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Abstract

Previous studies have shown that high glucose increases reactive oxygen species (ROS) in endothelial cells that contributes
to vascular dysfunction and atherosclerosis. Accumulation of ROS is due to dysregulated redox balance between ROS-
producing systems and antioxidant systems. Previous research from our laboratory has shown that high glucose decreases
the principal cellular reductant, NADPH by impairing the activity of glucose 6-phosphate dehydrogenase (G6PD). We and
others also have shown that the high glucose-induced decrease in G6PD activity is mediated, at least in part, by cAMP-
dependent protein kinase A (PKA). As both the major antioxidant enzymes and NADPH oxidase, a major source of ROS, use
NADPH as substrate, we explored whether G6PD activity was a critical mediator of redox balance. We found that
overexpression of G6PD by pAD-G6PD infection restored redox balance. Moreover inhibition of PKA decreased ROS
accumulation and increased redox enzymes, while not altering the protein expression level of redox enzymes. Interestingly,
high glucose stimulated an increase in NADPH oxidase (NOX) and colocalization of G6PD with NOX, which was inhibited by
the PKA inhibitor. Lastly, inhibition of PKA ameliorated high glucose mediated increase in cell death and inhibition of cell
growth. These studies illustrate that increasing G6PD activity restores redox balance in endothelial cells exposed to high
glucose, which is a potentially important therapeutic target to protect ECs from the deleterious effects of high glucose.
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Introduction

Redox balance in cells is maintained by an interplay between

processes that produce reactive oxygen species (ROS) and

processes that eliminate ROS (antioxidants). Alterations in this

highly regulated system may lead to cellular dysfunction or death.

Many diseases have been shown to have alterations in the

regulation of redox balance including diabetes mellitus [1–5]. Cell

culture models of diabetes, animal models of diabetes, and humans

with diabetes have increased ROS [2,6–9]. Both increased

production of ROS, as well as decreased antioxidant function

have been shown to mediate the increased accumulation of

cellular ROS [7].

Many research studies have demonstrated a central role for

increased production of ROS in diabetes. The causes for increased

ROS production are multifactorial, and include, but are not

limited to, such important mechanisms as ROS production by

mitochondria, by actions of advanced glycation end products, and

by increased NADPH oxidase activity [2,10,11]. In addition,

altered antioxidants also play a role in the elevated ROS levels in

diabetes as follows.

The major antioxidant systems include the glutathione system,

catalase, the superoxide dismutases (SOD) and the thioredoxin

(Trx) system. Often not evaluated when the antioxidant function is

studied is glucose 6-phosphate dehydrogenase (G6PD). Yet G6PD

is the major source of the reductant NADPH upon which the

entire antioxidant system relies. Glutathione reductase requires

NADPH to regenerate reduced glutathione [12]. Catalase has an

allosteric binding site for NADPH that maintains the enzyme in its

most active tetrameric conformation and protects it against the

toxicity of hydrogen peroxide [13]. SOD does not directly use

NADPH but the action of SOD is to convert superoxide to

hydrogen peroxide which then requires reduction either by the

glutathione system or catalase to convert hydrogen peroxide to less
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toxic compounds [14]. Since catalase and the glutathione system

depend on NADPH and that increased hydrogen peroxide will

inhibit SOD [15], SOD function ultimately depends on NADPH.

NADPH is also required for Trx reductase to convert the oxidized

Trx to the reduced form [16], which plays a role in many

important biological processes, including redox signaling. Hence

these major antioxidant systems are dependent on the availability

of NADPH that is principally produced by G6PD.

