporin that was
FDA approved in 2014 and is paired with tazobactam for treatment [155]. Advances in
this technology have also led to singular chemical moieties that can perform both antibi-
otic and anti-β-lactamase activities. One such example of this is Cefiderocol, which was
FDA-approved in 2019 [156]. On the other hand, some clinicians are using combinations of
multiple synergistic molecules to improve the efficacy of antibiotics. Recarbrio was also
FDA approved in 2019 and is a combination of imipenem, cilastatin (renal dehydropepti-
dase inhibitor), and relebactam (β-lactamase inhibitor) [156].

Another common combination prescribed with antibiotics is prebiotics or probiotics.
Prebiotics work by providing food and/or resources for the remaining commensal bacteria
to help with recolonization [157]. For example, human milk oligosaccharides are known
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to help restore the balance between Firmicute and Bacteroidetes commensals following
antibiotic therapy [158]. Probiotics are live populations of commensal bacteria that are
given to patients to help recolonize the patient, resulting in a reduced risk of secondary
infections and assisting in out-competing pathogenic bacteria [159,160]. There is debate as
to the efficacy of probiotics due to the high degree of variability in their administration.
However, a meta-analysis of probiotic use with antibiotics to treat acute diarrhea in children
“supports the potential beneficial roles of probiotics and symbiotics for acute diarrhea in
children” [161]. At least two independent studies have shown the use of Lactobacillus
rhamnosus GG was able to successfully decolonize patients with vancomycin-resistant
enterococci [162,163]. Prebiotics and probiotics have also shown additive effects when
used in concert [164]. These types of treatments are often helpful in reducing the risk of
secondary infection, especially when treating gastrointestinal infections, but once again do
not completely eliminate the problem [159,160].

2.4.2. Point of Care and Resistance Susceptibility Testing

Point of care testing (POCT) and resistance susceptibility testing are other strategies
that have grown in popularity as a method of mediating the side effects of antibiotic use. In
this review, a medical test is considered point of care if it meets two criteria: it is performed
near where the patient is being seen and it takes 15 min or less to obtain results. They are
often carried out in a manner that allows a patient to be examined, tested, and prescribed
within the same visit [165]. These methods help clinicians to decide the specific treatment
regimens by elucidating the specific pathogen and/or any resistances that the pathogen
may be harboring [166]. Widespread access to POCT can reduce the number of incorrect
diagnoses and therefore misprescribed antibiotics. For example, access to a POC malaria
rapid diagnostic test in Zambia led to a four-fold reduction in inappropriate antimalarial
prescribing [48]. The use of POCT in primary care has increased by 45% from 2004 to 2013
and has continued to grow in popularity [167].

Many hospitals only offer POCT or resistance susceptibility testing after a patient
has shown negative progress during a first-line treatment due to the costs associated with
the time, personnel, and equipment associated with performing these tests [165]. This
also means that there is a disparity in the clientele that can have the tests performed,
leading to a high degree of socioeconomic discrepancy in access [165,167–169]. Weihser
and Giles showed that an increase in the use of POCT in ambulatory care, in essence, an
earlier timepoint, reduces the overall number of patient bed days spent in the hospital.
This overall reduces the financial and workload burden on the health care facility. These
reductions lead to better overall health outcomes as patients with severe disease were not
delayed in their transfer to ICU or other relevant units [170].

There is a significant problem of quality control in terms of the testing itself. These
tests are often performed by in-house laboratory staff and/or by an external laboratory
that is closely associated with the health care facility in question. These facilities and
tests are not regulated to the same degree that medications or medical devices are. This
leads to a lacking of safeguards for their accuracy and efficacy [171]. For example, in 2018
Saraswati et al. found significant heterogeneity in POCT for the diagnosis of scrub typhus,
a disease caused by the bacterium Orientia tsutsugamushi. There was a pooled sensitivity
rate of 66.0% due to the wide array of methodology and variation in quality of the tests
offered to patients [172]. The same quality control issues are seen in viral focused POCT
as well. Mak et al. reported the sensitivity of a SARS-CoV-2 rapid diagnostic test was
potentially as low as 11.1%, even though the manufacturer had claimed it to be 98% [173].
This lack of quality control and regulation leads to potentially thousands of false-negative
tests and increased spread of disease [171].

