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Abstract
Ciprofloxacin (CIP) and levofloxacin (LEV), widely used fluoroquinolone antibiotics, are often found in sewage from 
the sewage treatment plants and marine environment. In this study, CIP and LEV biodegrading bacterial consortia were 
obtained from industrial wastewater. Microorganisms in these consortia were identified as Acinetobacter baumannii (A. 
baumannii), Klebsiella pneumoniae (K. pneumoniae) and Elizabethkingia miricola (E. miricola). The impacts of the criti-
cal operating parameters on the elimination of CIP and LEV by bacterial consortia have been investigated and optimized to 
achieve the maximum levels of CIP and LEV biodegradation. Using liquid chromatography with tandem mass spectrometry 
(LC-MS-MS), possible degradation pathways for CIP and LEV were suggested by analyzing the intermediate degradation 
products. The role of the enzymes fluoroquinolone-acetylating aminoglycoside (6′-N-acetyltransferase) and cytochrome 
P450 (CYP450) in the breakdown of fluoroquinolones (FQs) was investigated as well. According to our findings, various 
biodegradation mechanisms have been suggested, including cleavage of piperazine ring, substitution of F atom, hydroxylation, 
decarboxylation, and acetylation, as the main biotransformation reactions. This study discovers the ability of non-reported 
bacterial strains to biodegrade both CIP and LEV as a sole carbon source, providing new insights into the biodegradation 
of CIP and LEV.
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Introduction

FQs are synthetic antibiotics that have been extensively 
utilized in medical and veterinary medicine. The FQs are 
constantly used off label as a growth enhancer in animals 
culture (Kumar et al. 2005). Inhibition of enzymes essential 
to DNA replication is their principle mode of action (Blon-
deau 2004). FQs are incompletely metabolized by humans 
and animals. Besides, up to 90% of these drugs are excreted 
unchanged in urine and feces (Jelic et al. 2011). Residual 
FQs can pass easily to the terrestrial environment through 
the application of antimicrobial laced manure and are eas-
ily transferred to the marine environment through waste-
water disposal (Rusu et al. 2015). The antimicrobial resist-
ant bacteria might emerge from prolonged environmental 
exposure to small concentration of antimicrobials (Oliveira 
et al. 2018). Thus, widespread and inappropriate use of anti-
microbials in veterinary and human practice has resulted 
in the development of bacteria resistant to antimicrobials 
among pathogenic bacteria, making present antimicrobials 
ineffectual against common infectious diseases (Homem and 
Santos 2011).

A number of methods including physical–chemical such 
as advanced oxidation processes (De Witte et al. 2009; Giri 

and Golder 2014), sorption by special materials (Peng et al. 
2015; Zhao et al. 2016), and photo degradation (Babic et al. 
2013) have been adopted to remove CIP. However, these 
methods possess many drawbacks such as high sludge pro-
duction, management of the oxidants release of volatile com-
pounds, technical constraints and formation of by-products 
(Crini and Lichtfouse 2019). An alternative to physical and 
chemical treatments is the use of living micro-organisms to 
clean up these antimicrobials. Bioremediation uses microbes 
to remove complex hazardous substances or break them 
down into non-toxic or less toxic substances. The process is 
cost economic than other methods (Azubuike et al. 2016). 
It’s the most efficient, economical, environmental friendly 
approach to manage the contaminated environment (Fischer 
and Majewsky 2014).

The antibiotic CIP is ubiquitous in the environment as a 
result of its high stability and resistance to degradation. CIP 
biodegradation has been reported in the literature, however, 
only a few microbial species can degrade CIP (Pan et al. 
2018). Various bacteria were investigated for their CIP bio-
degradation ability, and several degradation products were 
suggested (Amorim et al. 2014; Jia et al. 2018; Liao et al. 
2016; Liyanage and Manage 2018; Pan et al. 2018). As for 
LEV (Maia et al. 2018; Shu et al. 2021) are the only reported 
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studies on the bacterial biodegradation of LEV to our knowl-
edge. Owing to their toxicity and inhibition of bacterial 
activity, FQs have become more resistant to biodegradation 
(Kumar et al. 2005). The accumulation of CIP traces in the 
environment can lead to the development of antibiotic-resist-
ant bacteria posing a serious health hazard (Felis et al. 2020; 
Wess et al. 2020; Zhang et al. 2011). Knowing about the 
microbial community that breaks down CIP and LEV paves 
the way for better understanding the biological process of 
FQs dissipation (Jayamani and Cupples 2015).

Therefore, the investigation of the possibility of CIP and 
LEV biodegradation by microbial species, and the identifica-
tion of the metabolites/transformation products originated 
during biodegradation process is the objective of the present 
study. In addition, the current study sheds some light on 
the enzymes involved in FQs biodegradation and possible 
biodegradation pathways.

Materials and methods

CIP hydrochloride (HCl) and LEV standards (purity > 99%) 
were kindly donated by Obour pharmaceutical industries 
(Cairo, Egypt). Acetonitrile and methanol (HPLC grade) 
were purchased from Fisher, USA. All other chemicals were 
of analytical grade. All experiments were conducted in three 
independent experiments.

Culture medium

Minimal mineral salt medium (MMSM) was prepared 
according to method described by Ali and cowork-
ers (Ali et al. 2021). The medium was composed of 10 g 
 FeSO4.7H2O, 4 g K2HPO4, 4 g KH2PO4, 10 g  CaCl2.2H2O, 
100 g  MgSO4.7H2O, 3 g  (NH4)2SO4, and trace elements 
1  mL−1. One liter of distilled water was used as a solvent. 
Whenever necessary, the MMSM was supplemented with 
the required concentration of CIP or LEV. When needed, the 
MMSM was solidified by adding 2% w  v−1 agar.