G6PD is the first and rate-limiting enzyme of the pentose

phosphate pathway. In addition to maintaining the antioxidant

system, NADPH is required for lipid biosynthesis, the cytochrome

P450 system, nitric oxide synthesis, tetrahydrobiopterin synthesis,

HMG CoA reductase, and NADPH oxidase (NOX). Work from

our laboratory and others has shown that G6PD is the principle

source of NADPH for many of these processes [17–22]. In

addition, we and others have determined that high glucose

stimulates protein kinase A (PKA) that, at least in part, causes the

decrease in G6PD and NADPH. In this study, we hypothesized

that the high glucose-induced decrease of G6PD activity is a major

cause of the redox imbalance in endothelial cells and that

increasing G6PD activity will rescue the ECs from the deleterious

effects of high glucose. The results reported here show that

increasing G6PD activity by two different methods (overexpression

of G6PD and inhibition of PKA) restores redox balance in ECs

exposed to high glucose.

Results

High glucose decreased antioxidant systems in
endothelial cells

Initially we verified that high glucose decreased G6PD activity

in this experimental system as previously described. In Figure 1,

bovine aortic endothelial cells were exposed to 5.6 mM or 25 mM

glucose for 72 hours. As observed previously, high glucose caused

a decrease in G6PD activity (Figure 1A) and NADPH level

(Figure 1B). Interestingly high glucose led to significantly

decreased activities in glutathione reductase (GR), catalase, and

superoxide dismutase (Figure 1C, 1D, and 1E). High glucose also

caused an increase in ROS (Figure 2A). To confirm that the

cellular milieu was indeed in a state of redox imbalance favoring

increased ROS, it was determined that there was an increase in

oxidized lipids as measured by thiobarbituric reactive substances

(Figure 2B). Taken together, these results show that high glucose

causes redox imbalance in ECs that is associated with impaired

operation of antioxidant systems.

Overexpression of G6PD improved antioxidant enzyme
activity and reduced ROS levels in endothelial cells

Cells were infected with either an empty adenovirus or an

adenoviral vector containing human G6PD (pAd-G6PD). pAd-

G6PD infection resulted in an approximate 5-fold increase in

Figure 1. High glucose decreases antioxidant activities in endothelial cells. Bovine aortic endothelial cells were grown in DMEM (5.6 mM
glucose) with 10% serum until 80% confluent and then switched to 0.5% serum plus 5.6 mM or 25 mM glucose for 72 hours. Raffinose was used as
an osmolarity control. Measurements were performed as described in Methods. High glucose causes a decrease in multiple antioxidant enzymes. A:
G6PD activity. B: NADPH level. C: Glutathione reductase activity. D: Catalase activity. E: Superoxide dismutase (SOD) activity. *, p,0.05 compared with
5.6 mM and raffinose conditions. Data were normalized by protein concentration and expressed as mean 6S.E in all figures. n = 5. The n’s in all
figures reflect separate experiments not separate plates of cells.
doi:10.1371/journal.pone.0049128.g001
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G6PD expression and activity (Figures 3A and 3B) and about a

60% increase in NADPH level (Figure 3D). Overexpression of

G6PD caused both a decrease in ROS (Figure 3C) and an increase

in the GSH/GSSG ratio reflecting an overall decrease in the

intracellular ROS level (Figure 3E). Interestingly, Figure 3F shows

that overexpression of G6PD also rescued the high glucose-

induced decrease in catalase activity. Overexpression of G6PD

caused no change in catalase protein level (Figure S1). As catalase

has a critical allosteric binding site for NADPH that maintains the

enzyme in its active conformation [13], it is possible that

overexpression of G6PD directly increased catalase activity by

providing NADPH for the allosteric binding site. Overexpression

of G6PD also led to a trend to rescuing of glutathione reductase

(GR) and superoxide dismutase (SOD) activity that did not quite

reach statistical significance (data not shown) and no change in

GR or SOD protein levels (Figure S2 and S3). Overall these results

suggest that the decrease in the antioxidant systems is in significant

part due to the high glucose-mediated decrease in NADPH.

