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Abstract: Heat stress disturbs cellular homeostasis, thus usually impairs yield of flowering Chinese
cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee). MicroRNAs (miRNAs) play
a significant role in plant responses to different stresses by modulating gene expression at the
post-transcriptional level. However, the roles that miRNAs and their target genes may play in heat
tolerance of flowering Chinese cabbage remain poorly characterized. The current study sequenced
six small RNA libraries generated from leaf tissues of flowering Chinese cabbage collected at 0,
6, and 12 h after 38 ◦C heat treatment, and identified 49 putative novel miRNAs and 43 known
miRNAs that differentially expressed between heat-tolerant and heat-sensitive flowering Chinese
cabbage. Among them, 14 novel and nine known miRNAs differentially expressed only in the
heat-tolerant genotype under heat-stress, therefore, their target genes including disease resistance
protein TAO1-like, RPS6, reticuline oxidase-like protein, etc. might play important roles in enhancing
heat-tolerance. Gene Ontology (GO) analysis revealed that targets of these differentially expressed
miRNAs may play key roles in responses to temperature stimulus, cell part, cellular process, cell,
membrane, biological regulation, binding, and catalytic activities. Furthermore, Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analysis identified their important functions in signal
transduction, environmental adaptation, global and overview maps, as well as in stress adaptation
and in MAPK signaling pathways such as cell death. These findings provide insight into the functions
of the miRNAs in heat stress tolerance of flowering Chinese cabbage.

Keywords: flowering Chinese cabbage; miRNA; heat response; high-throughput sequencing

1. Introduction

Flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) belongs
to the Brassicaceae family and is mainly grown and consumed in southern China [1]. This vegetable
crop is valuable for human diet due to its high soluble fiber, favorable taste, richness in vitamin
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C, and other nutrients. However, environmental stresses and climate changes have decreased the
productivity and quality of this crop in recent years [2,3]. Due to the continuous increase in atmospheric
temperature, heat stress is becoming a key-limiting factor for crop productivity around the globe by
negatively affecting reproduction, physiological processes, adaptation, and development of many
crops, thus is responsible for extensive agricultural losses [4,5]. Furthermore, heat stress affects protein
synthesis, causes cell membrane damage, inactivates several key enzymes and affects cell division [6].
Heat-stress transcription factors limit the gathering of heat-shock proteins that play a significant role
in plant heat-stress responses [7]. Flowering Chinese cabbage has to face the heat stress, which not
only affects cellular homeostasis and plant growth but also leads to yield reductions and even plant
death [8,9]. The average temperature for efficient growth of flowering Chinese cabbage is 22 ◦C.
Head formation of flowering Chinese cabbage is sensitive to high temperature, which is irreversible,
and therefore responsible for cabbage quality and yield decline in summer [10]. To survive high
temperatures, plants have established various molecular and physiological mechanisms to respond
and adapt to the harsh environments. Precise regulation of gene expression at the transcriptional and
post-transcriptional levels is a complex process that is important to the orchestration of various plant
responses to heat-stress.