Enrichment, isolation, and maintenance of strains

From various sewage systems of pharmaceutical factories, 
Cairo, Egypt, wastewater samples were obtained. Two bacte-
rial consortia, each contained two different bacterial strains, 
were acquired from wastewater containing FQs. Briefly, 
A volume of 15 mL of wastewater samples were asepti-
cally transferred into 100 mL of MMSM in a conical flask 
amended with 0.125 mg  L−1 of either CIP or LEV as a sole 
organic carbon source, incubated in a rotary shaker incubator 
at 30 °C and 180 rpm. The microbial culture optical density 
was regularly monitored at 600 nm (OD600) and if bacterial 
growth was established (OD600 > 0.7); 10 mL of culture 

was transported to a new flask containing 100 mL of a fresh 
MMSM amended with 0.125 mg  L−1 CIP or LEV. This pro-
cedure was repeated 3 consecutive times before 5 mL of the 
final culture was aseptically inoculated onto MMSM plates 
supplemented with 0.125 mg  L−1 of either CIP or LEV. 
After 48 h incubation at 30 °C, visible colonies were picked 
and cultured in MMSM supplemented with increasing con-
centration of CIP or LEV (successively 0.5, 1, 2 mg  L−1). 
Samples were selected for further and more detailed study 
based on the growth rate of microorganisms and the poten-
tial to biodegrade FQs as the only source of carbon. Bac-
terial consortia were preserved in aqueous MMSM (25% 
glycerol) at − 80 °C (Tamer et al. 2006).

Identification of FQs biodegrading bacteria in each 
consortium

The Wizard Genomic  DNA purification  kit (Promega, 
USA) was used according to the manufacturer’s manual to 
extract genomic DNA. Polymerase Chain Reaction (PCR) 
was used to amplify amplicons of the 16S rRNA gene using 
primer pair1492r (5′-GGT TAC CTT GTT ACG ACT T-3′) 
and 27f (5′-AGA GTT TGA TTC TGG CTC AG-3′) (Guo 
et al. 2005). PCR was performed with conditions 94 °C 
for 30 s, 52 °C for 30 s, and 72 °C for 90 s for 35 cycles 
using Veriti thermal cycler (USA) and GoTaq® Flexi DNA 
polymerase (Promega, USA). PCR products were puri-
fied using a QIA quick PCR purification kit (Qiagen, Ger-
many) and sequenced at Macrogen (Seoul, South Korea). 
The sequences were compared against the available DNA 
sequences using BLASTN at http:// www. ncbi. nlm. nih. gov/ 
BLAST/ maintained by National Center of Biotechnology 
Information (NCBI).

Determination of the minimum inhibitory 
concentration (MIC) of CIP and LEV for each 
of the four bacterial isolates

 A sequential two-fold serial micro dilution broth procedure 
was adopted according to the method described in (CLSI 
2021) with CIP and LEV concentration ranging from 1056 
to 0.5 mg  L−1. The plates were incubated at 37 °C for 24 h. 
The lowest concentration of the antimicrobial agent that 
resulted in complete inhibition of visible growth was con-
sidered the MIC.

FQs biodegradation assays

For each bacterial consortium, the inoculum was prepared 
by re-suspending the aqueous MMSM glycerol stock in 
50 mL of MMSM media supplemented with CIP or LEV as 
a sole carbon source followed by 18 h incubation at 37 °C 
and rpm 180. A volume of 5 mL of the overnight bacterial 

http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ncbi.nlm.nih.gov/BLAST/
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suspension was used to inoculate flasks containing 100 mL 
MMSM (pH 7.0) amended with 1 mg  L−1 of either CIP or 
LEV to achieve an OD600 of value 0.125 corresponding 
to  106–107 CFU  mL−1., flasks were then incubated for 3 
and up to 28 days at 28 ± 2 °C and at 180 rpm. Samples 
were periodically withdrawn, and the optical density was 
measured. If there was a significant increase in the optical 
density (OD600 > 0.7), it was considered as a positive micro-
bial growth. A volume of 5 mL was then withdrawn, centri-
fuged at 3000 rpm for 5 min, filtered through 0.22 nm nylon 
syringe filter and stored at − 20 °C for further HPLC and 
phytotoxicity analyses. Negative controls were conducted by 
using MMSM with the FQs without microbial inoculation 
and positive controls were done by using MMSM inoculated 
with the bacterial consortium without FQs addition. The 
ability of the individual bacterial isolates for biodegradation 
of either CIP or LEV was also assessed using the previously 
mentioned conditions. The maximum concentration of FQs 
degraded by the two bacterial consortia was determined 
using MMSM supplemented with different concentrations 
of CIP or LEV ranging from (1–10 mg L −1) as a sole carbon 
source.

Optimization of degradation process

A factorial design was used to determine the optimum condi-
tions for the biodegradation process of FQs. Three factors 
were tested: pH (5 and7), UV application (UV B), Rpm (180 
and 210) and time (zero, 24 and 48 h). Minitab 18 program 
(USA) (www. minit ab. com) was used for designing the facto-
rial design and a total of 16 runs were analyzed.