2.4.3. Narrow Spectrum Treatments

Narrow-spectrum antibiotics have a lower complication risk as they target only a
subset of bacteria [143]. Narrow spectrum antibiotics are subject to much lower levels
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of selective pressure because they target specific bacterium [143–146]. In theory, this will
decrease the speed of resistance formation and proliferation [145]. They also help to prevent
disease by keeping more human commensal flora intact in comparison to broad-spectrum
antibiotics [146]. This targeted approach can allow for higher doses to be used which may
reduce the treatment time [143]. They also often require diagnostic testing to determine
bacterial species, and occasionally even strain. This can lead to an increased total time the
patient has an infection before receiving treatment [144].

Bacteriophages are viruses that selectively target and infect bacteria. When employed
as therapeutics, they work similarly to narrow-spectrum antibiotics as they can be geneti-
cally modified to be host-specific. Bacteriophages are viruses at their core, allowing them
to multiply inside the bacteria and be released upon lysis. This can result in an increasing
number of phages over time, a vital phenomenon not observed in other antimicrobial treat-
ments [174]. Studies have demonstrated phage therapy effectively treats infections caused
by resistant bacteria such as Listeria monocytogenes, Campylobacter jejuni, and Salmonella spp.
In 2006, the FDA approved the use of a combination of six phages to be sprayed on ready-to-
eat meat and poultry to eliminate L. monocytogenes [175]. Bacteriophages can have similar
effects to prophylactic antibiotic use and have been explored as replacements for antibiotics
that are used as growth factors in livestock production [176–178]. Quality control and
standardization of bacteriophage therapies have been a persistent and difficult challenge.
The high specificity of bacteriophages makes them not suitable for patients with multiple
infections or those with infections unable to be identified by diagnostic testing. In addition,
phage resistance emerges quickly, necessitating the use of a cocktail of phages to slow
resistance formation [177]. Bacterial exo- and endotoxins can be encoded by bacteriophages
for various reasons [179]. These genes can be transferred to commensal bacteriophages
and bacteria, leading to a potential for metabolic endotoxemia [180].

2.4.4. Antibiotic Stewardship Case Study: Choose Wisely Canada™

Antibiotic stewardship programs that have become a common way that governments
can distribute information and recommendations regarding antibiotic use. This includes
the Choose Wisely® program in the United States [181], Start Smart—Then, Focus in the
United Kingdom [182], and national action plans in other countries [183–188]. In 2014,
Canada implemented an initiative, called Choose Wisely Canada™, that endeavors to
reduce unnecessary testing and treatments in healthcare [189]. Included in this initiative
is a campaign to use antibiotics more sparsely and/or only when necessary. As such
this program’s successes and difficulties will be examined as a case study for antibiotic
stewardship programs. There are over 15 recommendations developed by Canadian
national clinician societies that encourage the judicious use of antibiotics that fall into five
major categories: 1. Reduce antibiotics for urinary tract infections (UTI) in older people;
2. Treating sinus infections: Don’t rush to antibiotics; 3. Colds, flu, and other respiratory
illnesses: Don’t rush to antibiotics; 4. Preventing infections in the hospital: Watch out for
these two practices; and 5. Sometimes no antibiotic is the best prescription [190].

Approximately 50% of older adults have bacteria in their urine that is not considered
a contributing factor to UTIs [191]. This results in a high incidence of misdiagnosis due to
common diagnosis testing for UTIs, such as dipstick testing and urine culture [191–193].
These techniques test for the presence, or lack, of bacteria and do not discriminate between
pathogenic or commensal/mutualistic bacteria [194]. Many patients with positive dipstick
tests will not exhibit symptoms of infection, such as fever, painful urination, dysuria,
or urination frequency changes [191]. The Use Antibiotics Wisely campaign suggests
refraining from the administration of dipstick, urine culture, or urinalysis tests as a means
of UTI diagnosis in older adults. Instead they suggest observing symptoms and treating as
they appear, not preemptively when bacteria is found in urine [190].