Pharmacologic Inhibition of protein kinase A rescued the
high glucose-induced decrease in antioxidant enzymes

Work from our laboratory and others has shown that high

glucose stimulates an increase in cAMP and protein kinase A,

which mediates, in significant part, the decrease in G6PD activity

and NADPH level [9,23]. Thus if increased PKA mediates the

decrease in G6PD activity and NADPH level and in turn, these

changes cause the high glucose-mediated decrease in the

antioxidant enzyme activities of GR, catalase, and SOD as

suggested in figure 3, then inhibition of PKA should rescue the

glucose-induced increase in these enzymes. Using the cell-

permeable PKA inhibitor 14–22 amide (PKI, Figure 4 illustrates

that PKI rescued the high glucose-stimulated decrease in GR

(Figure 4A), SOD (Figure 4B) and catalase (Figure 4C). Figure 4D

also demonstrates that inhibition of PKA led to a decrease in ROS

and Figure 4E shows that inhibition of PKA decreased TBARS, as

well. Taken together, these results suggest that high glucose

stimulates PKA leading to a decrease in G6PD and NADPH level

and subsequent decrease function of GR, catalase, and SOD.

siRNA oligonucleotide targeted to protein kinase A
rescued the high glucose-induced decrease in
antioxidant enzymes

To verify that the pharmacologic inhibition of PKA was specific

for PKA, a small interfering RNA oligonucleotide was used as

described in the methods. Figure 5A reveals that the siRNA

oligonucleotide significantly decreased the expression of PKA and

Figure 5B illustrates that PKA activity was similarly decreased.

Figure 5C demonstrates that the high glucose mediated decrease

in G6PD activity is ameliorated when the cells are transfected with

siRNA for PKA showing that PKA is a significant inhibitor of

G6PD under high glucose conditions. Next, the effect of siRNA on

the enzymes catalase and glutathione reductase was studied.

Figure 6 illustrates that siRNA rescued the high glucose induced

decrease in catalase and glutathione reductase.

Inhibition of protein kinase A by siRNA enhanced cell
growth and decreases cell death

To determine whether rescuing G6PD activity improves

phenotypic outcomes, the effects of siRNA inhibition of PKA

was examined on cell growth and cell death. In previous published

work, our laboratory has determined that increasing the activity of

G6PD increases cell growth and decreases cell death [21,22]. Thus

we hypothesized that, at least in part, the PKA mediated decrease

in G6PD played a central role in the high glucose mediated

decrease in cell growth and increase in cell death. Figure 7

illustrates that high glucose decreased cell growth and enhanced

apoptosis. Inhibition of PKA using the siRNA oligonucleotide

ameliorated the inhibition of cell growth and ameliorated the high

glucose mediated cell death.

High glucose caused a decrease in G6PD activity, as well
as an increase in NADPH oxidase activity

The reducing power of NADPH is used by many enzymes. Of

particular interest is the NADPH oxidase (NOX) system, as this

enzyme has been shown to be a main source of ROS in

endothelial cells exposed to high glucose [24–26]. Thus, there

appears to be a paradox in that studies have shown that high

glucose causes a decrease in G6PD activity (and, as a result, a

decrease in NADPH), yet many laboratories have shown that high

glucose causes an increased activity of NOX which would seem to

be require an increase in G6PD activity.

To address this apparent paradox, we hypothesized that high

glucose does indeed decrease G6PD (as we and others have shown)

but that high glucose also stimulates colocalization of G6PD with

NOX, thus possibly allowing adequate NADPH for optimal NOX

activity despite an overall decrease in cellular NADPH due to

decreased total cellular G6PD activity. Figure 1A showed that

BAECs exposed to high glucose for 72 hours have decreased

G6PD activity as compared to cells incubated with 5.6 mM

glucose. Figure 8A shows that NADPH oxidase activity is

increased by 25 mM glucose under the same conditions. Both

the total lucigenin response (lucigenin is thought to primarily

interact with superoxide) and the apocynin (an inhibitor of

NADPH oxidase) inhibitable portion is shown in the figure. The

results demonstrate that high glucose increases superoxide

Figure 2. High glucose increased ROS (reactive oxygen species)
generation in endothelial cells. Cells were prepared as in Figure 1.
High glucose caused increased RO and increased TBARS. A: ROS level
was measured with H2DCFDA (see Methods). B: TBARs level was
measured as described in Methods. *, p,0.05 compared with 5.6 mM
and raffinose conditions. n = 6.
doi:10.1371/journal.pone.0049128.g002

Increasing G6PD Activity Restores Redox Balance
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production from NADPH oxidase. Taken together, these results

suggest that high glucose causes both an increase in NADPH

oxidase and a decrease in G6PD activity.