Analytical methods

Chromatographic analysis of LEV and CIP HCl 
biodegradation

A rapid high-performance liquid chromatography method 
(Waters alliance 2690 series), using Diode Array Detector 
DAD-3000 (RS), was adopted for measuring the concen-
trations of CIP and LEV separately as described in (Czyr-
ski and Szałek 2016) with minor modifications. Briefly, A 
volume of 100 µl of the previously prepared samples was 
injected into HPLC column during the run of mobile phase. 
Chromatographic separation was carried out at room tem-
perature using the column YMC PACK C8 (4.6 X 100 mm, 
5 μm, USA). The analysis was employed using isocratic 
elution and UV detection at 277 and 290 nm for CIP and 
LEV, respectively. Acetonitrile HPLC grade, potassium di-
hydrogen phosphate (6.8 g  l−1 of water) and 100 μl of tri-
ethylamine were injected into the column at a rate of flow 
1 mL  min−1 in a ratio (80:20) as a mobile phase. The mobile 

phase pH was calibrated at 3 with the use of orthophos-
phoric acid. Mobile phase was filtered under negative pres-
sure pump through 0.2 µm pore size filter membrane and 
degassed by ultrasonic generator (Branson 1200, Ultrasonics 
Cooperation, USA) for 15 min. Samples were recorded on 
integrator peak areas. The concentration of FQs was calcu-
lated by relative peak area. Calibration curves for CIP and 
LEV were constructed by plotting the relative peak area of 
FQs versus its concentration.

Analysis of biodegradation intermediates using 
mass spectrometry

A method described by Pan and coworkers was adopted 
(Pan et al. 2018). In brief, samples from the biodegrada-
tion assay performed under optimum biodegradation param-
eters were extracted using equal volumes of ethyl acetate 
followed by evaporation to dryness. The extracts were dis-
solved in 3 mL methanol. Ultra-performance liquid chroma-
tography tandem mass spectrometry (UPLC) with a XEVO 
TQD triple quadruple instrument was utilized to analyze 
the intermediate metabolites from CIP and LEV biodeg-
radation. The chromatographic separation was performed 
on Waters Corporation, Milford, MA01757 U.S.A, mass 
spectrometer using ACQUITY UPLC BEH C18 column 
(1.7 µm − 2.1 × 50 mm) at temperature 30 °C. The mobile 
phase was composed of solvent A and solvent B where A is 
acetonitrile containing 0.1% formic acid and B is water con-
taining 0.1% formic acid flowed at rate 0.2 mL  min−1; 20 µL 
was injected into the column. The program elution consisted 
of gradient elution of A from 10 to 100% in 20 min followed 
by isocratic elution 100% of A for 4 min, followed by 10% 
of A for 4 min equipped with an electrospray interface (ESI) 
operated at 350 °C in positive ionization mode, and the ion 
spray voltage was set as 3 kV. The metabolites were detected 
and identified by scan analysis from m/z 100 to 1000.

Determination of bacterial ratio in each consortium 
during biodegradation process

The assay was done according to (Hazan et al. 2012). In 
order to find the ratio between each isolate in each consor-
tium during FQs biodegradation, viable count experiments 
were performed throughout the biodegradation process. A 
series of tenfold dilutions was prepared in sterile 96 well 
plate. A volume of 220 µL of each sample, withdrawn at 
zero, 12, 24, and 48 h, was deposited on the first column 
of the 96-well micro-plate. Each dilution well received 
200 µL of normal saline, 20 µL of each bacterial mixture 
was successively diluted into 200 µL of normal saline in a 
serially descending concentration. To each well, 10 μL of 
diluted bacterial mixture was spotted on brain heart agar 
plates, incubated for 24 h at 30 °C. Dilutions showing 3–30 

http://www.minitab.com
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distinguishable colonies were used for calculating the total 
microbial count.

Molecular screening of the aac (6′)‑Ib‑cr gene 
variant

The selected isolates were molecularly screened for the 
gene encoding the fluoroquinolone-acetylating amino-
glycoside 6′-N-acetyltransferase (aac(6')-Ib-cr). A DNA 
fragment (482-bp) was amplified using primer 1: (5′-TTG 
CGA  TGC TCT ATG AGT GGCTA-3′) and primer 2:(5′-CTC 
GAA TGC CTG GCG TGT TT- 3′) (Park et al. 2006). Prim-
ers were chosen to bind to the conserved region among all 
known aac (6)-Ib variants. PCR was performed using Veriti 
thermal cycler (USA) and GoTaq® Flexi DNA polymerase 
(Promega, USA). The PCR was performed with conditions 
94 °C for 30 s, 54 °C for 30 s, and 72 °C for 90 s for 35 
cycles using Veriti thermal cycler (USA) and GoTaq® Flexi 
DNA polymerase (Promega, USA). The PCR products were 
gel purified, followed by direct sequencing using primer 3: 
(5′- CGT CAC TC CAT ACA TTG CAA - 3′). Sequences were 
analyzed by CLC Main Workbench 8 (CLC Bio, Qiagen, 
Germany) (https:// digit alins ights. qiagen. com/) to identify 
aac(6)-Ib-cr, that is deficit from the restriction site of BstF5I 
found in the wild-type gene.

Evaluating the role of CYP450 enzymes in FQs 
degradation

Based on the assay described by Jia et al. (Jia et al. 2018), 
the CYP450 enzyme effect on the biodegradation of FQs 
was tested. Briefly, 1-aminobenzotriazole (ABT) was intro-
duced to MMSM at a final concentration of 1 mM. Bacterial 
solution was utilized to inoculate flasks containing 100 mL 
MMSM supplemented with CIP or LEV at 1 mg  L−1 con-
centration to achieve an OD600 of value 0.125. The flasks 
were introduced to an orbital shaker (180 rpm). After 48 h of 
incubation at 30 °C, withdrawn samples (2 mL) were HPLC 
analyzed as described above.