Up to 50% of antibiotics prescribed for respiratory tract and sinus infections in non-
hospital settings are unnecessary [46,47]. Most respiratory, sinus, and ear infections are
caused by a virus and as such an antibiotic will not be effective as a treatment, yet patients
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often insist on a prescription even when not required [195,196]. To combat this, Choose
Wisely Canada™ is suggesting spending more time educating patients on the potential
side effects of antibiotic use, such as stomach problems, dizziness, or rashes, to discourage
patients from insisting on antibiotic use as well as prescribing delayed prescriptions that
can reduce overall numbers of prescriptions filled [190,197]. A delayed prescription is a
prescription that falls into the following categories: 1. Re-contact—the practice by phone to
request a prescription; 2. Post-dated prescription; 3. Collection—placement of prescription
at reception; and 4. Patient-led—giving the patient a prescription with advice to delay.
Approximately 30% of patients given a delayed prescription fill it as opposed to nearly 90%
of patients given a non-delayed prescription [198,199].

Hospitals are one of the most common places where overprescription and overtreat-
ment occur and are a breeding ground for superbugs [81]. Choose Wisely Canada™ has
pointed out two main over-used medical practices that can increase the risk of infection
in hospitals to increase public awareness: urinary catheters and ulcer drugs [190]. The
risk of infection increases significantly after a urinary catheter is in place for two days.
They are commonly used after surgery but are often left in longer than necessary for the
convenience of staff. Ulcer drugs, such as proton-pump inhibitors and histamine H2 recep-
tor antagonists, are used to prevent stress ulcers and gastrointestinal bleeding, but up to
75% of patients prescribed these drugs after a hospital stay do not need them [200]. These
drugs can kill off commensal bacteria, thus increasing the risk for opportunistic pathogenic
infections. One study showed that patients on ulcer drugs are approximately twice as
likely to obtain C. difficile infections [200].

The success of these programs is difficult and complex to measure. A study by
Tannenbaum et al. showed that after an educational intervention that was part of the
Choose Wisely Canada™ initiative 62% of patients initiated a conversation with their
physician or pharmacist regarding the medication in question. This resulted in 27% of
them changing their care plans, as opposed to 5% of patients who did not receive the
intervention [201]. Another study found a 41% decrease in overall laboratory tests since the
program start, resulting in an estimated $215,000 in savings while maintaining the quality
of care [202]. Unfortunately, the cost-saving aspect of the program has garnered some
criticism, as some view the initiative as a cost-cutting method at the expense of the patient,
undermining the physician-patient relationship and trust [203]. Others have criticized the
initiative for being too simplistic and only emphasizing “agreed-upon, well-established
practices” [204], or claim the multiple guidelines for each topic will result in burnout and
confuse physicians as to which protocol to follow [205]. The overall goal of this initiative
has been effective at reducing “just in case” testing and treatment but its long-term impact
on mitigating the downsides associated with antibiotic use has yet to be seen.

2.4.5. Infection Prevention Measures Case Study: COVID-19 Pandemic

Preventing the spread of infectious disease would reduce the overall need for antibi-
otics, thereby reducing antibiotic over-prescription and misuse. During the COVID-19
pandemic infection prevention measures, such as mask mandates, emphasizing hand
washing, disinfection, and social distancing, were put in place to prevent the spread of
SARS-CoV-2 [206,207]. These precautions resulted in an overall reduction in community
spread of other respiratory diseases during the 2020 season in comparison to 2019, includ-
ing influenza (17.4% decrease), enterovirus (51.6% decrease), and all-cause pneumonia
(18.8% decrease) [207]. Despite the additional training of medical staff on infection control
measures, there was no decrease in nosocomial infection rates. One example of this is
carbapenem-resistant Enterobacteriaceae (CRE); in 2019 the infection rate of CRE in ICUs
was 6.7%, but by April 2020 the rate was at 50% [208]. This demonstrates that even in
the hyper-aware environment of a global pandemic serious bacterial infections are still
prevalent and have the potential to grow in number affected. It should also be noted that
funding and publishing research on infectious diseases other than COVID-19 during this
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time has been significantly reduced and will have serious impacts on the future of the field
(reviewed in [209–212]).