High glucose caused colocalization of G6PD and NADPH
oxidase

To determinine if G6PD colocalizes with NOX, immunofluo-

rescent staining was done. Figure 8B shows that there was no clear

colocalization of G6PD (red) and the NOX subunit gp91 (green) in

5.6 mM glucose; however, 25 mM glucose led to colocalization as

shown by the yellow color (overlapping of red and green) in many

cells. These results suggest that high glucose causes colocalization

of G6PD and NADPH oxidase which likely provides NADPH for

NOX activity.

Protein kinase A mediated colocalization of G6PD and
NADPH oxidase

Since PKA mediates, at least in part, the high glucose-induced

decrease in G6PD, we hypothesized that PKA may also mediate

the high glucose induced colocalization of G6PD and NOX.

Figure 9C illustrates that PKI inhibited the high glucose

stimulated colocalization of G6PD and gp91 suggesting that

increased PKA mediated the colocalization. Next it was

determined whether increased PKA also regulated NOX activity.

Figure 9A shows that PKI (the inhibitor of PKA) prevented the

high glucose-induced decrease of G6PD activity as we have

previously shown, and Figure 9B demonstrates that PKI decreased

NADPH oxidase activity under high glucose conditions. These

results suggest that PKA may mediate both the increase in

NADPH oxidase activity and the decrease in G6PD activity

caused by high glucose. Thus, in endothelial cells, high glucose

stimulates a decrease in G6PD, and an increase in NOX. These

changes in G6PD and NOX are mediated, at least in part, by

increased PKA.

Discussion

Inhibition of G6PD by high glucose has been previously

observed by our laboratory and others. For example in cell culture

models of endothelial cells and mesangial cells, G6PD is

significantly inhibited by high glucose [27]. In animal models,

decreased G6PD activity has been reported in liver [28], aorta

[29], heart [30,31], and Leydig cells [32]. In diabetic patients,

decreased G6PD activity has been detected in percutaneous liver

biopsies [32], mononuclear leukocytes [33,34], and erythrocytes

[35,36]. These data reveal that high glucose-induced decrease in

G6PD occurs in both diabetic models and diabetic patients and

suggests that decreased G6PD may play a pathogenic role under

high glucose conditions.

The importance of the high glucose mediated decrease in G6PD

activity could only be inferred as previous studies did not enhance

the activity of G6PD under high glucose conditions. The results

reported in this paper, illustrate for the first time that increasing

Figure 3. Overexpression of G6PD rescued the high glucose-indueed decrease in the antioxidant enzymes and reduced ROS level
in endothelial cells. Adenovirus vector inserted with human G6PD cDNA was constructed and purified as described in the Methods. Endothelial
cells were infected with either Ad2-G6PD (MOI: 5) or empty vector control (Laz). A: G6PD protein was significantly increased with adenovirus infection
in endothelial cells exposed to high glucose. Overexpression of G6PD led to the following changes in cells exposed to high glucose as compared to
cells exposed to high glucose with wild type G6PD activity: B: G6PD activity was increased. C: ROS level was decreased. D: NADPH level was increased.
E: GSH/GSSG level was increased. F: Catalase activity was increased. *, p,0.05 compared with 25 mM conditions. #, p,0.05 compared with 5.6 mM
condition. n = 8.
doi:10.1371/journal.pone.0049128.g003

Increasing G6PD Activity Restores Redox Balance
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G6PD activity (either by overexpression or by inhibition of PKA)

leads to improvement of redox status and redox enzymes and leads

to enhanced cell growth and decreased cell death in endothelial

cells. Thus the results here strongly support the hypothesis that

decreased G6PD activity plays a central role in the high glucose

mediated damage to endothelial cells. And that improving G6PD

activity is potentially a valuable therapeutic goal.