Phytotoxicity assay

The assay was carried out in accordance to the protocol rep-
resented by (Hassan et al. 2019). Four different concentra-
tions 100%, 50%, 25% and 10% of the previously prepared 
samples for both CIP and LEV were made. A volume of 
3 mL of the prepared dilutions was poured into each Petri 
dish. Filter papers (5 cm diameter) were carefully placed. 
Five seeds of Lepidium sativum (L. sativum) were placed 
on the soaked filter paper in each dish. Petri dishes were 
incubated for 3 days at 30 °C in darkness. Phytotoxicity per-
centage was estimated as the reduction ratio of the average 
stem length between the test seeds and the control seeds.

Results

Isolated bacterial consortia are capable 
of degrading CIP and LEV

Two bacterial consortia were acquired with the potential to 
grow on MMSM plates amended with either CIP or LEV 
at 1 mg  L−1 individually. Two different colonies arose from 
each consortium. Analysis of the partial 16S rRNA gene 
sequence of the two bacterial consortia revealed that one 
bacterial consortium was composed of A. baumannii and 
K. pneumoniae (Genbank accession number: KJ996147.1 
and MN860018.1, respectively) and the other consortium 
was composed of E. miricola and K. pneumoniae (Gen-
bank accession number: MZ315066.1and MZ389246.1, 
respectively).

The individual bacterial isolates are resistant to CIP 
and LEV

Upon determining the MIC of the individual bacterial iso-
lates of each consortium against both CIP and LEV, it was 
found that the MIC of CIP for K. Pneumoniae and A. Bau-
mannii was 16 mg  L−1 while for E. miricola was 8 mg  L−1. 
Meanwhile, the MIC of LEV for the four isolates was 
8 mg  L−1.

The pH affects the biodegradation rate of FQs

By investigating different parameters affecting the FQs bio-
degradation, the pH factor showed to have a significant effect 
(p < 0.05) on the biodegradation of both CIP and LEV by 
sample 1 (biodegradation was higher in acidic pH) (Fig. 1a, 
b), On the contrary, it showed no significant effect on the 
biodegradation of FQs by sample 2 (Fig. 1c, d). The maxi-
mum levels of biodegradation for both CIP and LEV were 
significantly (p < 0.05) attained during day one for both sam-
ple 1 and sample 2. No significant difference was displayed 
by other factors (rpm and UV application). The optimum 
degradation conditions for both CIP and LEV in sample 1 
(A. baumannii and K. pneumoniae) were temperature 30 °C, 
pH 5, rpm 180 and without UV application. For sample 2 
(E. miricola and K. pneumoniae.), temperature 30 °C, pH 7, 
rpm 180 and without UV application represent the optimum 
conditions for both CIP and LEV biodegradation.

The bacterial consortia biodegrade FQs individually

The quantitative analyses of CIP and LEV biodegradation 
were monitored by HPLC using DAD detector. CIP and 
LEV appeared as a single peak at retention time 2.6–2.8 and 

https://digitalinsights.qiagen.com/
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2.7–2.8, respectively (Fig. S1). Upon comparing the biodeg-
radation ability of pure bacterial cultures of the individual 
isolates to that of the consortium, it was found that the bio-
degradation activity was completely abolished significantly 

upon using the individual isolates and they should exist as 
a consortium to exhibit such biodegradation process (Fig.
S2). For both bacterial consortia, no significant difference 
was recorded in the initial concentration of both CIP and 

Fig. 1  Different variables affect the fluoroquinolones elimination rate. 
Pareto charts represent the effect of different variables individually 
and in combinations on the elimination rate of FQS. Pareto charts 
rank the standardized effects of the tested factors. Bars that cross the 
reference line are statistically significant. a A pareto chart represents 
the significant variables affecting the biodegradation of CIP by sam-
ple 1 (K. pneumoniae and A. baumannii) (b) A pareto chart repre-

sents the significant variables affecting the biodegradation of LEV by 
Sample 1 (K. pneumoniae and A. baumannii). c A pareto chart repre-
sents the significant variables affecting the biodegradation of CIP by 
Sample 2 (K. pneumoniae and E. miricola). d A pareto chart repre-
sents the significant variables affecting the biodegradation of LEV by 
Sample 2 (K. pneumoniae and E. miricola). Statistical analyses were 
done at p-value < 0.05
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LEV 12 h post inoculation. For sample 1, maximum bio-
degradation levels (50% of the initial concentration) for both 
CIP and LEV were attained 48 h post inoculation, thereaf-
ter, the FQs concentration remained practically unchanged. 
Meanwhile, 48 h post inoculation, sample two (E. miricola 
and K. pneumoniae), was able to biodegrade only 50% and 
30% of initial concentration of CIP and LEV, respectively 
(Fig. 2a, b). The biodegradation metabolites of CIP and LEV 
are listed in the supporting information Fig. S3 and Fig. S4.

Different concentrations of FQs affect the rate 
of biodegradation

Different concentrations of CIP and LEV were tested to 
measure the maximum concentration of FQs that can be bio-
degraded by the bacterial consortium. The two bacterial con-
sortia were able to biodegrade both CIP (Fig. 3a) and LEV 
(Fig. 3b) up to 8 mg  L−1 with varying removal rate. As the 
concentration increased the percentages removal decreased.