3. The Case for Anti-Virulence Therapeutics

Traditional antibiotics work by disrupting essential cellular functions of bacteria. A
major downside to this approach is that these cellular functions are widely conserved and
present in both pathogenic and commensal bacteria. In contrast, anti-virulence therapies
target mechanisms in bacteria that are essential for pathogenesis but are not essential for
cell viability [144,213]. A major difference between antibiotics and anti-virulence therapies
is that the latter does not directly cause selective pressure. This should, in theory, reduce the
rate at which resistance to anti-virulence therapies occurs [145]. Collectively, anti-virulence
therapies allow the host’s natural immune response to eliminate the pathogen rather than
killing a pathogen outright [214–217]. A major advantage to this approach is that bacterial
SOS responses have yet to be implicated as a result of treatment [218].

The bacterial type III secretion system (T3SS) is a virulence factor used by most
pathogenic Gram-negative bacteria to cause infection by injecting virulence proteins, called
effectors, that reprogram the host cell machinery and allow evasion of the host immune
response. The T3SS is absent from commensal bacteria and as such, any therapies targeting
it should not affect commensal bacteria [15]. Some virulence factors, like the T3SS, are
regulated by quorum sensing (QS), a grouping of pathways that regulate gene expression in
a concentration-dependent manner. QS is used by both pathogenic and commensal bacteria.
Compounds inhibiting QS may not be lethal to bacteria but could prevent colonization and
infection by reducing the infectivity of pathogens. In recent years, the use of liposomes
has emerged as an anti-infective strategy for treating infections caused by pathogenic
Gram-positive bacteria. This strategy is not limited to one specific pathogenesis pathway,
and the merits of this approach will be discussed in this section. These examples will
be used to demonstrate the potential of direct ani-virulence targets (T3SS), anti-virulence
signaling targets (QS), and indirect anti-virulence strategies (liposomes).

3.1. The Bacterial Type III Secretion System (T3SS)

The type III secretion system (T3SS) is used by many pathogenic Gram-negative
bacteria to cause and maintain an infection. Pathogens using a T3SS include Chlamydia
trachomatis, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, Shigella spp., Vib-
rio cholerae, and Yersinia pestis [219,220]. The T3SS is highly conserved between bacterial
pathogens of a particular genus [221]. This conservation can result in high recognition
amongst different species or serovars of bacteria. The T3SS is a syringe-like apparatus that
translocates effector proteins directly into a host cell [220,222]. These effectors hijack the
host cell machinery to allow for colonization and to subvert the host immune response.
These mechanisms include interference with actin and tubulin, gene expression, cell cycle
progression, or induce programmed cell death in their host [223]. Bacteria with a non-
functional T3SS have attenuated virulence but are still capable of growth, making them a
perfect target for anti-virulence therapeutics [222]. This also lends to the theory that T3SS
inhibition will reduce selective pressure on the pathogen, resulting in slower resistance
formation to T3SS inhibitors [219]. The T3SS is specific to pathogens, meaning any interven-
tions targeting it should not affect commensal bacteria [224]. Although no T3SS inhibitors
have been FDA approved, the T3SS is one of the most validated anti-virulence targets, with
many compounds in development (Table 1) [225].
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Table 1. Select anti-T3SS therapies in development.

Anti-Virulence Compound Mode of Action Bacteria Stage

Aurodox [226–228] Downregulation of
T3SS-related genes EPEC and EHEC Animal Models

Compound D [14] Secretion blockade Yersinia and Pseudomonas spp. In Vitro
Compounds 7146 and 1504 [14] ATPase inhibition Yersinia and Burkholderia spp. In Vitro

INP175 [14] ATPase inhibition
P. aeruginosa, Y.
pseudotuberculosis, and C.
trachomatis

In Vitro

MBX 23 [14] Needle subunit inhibition Pseudomonas, Chlamydia, and
Yersinia spp. Animal Models

Anti-PcrV monoclonal antibody
(MEDI3902) [14] Needle tip inhibition P. aeruginosa Clinical Trials [229–231]

Salicylidene acylhydrazides
(e.g., MED055, RCZ12, and
INP040, etc.) [14]

T3SS formation inhibition
Yersinia, Chlamydia, Salmonella,
Shigella, EHEC, Xanthomonas,
and Erwinia spp.