The data reported here also suggest that inhibition of G6PD

and the resulting decrease in NADPH likely mediate, at least in

part, the high glucose-induced decreases in enzyme activities. As

enzyme activity measurements are done in excess substrate

conditions, the expected high glucose-stimulated decrease in

NADPH cellular availability cannot be the only reason for

decreased activities. Moreover although high glucose induced a

decrease in the activities of catalase, GR and SOD, it didn’t alter

the protein expression of these enzymes. And overexpression of

G6PD that rescued catalase activity and inhibition of PKA that led

to rescuing of catalase, GR, and SOD activity did not result in any

increase in protein expression of the redox enzymes. Hence,

possibly by providing NADPH as a substrate or cofactor, G6PD

was able to regulate the activities of other antioxidant enzymes.

Other possible explanations are that overexpression of G6PD

altered a signaling molecule that affected the activities of these

enzymes or that altered redox status led to a change in a post-

translational modification that affects specific activity of the

enzyme(s).

In this paper, the potentially central role for the high glucose

mediated simulation of PKA is expanded from previous work. Our

laboratory and others have previously reported that high glucose

stimulates increased cAMP and protein kinase A in endothelial

cells [9,23,37]. And we and others have previously shown that

cAMP and cAMP-dependent protein kinase A regulates G6PD

activity [27,38,39]. The data reported here illustrate that PKA also

affects the activities of other critical antioxidant enzymes. Taken

together, it is tempting to speculate that the mechanistic order is

that high glucose stimulates an increase in PKA that subsequently

inhibits G6PD activity and a resultant decrease in NADPH. And

that the decreased NADPH causes a decrease in the enzyme

activities (Figure 10). Although a direct effect of PKA on these

enzymes or an indirect effect of PKA on another signaling

pathway cannot be ruled out.

Researchers have demonstrated that high glucose activates

NOX in endothelial cells, which plays an important role in

endothelial injury and dysfunction [26,40]. Since NOX activity is

dependent on an adequate supply of NADPH, it would seem that

G6PD activity should be increased to provide sufficient NADPH.

Thus, there is an apparent paradox in that high glucose appears

not only to decrease G6PD activity with a resulting decrease in

NADPH, but also to increase NOX, which requires NADPH for

ROS generation. Previous work from our laboratory first

demonstrated (and since confirmed by others) that G6PD

translocates inside the cell [20]. The results reported here show

that high glucose stimulates colocalization of G6PD and NOX in

endothelial cells. NOX has 7 known isoforms that are differentially

expressed in specific cell types [41,42]. Intracellular translocation

of NOX and G6PD has been shown previously. The gp91phox

subunit is expressed in BAECs and has been shown to be elevated

under stress conditions [43] and the intracellular location well

Figure 4. Pharmacologiic Inhibition of protein kinase A improved antioxidant activities in endothelial cells. High glucose increases
cAMP, at least in part by activation of adenylate cyclase, which leads to activation of PKA (see text) and subsequent inhibition of G6PD. To inhibit PKA,
endothelial cells were treated with a specific cell-permeable PKA inhibitor 14–22 amide (10 mmol/l) for the last 24 hours. Addition of PKI to cells
exposed to high glucose led to: A: Glutathione reductase activity increase. B: SOD activity increase. C: Catalase activity increase. D: ROS level decrease.
E: TBARs level decrease. *, p,0.05 compared with 25 mM condition. #, p,0.05 compared with 5.6 mM condition. n = 8.
doi:10.1371/journal.pone.0049128.g004

Increasing G6PD Activity Restores Redox Balance
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defined. The intracellular localization of gp91 (and the subsequent

colocalization with G6PD) is consistent with what other labora-

tories have reported for the intracellular localization of gp91 [44].

It is possible that the close association of these two proteins allows

sufficient NADPH to be delivered to NOX, even though total

cellular G6PD activity is decreased. These results alone do not

prove a mechanism but do provide an intriguing mechanistic

model whereby targeting signaling molecules (e.g. inhibition of

PKA) it is possible to improve redox balance by improving

antioxidant enzyme function (increasing G6PD activity) and

decreasing oxidant production (lowering NOX activity).