Fig. 2  The elimination rate of FQs by bacterial consortia. MMSM 
was supplemented with CIP or LEV as a sole carbon source. Experi-
ments were conducted under the optimum degradation conditions 
(30 °C, pH = 5, 180 rpm). a A comparison between the biodegrada-
tion rate of CIP (1 mg  L−1) by sample 1 (K. pneumoniae and A. bau-
mannii) and sample 2 (K. pneumoniae and E. miricola) and control. b 
A comparison between the biodegradation rate of LEV (1 mg  L−1) by 

sample 1 (K. pneumoniae and A. baumannii) and sample 2 (K. pneu-
moniae and E. miricola) and control. Error bars represent SD (n = 3). 
Statistical analyses were done using two-way ANOVA’s test using 
graph pad prism version 8 programme (USA). The *indicates signifi-
cant differences at p < 0.05. The figure was generated using CANVA 
X GIS programme

Fig. 3  Different concentrations of FQs affect the rate of biodegrada-
tion. MMSM was supplemented with CIP or LEV as a sole carbon 
source. Experiments were conducted under the optimum degradation 
conditions (30  °C, pH = 5, 180  rpm). a A comparison between the 
biodegradation rate of different conc. of CIP (1–10 mg/L) by sample 
1 (K. pneumoniae and A. baumannii) and sample 2 (K. pneumoniae 
and E. miricola) and control. b A comparison between the biodeg-

radation rate of different conc. of LEV (1–10 mg/L) by sample 1 (K. 
pneumoniae and A. baumannii) and sample 2 (K. pneumoniae and 
E. miricola) and control. Values are the means of three independent 
experiments. Error bars represent standard deviations (n = 3). The 
analysis was conducted using two way ANOVA’s test using graph pad 
prism version 8 programme (USA). The *indicates p < 0.05
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The relative abundance of each isolate 
of the two bacterial consortia varies during FQS 
biodegradation

Each dilution containing (3–30) observable colonies was 
quantified using viable plate count, the number of colony 
forming unit per 100 ul was estimated. The experimental 
colony counts at the beginning of the biodegradation and 
after 48 h of incubation were compared. Regarding sam-
ple 1, initially, K. pneumoniae was more abundant than A. 
baumannii. However, as the CIP and LEV biodegradation 
process proceeded, the ratio became the same as shown in 
Fig. 4a, b. On the contrary, the initial ratio between the bac-
terial isolates in sample 2 (K. pneumoniae and E. miricola) 
was practically the same, but as the biodegradation process 

proceeded, the ratio was changed until E. miricola became 
significantly predominate over K. pneumoniae as shown in 
Fig. 4c, d.

The aac (6′)‑Ib‑cr variant of aminoglycoside 
acetyl‑transferase involved in FQs degradation 
is present in the individual isolates of both consortia

The individual bacterial isolates in both consortia were 
molecularly screened for aac (6 ') –Ib-cr gene that is 
involved in the degradation of FQs. All four isolates were 
positives for the gene. The aac(6′)-Ib-cr variant was distin-
guished from the wild type gene by direct sequencing and 
confirming the absence of the restriction site of BstF5I found 
in the wild-type gene (Fig. 5).

Fig. 4  The relative abundance of each isolate of the two bacterial 
consortia varies during FQs biodegradation. Viable count experiment 
was performed during the biodegradation process. (a) and (b) A com-
parison between the recorded CFU of sample 1 isolates K. pneumo-
niae and A. baumannii during the biodegradation of CIP and LEV, 
respectively. (c) and (d) A comparison between the recorded CFU of 

sample 2 isolates K. pneumoniae and E. miricola during the biodeg-
radation of CIP and LEV, respectively. The analysis was conducted 
using two-way ANOVA’s test using graph pad prism version 8 pro-
gramme (USA). The *indicates significant differences, p < 0.05. The 
figure was generated using CANVA X GIS programme
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1‑aminobenzotriazole abolishes completely 
the biodegradation activity of FQs

The concentration of CIP and LEV was measured by 

HPLC–DAD after 48 h of incubation in absence and pres-
ence of 1-aminobenzotriazole. Complete inhibition of the 
biodegradation of CIP and LEV by sample 1 (Fig. 6a) and 
sample 2 (Fig. 6b) in the presence of 1-aminobenzotriazole 
indicated the possible involvement of CYP450 enzymes.

Fig. 5  Alignment of the nucleotide sequence of the four isolates 
against the aac(6′)-Ib gene. The pink bars, representing the % con-
servation of the nucleotides, are showing high conservation % 
among different strains. The variation in the nucleotide sequence at 

the Bstf5l restriction site (GGA TGG TGG) of the gene aac(6′)-Ib-cr 
(T → C) in the four isolates and the wild type is highlighted. The 
alignment was generated by the CLC Workbench 8.5 software

Fig. 6  The 1-aminobenzo triazole diminishes the biodegradation 
of CIP and LEV. MMSM was supplemented with CIP or LEV as a 
sole carbon source. Experiments were conducted under the optimum 
degradation conditions (30  °C, pH = 5, 180  rpm). a A comparison 
between the biodegradation rate of CIP and LEV (1 mg  L−1) by sam-
ple 1 (K. pneumoniae and A. baumannii) in the presence and absence 
of CYP 450 inhibitor (ABT). b A comparison between the biodegra-

dation rate of CIP and LEV (1 mg  L−1) by sample 2 (K. pneumoniae 
and E. miricola) in the presence and absence of CYP 450 inhibitor 
(ABT). Error bars represent SD (n = 3). The data were analyzed by 
ANOVA’s test using graph pad prism version 8 programme (USA). 
The *indicates significant differences, p < 0.05. The figure was gener-
ated using CANVA X GIS programme
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CIP and LEV metabolites are non‑phytotoxic