Animal Models

Thymol [232] Translocation inhibition Salmonella spp. Animal Models
Anti-Tir antibody (TD4) [14] Adhesion inhibition EPEC and EHEC Animal Models
2-imino-5-arylidene
thiazolidinone [14]

Basal body alkaline
phosphatase inhibition

Salmonella, Pseudomonas, and
Yersinia spp. In Vitro

12(4,6) and 12(6,4) [14] Needle subunit
chaperone inhibition Pseudomonas spp. Animal Models

Small molecule inhibitors of the T3SS have been shown to increase survival rates
after infection with otherwise lethal doses of the bacterial pathogen (Table 1) [14,232]
McHugh et al. showed the ability of the natural product aurodox to decrease effector
protein secretion and decrease the infectious potential of enterohemorrhagic E. coli (EHEC).
Transcriptomal analysis of genes affected by aurodox showed downregulation of 25 of the
41 genes related to the T3SS, including ler, a major activator of the T3SS [228]. This suggests
aurodox acts as a gene repressor and not by directly binding to T3SS, although the true
mode of action is still unknown. Aurodox was shown to prevent T3SS mediated hemolysis,
with an ID50 of 1.5 µg/mL (Figure 6A) [227,228]. Kimura et al. collected further data
to analyze the effectiveness of aurodox on alleviating T3SS-mediated infection using an
in vivo mouse model [226]. Mice were infected with Citrobacter rodentium, a murine variant
of enteropathogenic E. coli (EPEC), and then either treated with 10% DMSO as a control, a
single dose of tetracycline (200 mg/kg), or aurodox (25 mg/kg) every 24 h for four days.
All mice treated with aurodox or a functional T3SS knockout strain survived, while those
treated with tetracycline did not (Figure 6C). In addition, treatment with aurodox does not
induce Shiga toxin production in EHEC, suggesting promise for the use of T3SS inhibitors
to treat infection [218].

Therapeutics targeting the needle tip protein of the T3SS have gone into clinical trials.
One of these, termed KB001-A, is a human PEGylated IgG monoclonal anti-PcrV Fab that
is proposed to form a secretion blockade mechanism of pathogenesis prevention for P.
aeruginosa [233–239]. KB001-A has undergone phase I and II clinical trials for both ventilator-
associated P. aeruginosa and treatment of chronic pneumonia in cystic fibrosis patients but
did not advance to phase III trials due to a lack of efficacy [235,236,240]. More recently
MEDI3902, another anti-PcrV mAb, has entered human clinical trials. This bispecific
antibody targets both PcrV and Psl exopolysaccharide, an anti-biofilm formation target.
MEDI3902 was shown to dose-dependently increase survival, reduce lung inflammation,
and decrease bacterial loads in both rabbit and mouse P. aeruginosa challenge models [241].
Le et al. showed MEDI3902 was effective as a treatment and a prophylactic for acute blood
and acute lung P. aeruginosa infections [242]. MEDI3902 performed well in phase I clinical
trials in the US [229,230]. Although a single dose of MEDI3902 was shown to provide good
pharmacokinetics and pharmacodynamics in phase II trials, it did not achieve primary
efficacy [231]. The results from anti-T3SS therapies are promising and these examples are
just the beginning.
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3.2. Quorum Sensing

Quorum sensing (QS) is the process used by bacteria to control gene expression in
response to cell density and external factors sensing [16–18]. Small molecules, called autoin-
ducers, are produced by bacteria and release to be sensed by other bacteria. These allow
a bacterial population to sense neighboring cells sensing [16–18]. QS is used to control
a variety of critical functions related to growth, colonization, and pathogenesis. These
including biofilm formation, virulence factor deployment, and antibiotic resistance gene
expression [243]. Inhibition of QS could prevent pathogenic bacteria from coordinating vir-
ulence factor usage sensing [16–18]. This could reduce the pathogen’s infectivity, allowing
the host immune system to clear the infection more effectively. QS inhibition could also
increase the efficacy of existing antibiotics by virtue of inhibiting antibiotic resistance gene
expression sensing [16–18]. This could allow existing antibiotics to have increased time
as first-line therapies. The use of QS inhibitors as anti-virulence therapeutics is a growing
field with many promising compounds (Table 2).