There are studies that have evaluated the effects of cAMP and

PKA on NADPH oxidase. Some studies on NOX1 have shown

that increased PKA leads to inhibition of activity [45–47].

Muzaffar and others reported that PKA regulated the expression

of gp91 in arterial endothelial cells (49). Another study in

granulocytes from type 2 diabetic patients showed that granulo-

cytes from non-diabetic patients have decreased reactive oxygen

Figure 5. siRNA oligonucleotide specific for PKA causes decreased expression and activity of PKA and ameliorated the high glucose
mediated decrease of G6PD activity. BAEC were transfected with duplex siRNA targeted against PKA (PKA siRNA) or a random sequence
(scrambled siRNA). 48 h after transfection, cells were harvested and lysed, PKA activity was measured and protein levels were analyzed in
immunoblots probed with a PKA antibody or tubulin antibody, as shown. *, p,0.05 compared with scramble siRNA. Figures A and B show that siRNA
led to decreased expression and decreased activity of PKA. In figure 5C, BAEC were transfected with duplex siRNA targeted against PKA (PKA siRNA)
or a random sequence (scramble siRNA), after 24 hours, medium was switched to DMEM with 1% serum plus 5.6 mM glucose or 25 mM glucose for
72 hours. G6PD measurements were performed as described in Methods. *, p,0.05 compared with 5.6 mM condition. n = 6.
doi:10.1371/journal.pone.0049128.g005

Figure 6. Inhibition of PKA by siRNA improved antioxidant activities in endothelial cells. Cells were transfected with siRNA and then
treated with 5.6 mM glucose or 25 mM glucose for 72 hours: A: High glucose mediated decrease in catalase activity is prevented by siRNA. B: High
glucose mediated decrease in glutathione reductase activity is prevented by siRNA. *, p,0.05 compared with 5.6 mM condition. n = 6.
doi:10.1371/journal.pone.0049128.g006

Increasing G6PD Activity Restores Redox Balance

PLOS ONE | www.plosone.org 6 November 2012 | Volume 7 | Issue 11 | e49128



species production (which was primarily derived from NADPH

oxidase) following stimulation with cAMP, but granulocytes from

diabetic patients had increased ROS production after stimulation

of PKA [48]. Thus, it is quite possible that diabetes alters the

metabolic signaling pathways that regulate NADPH oxidase. It is

also possible that the isoforms of NOX respond differently to

increased cAMP and PKA. Indeed, considering the variable effects

of high glucose on PKA and the ubiquitous role that PKA plays in

many cell types and on many cell activities, much more will need

to be understood about PKA and its regulation of G6PD and

NADPH oxidase, in order to develop treatments that specifically

target the PKA in endothelial cells under high glucose conditions

to improve overall function and survival.

Lastly, many of the observed changes in redox enzymes are

relatively small yet statistically significant. These results raise the

question as to the physiologic importance of small changes in

enzyme activity. In previous studies we have shown that similarly

small changes in G6PD can lead to significant changes in cell

phenotypes such as cell growth, cell death, and angiogenesis

[21,22,49,50]. In addition, in the information reported in this

paper, restoring these relatively small changes in metabolic

enzymes (either by overexpressing G6PD or by inhibition of

PKA) led to restoration in ROS balance, enhanced cell growth,

and decreased cell death. Thus although these enzymatic changes

are relatively small, they are physiologically relevant.

In conclusion, the data reported here provide new insights into

the mechanisms underlying the deleterious effects of high glucose

on endothelial cells by illustrating the likely central pathophysi-

ologic role for decreased G6PD activity and increased PKA in

endothelial cells. Future studies using therapeutic approaches that

increase G6PD and/or inhibit PKA in animal models of diabetes

should provide further insights into the development of new

possible treatments.