The phytotoxicity of CIP and LEV metabolites by Sample 
1 (K. pneumoniae and A. baumannii) (Fig. 7a, b) and by 
sample 2 (K. pneumoniae and E. miricola) (Fig. 7c, d) was 
assessed using L. sativum. Each sample included 15 seeds 
of L. sativum, distributed on filter paper in Petri dishes. The 
length of the seeds stems was measured. Analysis of vari-
ance (ANOVA) was performed to compare the inhibitory 
effect of CIP and LEV metabolites solutions at the con-
centrations mentioned above with MMSM only as control 
group. No statistically significant differences were found 
between the tested and the control groups (the difference is 
considered significant if p value < 0.05).

Discussion

In recent years antimicrobials have been viewed as emerging 
contaminants due to their continued incidence and persis-
tence, as well as their widespread in natural and aquatic eco-
systems, even in low concentrations (Frade et al. 2014). FQs 
have been observed in the environment around the world, 

indicating that FQs elimination using traditional methods 
from wastewater and water is ineffective and it’s believed to 
pose health risks to humans and other living organisms. In 
this study, two FQs antibiotics, CIP hydrochloride and LEV, 
were used as the only sole source of carbon in biodegrada-
tion tests.

Various microorganisms had been studied for their capa-
bilities to degrade aromatic compounds (Amorim et al. 2014; 
Maia et al. 2018). In our study, two bacterial consortia were 
able to biodegrade both CIP and LEV; the first bacterial 
consortium was composed of A. baumannii and K. pneumo-
niae. Among the microbial communities involved in various 
ecosystems, i.e. soil, fresh/sewage water, and solid waste, 
various strains of the genus Acinetobacter have attracted a 
surge interest from a medical, environmental and biotech-
nological point of view. A. baumannii is abundant in nature, 
and can be acquired from water, soil and living organisms. 
Some strains of Acinetobacter are known to be associate 
in biodegradation of different number of pollutants such as 
Permethrin (Zhan et al. 2018), phenanthrene, 3-chloroani-
line (Duc 2016), diesel (Ho et al. 2020), indole (Sadauskas 
et al. 2017), malathion (Xie et al. 2009), deltamethrin (Tang 
et al. 2020), azo dye (Sreedharan et al. 2021) and phenol 

Fig. 7  The CIP and LEV bio-
degradation metabolites exhibit 
no toxicity levels. The average 
stem lengths were measured in 
the presence of biodegradation 
metabolites. a A comparison 
between the recorded averages 
of stem length of L. sativum 
seeds of biodegradation metabo-
lites of CIP by Sample 1 (K. 
pneumoniae and A. baumannii) 
and control. b A comparison 
between the recorded averages 
of stem length of L. sativum 
seeds of biodegradation metabo-
lites of LEV by Sample 1 (K. 
pneumoniae and A. baumannii) 
and control. c A comparison 
between the recorded averages 
of stem length of L. sativum 
seeds of biodegradation metabo-
lites of CIP by Sample 2 (K. 
pneumoniae and E. miricola) 
and control. d A comparison 
between the recorded averages 
of stem length of L. sati-
vum seeds of biodegradation 
metabolites of LEV by Sample 
2 (K. pneumoniae and E. 
miricola) and control. The data 
were analyzed by ANOVA’s test 
using graph pad prism version 8 
programme (USA)
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(Liu et al. 2020). Biodegradation of cellulose, chitin, pec-
tin, fluoranthene, and phenanthrene by Actinetobacter from 
deep Sea Sediments were reported by (Chen et al. 2016). 
Bioremediation of petroleum hydrocarbons by Acinetobac-
ter were described in (Cai et al. 2021). In addition, some 
of the Acinetobacter strains are also recognized to produce 
important by-products. There are countless applications of 
Acinetobacter strains in the treatment of dangerous waste 
or as generators of economically beneficial bio-products.

Klebsiella species are among the well-studied microbes 
both in medicine field, as ones of the most resilient oppor-
tunistic pathogens, and in industry, due to their promising 
biochemical properties. klebsiella strains were especially 
investigated for degradation of polycyclic aromatic hydrocar-
bons kerosene (Ali et al. 2018), petroleum (Bilen Ozyurek 
and Bilkay 2017), diclofenac (Stylianou et al. 2018), atrazine 
(Zhang et al. 2019), organochlorine insecticide (Kwon et al. 
2005), 3-phenoxybenzoic acid and pyrethroid pesticides 
(Tang et al. 2019) and nitro aromatic compounds (Boopa-
thy and Melancon 2004). K. pneumoniae was reported in the 
removal of penicillin G from environment by (Wang et al. 
2014). A microbial consortium containing K. pneumoniae 
was able to biodegrade two FQs norfloxacin and ofloxacin 
(Jałowiecki et al. 2019). K. pneumoniae is studied also for 
the elimination of heavy metals or metalloids from contami-
nated sites such as lead (Atikpo and Ihimekpen 2020).