There are many different interconnected mechanisms controlled by QS, so a highly
simplified explanation of the moderately well described QS pathways of Pseudomonas spp.
will be used as an example [16,243]. In this section we discuss two groups of signaling
molecules, quinolones and acyl-homoserine lactones (AHLs), that control three pathways
of the Pseudomonas QS system: Pseudomonas quinolone signal (PQS), las signaling, and rhl
signaling. PQS is induced by quinolone accumulation and results in increased cell–cell
signaling, virulence protein expression (e.g., the T3SS), iron acquisition, oxidative stress,
antioxidative response, and modulation of host immune responses. AHLs induce both
las and rhl signaling. las upregulates both PQS and rhl QS pathways, as well as biofilm
formation and other virulence factors. rhl signaling induces the production of toxins
such as rhamnolipids, pyocyanin, and hydrogen cyanide [243]. These pathways are all
interconnected in a highly complex manner that has been left out of this review for brevity.
More in-depth reviews of QS systems, including Pseudomonas QS, are referenced in Table 2.
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Table 2. Select anti-QS therapies in development.

Anti-Virulence Compound Mode of Action Bacterium (QS Pathway Reviews) Stage
Azithromycin [244] Decrease QS gene expression Pseudomonas spp. [245] Clinical Trials
Furanone derivatives
(e.g., C-30) [220] las inhibition Pseudomonas spp. [245] In Vitro

Coumarin [246] Decrease QS gene expression E. coli [247], P. aeruginosa [245], S.
aureus [248], and Vibrio spp. [249] In Vitro

Cyclic dipeptides [250,251] Indicated in reporter assays E. coli [247], P. aeruginosa [245], and
Vibrio spp. [249] In Vitro

DPD derivatives [17] LrsK inhibition Salmonella spp. [252] In Vitro

Epigallocatechin-3-
gallate [253,254] Decrease QS gene expression

EHEC [247], Pseudomonas [245],
Salmonella [252], and Staphylococcus
spp. [248]

In Vitro

Hamamelitannin [255] Peptidoglycan biosynthesis
and eDNA release inhibition Staphylococcus spp. [248] Animal Models

LED209 [256] QseC inhibition EHEC [247] and Salmonella spp. [252] Animal Models
Sinefungin [257] Inhibition of AI-2 Synthesis Streptococcus spp. [258] Animal Models

One of the many natural products identified with QS inhibitory activity is coumarin,
the parent compound of a class of plant phenolics. Coumarin was shown to decrease
the expression of multiple QS genes in P. aeruginosa strain PA14, including pqsA and
rhlI, as well as decrease virulence phenotypes such as swarming motility and phenazine
production [246]. Coumarin was found to inhibit PA14 biofilm formation, a mechanism
mainly controlled through las signaling [246]. This indicated coumarin had a role in all
three major Pseudomonas QS pathways. The biofilm inhibitory capabilities of coumarin was
shown in other Gram-negative and Gram-positive bacteria, including E. coli, Edwardsiella
tarda, Vibrio anguillarum, and S. aureus, thus showing the broad spectrum of anti-QS activity
of coumarin [246,259].

Approximately 65% of infections are caused by biofilm-forming bacteria [260], and
these biofilms are regulated by QS [261]. Biofilms are an immobile community of bacteria
living on a surface that share resources within an extracellular matrix [261]. Biofilms
protect from sudden changes in pH, osmolarity, nutrients scarcity, mechanical, and shear
forces [262,263]. They also prevent antibiotics and host immune cells from accessing bacte-
ria within the biofilm community [264,265]. Methods for the inhibition of biofilms include
deploying compounds that disrupt or remove established biofilms and the use of antibiotics,
antimicrobials, or antibiofilm compounds on a matrix to disrupt biofilm formation [260].

Furanone A, a natural product isolated from the algae Delisea pulchra, has been shown
to inhibit QS through las modulation. A derivative of Furanone A, named C-30, was found
to interfere with biofilm formation in both planktonic cultures and established biofilm
colonies of P. aeruginosa [220]. It was later shown to have synergistic effects when combined
with an antibiotic, increasing the effectiveness of the antibiotic tobramycin, despite having
no antibiotic activity itself. Although not quantified, qualitative data of colonies treated
with the combination showed a drastic decrease in biofilm matrix and increase in cell death
by two to three magnitudes, with only 5–10% of cells remaining alive after treatment [220].
This was due to the antibiofilm activity of C-30 which allowed tobramycin to reach the
bacteria more easily. It also likely contributed to a decrease in antibiotic resistance gene
expression, thereby increasing the efficacy of tobramycin. This example sets the precedent
that anti-biofilm and/or anti-QS compounds can be used in conjunction with known
antibiotics to increase their efficacy and lifespan as therapeutics.