Materials and Methods

Cell Culture
Bovine aortic endothelial cells (BAEC) were freshly isolated by

scraping the luminal side of a calf aorta from Dr. C. Rask-Madsen

(Joslin Diabetes Center, Boston), cultured and identified as

previously described [51]. Cells between passage 3 and 6 were

used. The cells were grown in DMEM with 10% calf serum. For

the adenoviral infection studies the cells were allowed to reach

90% confluent then infection was performed with pAd-G6PD

(MOI: 5) or empty vector. After 24 hours, medium was switched

to DMEM with 1% serum plus 5.6 mM glucose, 25 mM glucose

or 25 mM raffinose for 72 hours. For the inhibition studies using

the pharmacologic PKA activity, the specific cell-permeable PKA

inhibitor 14–22 amide (PKI) (10 mmol/l) was added to the

medium for the last 24 hours. Cells were harvested for further

experiments.

Construction of Adenoviral-hG6PD expression vector
Human G6PD cDNA was excised from pCMV6_XL5-G6PD

by EcoR I and Xba I digestion and inserted into a shuttle vector,

pHIHG-Ad2. The resulting plasmid was digested with PacI and

MfeI; the fragment containing G6PD cDNA was used to

transform Escherichia coli BJ5183 together with a ClaI-linearized

adenovirus vector, pAd-hGM-CSF. Homologous recombination

Figure 7. Inhibition of PKA by siRNA increased cell proliferation and decreases apoptosis in endothelial cells under high glucose
treatment. Cells were transfected with siRNA and then treated with 5.6 mM glucose or 25 mM glucose for 72 hours: A: siRNA enhanced cell
proliferation under high glucose conditions B: siRNA decreased apoptosis under high glucose conditions. *, p,0.05 compared with 5.6 mM
condition. n = 6.
doi:10.1371/journal.pone.0049128.g007

Figure 8. High glucose increased NOX activity as well as
promoted colocalization of G6PD and NOX. Endothelial cells were
treated for 72 hours with 5.6 mM or 25 mM glucose. A: NADPH oxidase
activity was increased under high glucose conditions. Apocynin, an
inhibitor of NOX, was used as an assay control. *, P,0.05 compared
with 5.6 mM glucose and raffinose. See text for discussion. B:
Colocalization of G6PD and gp91phox, a subunit of NADPH oxidase.
BAECs grown on coverslips were stained with anti-G6PD (red, left panel)
and anti-gp91phox (green, middle panel) antibodies. Colocalization of
the fluorochromes results in a yellow colour (see arrows) which only
occurred under high gluose conditions (right panel). n = 5.
doi:10.1371/journal.pone.0049128.g008

Increasing G6PD Activity Restores Redox Balance
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of the two DNA fragments in BJ5183 produced a new adenoviral

vector, pAd-G6PD, in which hGMCSF in the original vector was

replaced by G6PD. pAd-G6PD was extracted from BJ5183 and

transferred to E. coli XL-10 for large scale plasmid preparation.

The sequence of pAd-G6PD was confirmed by sequencing.

Expression of G6PD was confirmed by infection of HEK-293

cells followed by Western blotting. The titer of purified adenovirus

was determined (Adeno-XTM Rapid Titer Kit, Clontech) accord-

ing to manufacture’s instructions. Empty vector was used for

control experiments.

Duplex siRNA Targeting Constructs and Transfection
Small interfering RNA duplex oligonucleotides were purchased

from Dharmacon, Inc. (Lafayette, CO). The sequence of the

siRNA duplex construct targeting PKA was 59-GAGUAAAGG-

CUACAACAAA-dTdT-39, corresponding to bases 637–655 from

the open reading frame of the bovine PKA catalytic subunit

mRNA (GenBankTM accession number NM_174584). The

duplex siRNA used as a scramble siRNA control was 59-

GCCCGCUUUGUAGCAUUCG-dTdT-39. In preliminary ex-

periments, we optimized the conditions for the efficient transfec-

tion of BAEC using siRNA. We found that optimal conditions for

siRNA knockdown involved transfecting BAEC at 70–80%

confluency maintained in DMEM/10% calf serum. For the

transfections with siRNA (5 nM) LipofectAMINE 2000 (0.075%

v/v) was used following protocols provided by the manufacturer.