The second consortium is composed of E. miricola. In 
1959 Elizabeth O. King discovered the Elizabethkingia 
species. They are aerobic, non-fermenting, gram negative, 
and non-motile bacteria abundant in the environment (King 
1959). The genus at the beginning was classified as Fla-
vobacterium, then in 1994, it was specified as Chryseo-
bacterium (Vandamme et al. 1994). It was assigned to the 
new genus Elizabethkingia in 2005 based primarily on the 
sequencing of 16S rRNA gene (Kim et al. 2005), it com-
prise a group of environmental bacteria that is widely found 
in water, soil and plants, including adequately chlorinated 
municipal water supplies systems (Kirby et al. 2004). E. 
meningoseptica, E. anophelis, and E. miricola have been 
recognized for their medical importance (Peng et al. 2020).
There have been no reported studies on the use of E. miri-
cola in bioremediation until now.

Regarding our study, in sample 1, the MIC of CIP and 
LEV for K. Pneumoniae and A. Baumannii was 16 mg  L−1 
and 8 mg  L−1 respectively, while the MIC of CIP and LEV 
for K. Pneumoniae in sample 2 was 16 mg  L−1 and 8 mg  L−1 
respectively, and for E. miricola was 8 mg  L−1 for both FQs, 
which coincides with the maximum concentration of FQs 
that sample 1 and sample 2 can degrade as a sole carbon 
source (8 mg  L−1).

The relative abundance between isolates of the two bac-
terial consortia during the biodegradation of CIP and LEV 
was investigated. The data revealed that in sample 1 initially, 

K. pneumoniae was more abundant than A. baumannii. 
However, as the CIP and LEV biodegradation process pro-
gressed, the ratio became the same. Interestingly, the initial 
ratio between the bacterial isolates in sample 2 (K. pneumo-
niae and E. miricola) was essentially the same, but as the 
biodegradation process proceeded, the ratio was changed 
and E. miricola became the foremost abundant one. Accord-
ingly, in order to clarify this point, we need to highlight that 
only two single bacterial strains were documented for their 
ability to biodegrade CIP. Labrys Portucalensis reported by 
(Amorim et al. 2014) was able to degrade FQs in the pres-
ence of an easily degradable carbon source, while (Pan et al. 
2018) reported the biodegradation of CIP by Thermus ther-
mophilushas at 70 °C. However, in our study the effect of 
temperature had no significant effect on the biodegradation 
process. Probably due to the fact that the biodegradation/
biotransformation of recalcitrant pollutants such as FQs in 
natural environments cannot be easily performed by a single 
microorganism (Rusch et al. 2019), we hypothesize that in 
each consortium one of the microorganisms (K. pneumo-
nia) initiates the biodegradation of CIP or LEV producing 
metabolites that can be then used by the other bacterium 
(A. baumannii and E. miricola) which is confirmed by the 
inability of the pure culture of bacterial isolates to biode-
grade FQs. However, further investigations are needed to 
acquire further knowledge and evidence.

There had been several studies reporting the biodegra-
dation of CIP as the only source of carbon (Amorim et al. 
2014; Liao et al. 2016; Pan et al. 2018). On the contrary, 
only few documented studies reporting the biodegrada-
tion of LEV as the only carbon source are available (Maia 
et al. 2018; Shu et al. 2021). For further knowledge about 
the biodegradation of CIP and LEV, the biodegradation 
metabolites of the two compounds throughout the experi-
ment were investigated. Seven degradation metabolites were 
revealed by LC-MS-MS in case of CIP. The first compound, 
denoted as CIP-A (N-acetyl ciprofloxacin), was formed by 
acetylation of NH group in piperazine ring. This reaction is 
known to be catalyzed by the N acetyl transeferase enzyme, 
which coincides with the data showed by both (Jung et al. 
2009; Robicsek et al. 2006) who reported the role of such 
enzyme in CIP biodegradation. Another compound, CIP-B 
(Ethylene-N-ciprofloxacin) was formed as a result of oxida-
tion of the piperazinyl substituent. A net loss of  C2H2 at the 
piperazinyl substituent of CIP lead to the formation of CIP-B 
that appeared in sample 2 (E. miricola and K. pneumoniae). 
The same compound was previously reported as a CIP 
bacterial degradation metabolite by Labrys portucalensis, 
Sulfate reducing bacteria and Thermus thermophilus bac-
terium, respectively (Amorim et al. 2014; Jia et al. 2018; 
Maia et al. 2014; Pan et al. 2018) and also by the brown-rot 
fungus Gloeophyllu striatum (Wetzstein et al. 1999). CIP-B 
was also recognized as a mutual metabolite in mammals 
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with insignificant antibacterial effect (Dalhoff and Bergan 
1998; Wetzstein et al. 1999). CIP-C (N-formyl ciprofloxa-
cin), detected in both consortia, was also revealed by (Pan 
et al. 2018) as one of CIP biodegradation products. CIP-D 
(mono-hydroxylated‐de-fluorinated CIP) was formed by 
the substitution of the fluorine atom with hydroxyl group. 
CIP-D was previously reported by (Jia et al. 2018; Liao et al. 
2016) as one of the biodegradation products of CIP by Sul-
fate reducing bacteria, and Gammaproteobacteria, Bacte-
roidia, Betaproteobacteria bacterium, respectively. CIP-E 
was first reported by (Pan et al. 2018) in biodegradation of 
CIP by Thermus thermophilus as 7-amino-6-fluoro-4-oxo-
1,4-dihydroquinoline-3-carboxylic acid. Metabolites CIP-F 
and CIP-G as di and mono hydroxylated ciprofloxacin were 
proposed by (Wetzstein et al. 1999) in which both com-
pounds were formed by undergoing hydroxylation, these 
compounds were only reported due to fungal degradation 
of CIP. Interestingly, this study is the first to report the mono 
and di hydroxylated ciprofloxacin as bacterial biodegrada-
tion products. To that end, we can assume that hydroxylation 
is a crucial step for FQs biodegradation, which may occur at 
varies locations on the quinolone ring throughout CIP and 
LEV biodegradation by bacteria (Amorim et al. 2014) and 
fungi (Prieto et al. 2011; Wetzstein et al. 1999).