3.3. Liposomes

Liposomes are cell-like vesicles formed by an agglomerate of phospholipids. Phospho-
lipids are amphipathic due to a hydrophobic “tail” and a hydrophilic “head” (Figure 7) [19–21].
Because of this, they can spontaneously form liposomes when placed into polar, typically
aqueous, media. The phospholipids arrange into a bilayer, like a cell membrane, enclosing
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a sphere of the media (Figure 7) [266]. Liposomes can be synthesized in a laboratory using
a variety of lipids, cholesterol, and lipoproteins, making them highly customizable [267].
Liposomes have applications in many different fields: cosmetics, medical imaging, vaccina-
tion, and drug delivery [268].
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The use of liposomes can increase the local concentration of drugs at the therapeutic
site. This can improve the efficiency of therapies while simultaneously decreasing off-target
toxicity. Liposomes can also improve the pharmacokinetics and biodistribution of a deliv-
ered drug, enhancing drug absorption to increase plasma concentration, and increasing
the half-life of drugs [269,270]. Variations in the type and proportions of components used
to form liposomes, as well as the method used to form them, can give them a range of
pH sensitivities, sizes, number of bilayers (called lamellae), temperature sensitivities, and
membrane fluidities [267]. Because of their customizable nature, liposomes have been used
for delivering antifungals [271,272], antineoplastics [269,273–275], antibiotics [276,277], and
even gene- or drug-therapies for Alzheimer’s disease [278,279].

Because liposomes can target a specific area, they can allow for lower toxicity than
their free-drug counterparts [269,271,272,275,280]. Bakker-Woudenberg et al. showed free
ciprofloxacin can cause toxicity at a concentration of 40 mg/kg/dose but is tolerated to
160 mg/kg/dose when delivered with liposomes [280]. Liposomes can also increase the
general activity of the drug they carry [277,280]. For example, using cationic liposomes
to deliver clarithromycin reduced the minimum bactericidal concentration (MBC) of clar-
ithromycin to 16 mg/L against several highly resistant clinical strains of P. aeruginosa,
compared with 512 mg/L for free drug and 64 mg/L for anionic liposomes alone [277].

More recently, liposomes have been designed for anti-virulence therapies [281]. Gram-
positive bacteria, such as Staphylococcus spp. and Streptococcus spp., interact with eukaryotic
host cells to deliver virulence factors across the cell membrane [282] or release toxins
into the surrounding media [283]. Liposomes can be designed as eukaryotic host cell
mimics that act as bait for pathogens or as toxin scavengers. This can result in pathogens.
To unproductively use their virulence factors and resources on the liposome instead of
eukaryotic host cells. This ultimately lowers the infectivity of the pathogen, which in turn
increases the minimum infectious dose required to cause infection. Equally important is
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that anti-virulent liposomes have broad-spectrum pathogenesis-hindering activity. An
anti-virulent liposome injection was able to save mice from an otherwise lethal dose of
S. pneumoniae or S. aureus if given, at most, 10 h after infection [281]. This means one
formulation of liposomes could be used to treat a variety of infections similarly to broad-
spectrum antibiotics but without the harmful side effects.

Many bacterial toxins bind to membrane components that are host-specific, such
as cholesterol (Ch), phosphatidylcholine (PC), or sphingomyelin (Sm) [281]. Pathogen-
released pore-forming toxins such as streptolysin O (SLO) bind to Ch or PC and then
self-associate with other SLO monomers to form a ring- or arc-shaped complex that creates
lesions in the host cell membrane, reducing the integrity of host cells [284]. Liposomes
containing large proportions of the pathogen-targeted membrane components can be more
attractive for toxins than a real cell. Henry et al. found that toxin-sequestering liposomes
are effective in vivo by reducing bacterial load in the blood and lungs and doubling the
survival rate of mice intranasally infected by S. pneumoniae (Figure 8A) [281].
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Liposomal cholesterol is a key target for many pathogens. Liposomes composed of
the largest proportion of Ch possible (66 mol %) along with either PC or Sm were the most
effective for neutralizing an array of toxins [281]. In some instances, however, a combination
of differently formulated liposomes may be required for maximum neutralization of toxins.
Henry et al. showed that liposomes composed of Ch:Sm or Ch:PC protected monocytes
in vitro from MRSA only partially, whereas a combination of both Ch:PC and Sm liposomes
led to 100% survival of the monocytes (Figure 8B) [281]. This suggests that MRSA secretes
at least two toxins: one that is neutralized by Ch:PC liposomes and one that is neutralized
by Sm liposomes.