Fresh medium was added 5 hours post-transfection, After

24 hours, the medium was switched to DMEM with 1% calf

serum plus 5.6 mM glucose or 25 mM glucose for 72 hours.

Figure 9. PKI (inhibitor of PKA) prevented the high glucose-induced decrease of G6PD activity, prevented the high glucose-
mediated increase in NOX activity, and prevented colocalization of G6PD and gp91. A: Inhibition of PKA rescues the high glucose-induced
decrease in G6PD activity. B: Inhibition of PKA prevents the high glucose-induced increase in NADPH oxidase activity. C: Left hand panel shows highly
significant colocalization of G6PD and gp91 caused by high glucose and the right hand panel shows that inhibition of PKA by PKI prevents the
colocalization by PKI. *, P,0.05 compared with 25 mM. #, P,0.05 compared with 5.6 mM. n = 5.
doi:10.1371/journal.pone.0049128.g009

Figure 10. Proposed Model. High glucose stimulates cAMP which
leads to activation of protein kinase A endothelial cells. PKA causes
inhibition of G6PD and lowering of NADPH, which leads to decreased
activities of catalase, SOD, and glutathione reductase. Activation of PKA
also increases NOX activity and colocalization of NOX and G6PD. The
overall effect of these changes is increased ROS level. Overexpression of
G6PD will rescue the decrease in G6PD, NADPH, and other antioxidant
enxymes. Also PKI and PKA specific siRNA (inhibitors of PKA) will also
rescue the deleterious effects of high glucose on enzyme activities as
well as on the colocalization of G6PD and gp91.
doi:10.1371/journal.pone.0049128.g010
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Measurement of G6PD, Catalase, Glutathione Reductase
(GR), and Superoxide Dismutase (SOD) activity

G6PD activity was measured as described previously [23].

Activity of catalase, SOD, and GR was measured by spectropho-

tometric methods according to the manufacture’s instructions

(Cayman, MI).

Measurement of NADPH, GSH/GSSG and Thiobarbituric
Reactive Substances (TBARS)

NADPH was measured by a colorimetric method according to

the manufacture’s instructions (Bioassay System, CA). GSH/

GSSG was measured by a spectrophotometric method according

to the manufacturer’s instructions (Cayman, MI). TBARS level

was measured by a fluorometric method according to the

manufacture’s instructions (ZeptoMetrix Corporation, NY).

Measurement of ROS accumulation
ROS production was measured with the dye CM-dihydro-

dichlorofluorescein diacetate (H2DCFDA) (Invitrogen). Fluores-

cence was determined in a microplate fluorometer (Victor2

fluorometer, PerkinElmer).

Measurement of Cell Proliferation and Apoptosis
Cell proliferation was measured by spectrophotometric methods

using the MTT cell proliferation assay kit according to the

manufacture’s instructions (Cayman, MI). Apoptosis was mea-

sured by a photometric enzyme-immunoassay using the cell death

detection ELISA kit according to the manufacture’s instruction

(Roche Diagnostics, IN).

Measurement of NADPH Oxidase Activity
NOX activity assay was measured as described previously [52].

Immunofluorescence labeling for confocal microscope
Double labeling was performed on BAECs grown on coverslips

with rabbit anti-G6PD (Abcam) and mouse anti-gp91 primary

antibodies.

Statistical analysis
Data are expressed as means6SD. The significance of the

differences in mean values among different groups was evaluated

using one-way ANOVA and a post hoc analysis using the Tukey

test. P,0.05 was considered statistically significant.

Supporting Information

Figure S1 Overexpression of G6PD does not affect the protein

expression of catalase in BAECs.

(DOC)

Figure S2 Overexpression of G6PD does not affect the protein

expression of glutathione reductase in BAECs.

(DOC)

Figure S3 Overexpression of G6PD does not affect the protein

expression of SOD in BAECs.

(DOC)
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