As for LEV, Potential degradation metabolites were also 
proposed in this study. Seven compounds were generated 
during LEV degradation. LEV-A was formed by decarboxy-
lation and formation of N-oxide to LEV. LEV-B was formed 
by N-demethylation of the N-methylpiperazine moiety, this 
compound was previously revealed by (Shu et al. 2021) as 
one of LEV degradation metabolites produced by lactobacil-
lus. LEV-C was proposed to be formed by decarboxylation 
reaction, which is also reported by (Xiong et al. 2017) dur-
ing degradation of LEV by freshwater green algae. LEV-D 
was obtained by morpholine ring breakage. Deflourination 
of LEV yielded LEV-E metabolite. LEV-F degradation prod-
uct formed by defloration and demethylation followed by a 
hydroxylation reaction. LEV-G was formed by decarboxyla-
tion and N-demethylation that occur simultaneously leading 
to the removal of carbon dioxide and a methyl group.

AAC(6’)-Ib-cr (Park et al. 2006) and CrpP (Chávez-
Jacobo et al. 2018) are the only two enzymes that has been 
described to possess CIP-modifying activity. Aminoglyco-
side N-acetyl-transferases (aac(6')-Ib), the most ubiquitous 
aminoglycoside modifying enzyme, resistant to tobramy-
cin and kanamycin (Vakulenko and Mobashery 2003), 
was first detected in K. pneumoniae isolates in 1986 (Tol-
masky et al. 1986). There are two main subclasses of aac 
(6′) enzymes, which are discriminated based on the ami-
noglycosides inhibited aac(6′)-I and aac(6′)-II (Tolmasky 
et al. 1986; Woloj et al. 1986; Rather et al. 1992; Shaw et al. 
1993; Tolmasky et al. 1986; Woloj et al. 1986) A variant 
of the aac(6')-Ib recognized as aac(6')-Ib-cr was identified 

by (Robicsek et al. 2006). This enzyme comprises FQs in 
addition to aminoglycosides as its drug targets to. In a study 
performed by Jung and coworkers (Jung et al. 2009), a strain 
of E. coli, obtained from a municipal waste water treatment 
plant was found to possess a variant of a gene that encodes 
an aminoglycoside acetyl transferase enzyme which can 
acetyl the piperazine ring, thereby inactivating certain FQs. 
However, other antimicrobials such as LEV are not altered 
by this enzyme due to the absence of the piperazinyl con-
stituent in its structure in addition to the presence of methyl 
group. Although since 1986 about 30 variants of this gene 
have been revealed, the two base-pair alteration account-
able for the CIP transformation are distinctive to this variant 
(Wetzstein et al. 1999). Regarding our study, since the analy-
sis of degradation metabolites by LC-MS-MS showed the 
presence of N-acetyl ciprofloxacin compound, the bacterial 
isolates of each consortium were screened for the presence 
of aac(6′)-Ib-cr and the presence of aac(6′)-Ib-cr gene was 
confirmed in all isolates.

The CrpP enzyme reported by (Chávez-Jacobo et  al. 
2018) showed enzymatic activity against CIP through phos-
phorylation producing a CIP ATP compound. In our study 
the in vitro CIP metabolites analysis using LC-MS-MS did 
not show any evidence on the presence of a molecular ion 
that correlates to CIP-ATP or any of its fragmented com-
pounds. Thus, we ruled out the role of the CrpP enzyme in 
CIP biodegradation in our bacterial consortia.

In order to study the role of CYP 450 in the biodegrada-
tion of FQs, 1-aminobenzotriazole (ABT) was introduced to 
the media as it’s considered a pan in-activator of the xeno-
biotic metabolizing forms of cytochrome P450 in animals, 
plants, insects, and microorganisms (de Montellano 2018). 
The strong inhibition of the process indicated the crucial 
role played by CYP450 in FQs biodegradation in concise 
with data presented by Jia and coworkers (Jia et al. 2018), 
who reported that throughout CIP biodegradation in a sludge 
system of sulfate-reducing anaerobic bacteria, the addition 
of ABT as a CYP450 inhibitor had significantly inhibited 
the biodegradation process. Therefore, the CYP450 having 
an essential part in FQs biodegradation was suggested by 
the authors.

The results of the phytotoxicity assay revealed that the 
two bacterial consortia can be used in the bioremediation 
of CIP and LEV yielding non phytotoxic compounds, thus, 
providing an environmentally safe approach for dealing with 
FQs environmental pollution.

Conclusion

This Study is the first to report the biodegradation activity of 
E. miricola, K. pneumoniae and A. baumannii towards FQs. 
For CIP biodegradation, the main steps are demethylation, 
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acetylation, formylation, and hydroxylation. Only few stud-
ies had reported about the enzymes and pathways involved in 
the biodegradation of CIP considering the numerous number 
of biodegradation metabolites of CIP. On the other hand, 
the principle steps of LEV biodegradation are deflourina-
tion, hydroxylation, demethylation, and decarboxylation.
Our findings indicate the crucial role played by FQs ami-
noglycoside acetyl-transferase and CYP450 enzymes in the 
biodegradation of FQs. Taking this all together suggests that 
the results of this research can help to develop suitable bio-
augmentation strategies for better FQs wastewater treatment 
processes.
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