Using liposomes to prevent toxins from damaging cells has the secondary bene-
fit of preventing the cytokine storm and septic shock associated with an inflammatory
response [281]. This is a major advantage of anti-virulence liposomes over antibiotics;
pathogen lysis by antibiotics can cause a very sudden release of toxins and strongly acti-
vate the destructive inflammatory response whereas liposomes sequester the pathogen or
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toxins [285]. For example, the pathogen S. pneumoniae carries endotoxins that are released
only when the cell is lysed [286]. This toxin flood release may be counteracted by combi-
nation therapy of liposomes and antibiotics, which was shown to increase host survival
chances beyond that of antibiotics alone, as liposomes can neutralize the toxins released by
bactericidal agents [281].

3.4. Combination Therapies

One disadvantage of using anti-virulence therapies is that by design they do not
actively clear infectious bacteria from a patient. This can be problematic for patients who
are immunocompromised, either naturally or through the severity of infection. Notwith-
standing the potential lack of efficacy, these therapies could be used in combination with
traditional antibiotics to reduce the adverse effects of using antibiotics alone. These combi-
nation therapies may also allow for reduced drug dosages and treatment duration, leading
to reduced resistance formation and side effects [73].

Evidence of this synergistic approach was demonstrated by Secher et al. in a study
of an anti-P. aeruginosa mAb targeting the needle tip of the T3SS with the broad-spectrum
antibiotic meropenem. An additive effect was observed when the combination was given
to patients. Meropenem-resistant infections had similar efficacy to treatments with the
mAb alone against meropenem-sensitive infections, showing an ability of combination
therapy to overcome drug resistance [287]. Le et al. demonstrated that MEDI3902, another
anti-P. aeruginosa mAb targeting the T3SS, showed enhanced activity against P. aeruginosa in-
fections when administered in combination with a subtherapeutic dose of meropenem [241].
Anti-T3SS mAb therapy had increased effectivity when administered in combination ther-
apy with either ciprofloxacin, tobramycin, and ceftazidime against acute P. aeruginosa
infection [288]. These results show that regardless of their success as individual agents,
anti-virulence therapeutics can also be employed in combination with antibiotics to reduce
the overall downsides to antibiotic use by reducing doses and time of treatment.

4. Conclusions

The use of antibiotic therapies for the treatment of bacterial infections has been
indispensable during the rise of modern medicine. However, their use does not come
without significant downsides. Anti-microbial resistance gene formation and proliferation
is the most notorious of these and has rendered many antibiotic agents ineffective. Many
antibiotics reduce the ability of patients to fight infection after treatment due to the loss
of commensals. Antibiotics may also cause the induction of bacterial SOS responses that
can result in the release of toxins which lead to serious side effects. To mediate these
downsides, clinicians have tried to implement multiple mediation methods or alternative
care plans. These include the use of combination therapies, point of care testing, narrow-
spectrum treatments, antibiotic stewardship programs, and increased infection control.
Unfortunately, these mediation methods serve only to reduce and slow the problem, not
eradicate the cause.

Anti-virulence therapies have been proposed as one solution to the downsides of
antibiotic use. Anti-virulence agents do not directly cause bacterial cell death, instead, they
target mechanisms used by pathogens to cause infection and evade the host immune re-
sponse. These agents exhibit reduced selective pressure compared to traditional antibiotics,
thereby mitigating resistance formation. In contrast to antibiotics, anti-virulence therapies
do not affect commensal bacteria that protect against secondary infections. Additionally,
anti-virulence agents do not induce bacterial SOS-responses that are often responsible for
severe side effects associated with antibiotic treatment. We have described three groups
of promising anti-virulence targets and therapies: the T3SS, quorum sensing, and lipo-
somes. These therapies have successfully demonstrated the potential for development into
bacterial infection treatments either alone or in combination with antibiotics.
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