Plant endogenous small non-coding RNAs (ncRNAs) can be divided into four classes:
repeat-associated small interfering RNAs (siRNAs), trans-acting siRNAs, microRNAs (miRNAs),
and natural antisense transcripts siRNAs, and they all play critical roles in response to different biotic
and abiotic stresses. These ncRNAs use several molecular mechanisms to orchestrate the key regulatory
roles, such as translation, modulation of RNA stability, and transcriptional and post-transcriptional
regulation of gene expression [11]. miRNAs have become a research hotspot due to their ability
to repress gene translation or target mRNA degradation to effectively control gene expression at
the post-transcriptional level [12]. Numerous evidence points to the critical role of miRNAs in the
modulation of important processes such as responses to environmental stresses, vegetative phase
change, floral organ identity and flowering time, nutrient homeostasis, and leaf development [13].
Recently, a high-throughput sequencing approach has been used in predicting several conserved and
novel miRNAs with significant functions in the plant responses to heat-stress [14–16]. Several databases
and websites are available for analyzing and storing miRNA information. miRBase is one of the main
miRNA sequence repositories and provides exact confidence levels for searching deep sequencing
information with precise expression patterns [17]. Genome-wide studies demonstrated that miRNAs
miR160, miR827, miR168, miR159, miR166, miR156, and miR169 significantly regulated the responses
of Brassica plants to heat stress [11,18]. Additionally, bra-miR5726, bra-miR5714, bra-miR1885b.3,
and bra-miR5716 were induced in B. rapa by heat stress [18]. Using high-throughput sequencing,
24 novel and 20 known differentially expressed miRNAs were identified between heat-treated
heat-sensitive (HS) and heat-tolerant (HT) Brassica oleracea L. var italic genotypes [11]. Numerous
miRNAs responsive to heat stress have been identified and characterized in Brassica spp., including B.
rapa ssp. chinensis [19] and B. juncea [20]. However, to the best of our knowledge, limited information
is available for heat-responsive miRNAs in flowering Chinese cabbage. Investigation of the functions
of miRNAs under heat stress will enhance our understanding of the molecular mechanisms associated
with heat tolerance that can be used in genetic improvement and production management of flowering
Chinese cabbage.

Our previous work reported expressed sequence tag-simple sequence repeat (EST-SSR) markers
derived from HT (Sijiu-19 and Youlv 501) and HS (3T-6 and Liuye 50) genotypes in flowering
Chinese cabbage responsive to high temperatures [1]. We also identified 41 conserved and 18 novel
miRNAs from small RNA (sRNA) libraries using the HT genotype, Youlv 501, after heat treatment by
high-throughput sequencing [21]. Here, we performed a comparative study to identify conserved and
novel miRNAs from HT (Sijiu-19) and HS (Liuye 50) genotypes at 0, 6, and 12 h of heat treatments
and found that the potential targets of the differentially expressed miRNAs under the heat stress
conditions were mainly involved in the regulation of biological and cellular processes, as well as
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catalytic and binding activities. The comparative study identified differentially expressed miRNAs
and their involvements in controlling heat tolerance in flowering Chinese cabbage.

2. Materials and Methods

2.1. Plant Materials, Growth Conditions, and Total RNA Isolation

Two genotypes of flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen
et Lee), Sijiu-19 (HT) and Liuye 50 (HS), were grown in a growth chamber at Guangzhou University
at 28/22 ◦C for 14/10 h (day/night). Plants at the five-leaf stage were transferred into another growth
chamber at 38 /29 ◦C (14/10 h) for heat treatments. Samples were collected from the fully expanded
upper leaves of HT and HS plants after 0 (control), 6 and 12 h of heat treatments. Collected tissues
were flash-frozen immediately in liquid nitrogen, and then stored at 80 ◦C until RNA isolation [22,23].
Trizol RNA extraction kit (Invitrogen, Waltham, MA, USA) was used for total RNA isolation following
the manufacturer’s protocol.

2.2. Construction and Sequencing sRNA Libraries

RNA was isolated from three biological replicates at each time point and then three RNA samples
per treatment were combined into one tube in an equal amount for library construction. All the cDNA
libraries were constructed using TruSeq Small RNA Preparation Kit following the manufacturer’s
protocol (Illumina, San Diego, CA, USA). In brief, RNA 3′- and RNA 5′-adapters were ligated to total
RNA, cDNA constructs were created using reverse transcription after PCR, and then samples of small
cDNA fragments of different lengths (18–30 nt) were run on 6% denaturing polyacrylamide gel by
electrophoresis [18,24,25]. The final cDNA libraries were sequenced using Illumina HiSeq at the Beijing
Genomics Institute (BGI, Shenzhen, China).

2.3. Identification of Conserved and Novel miRNAs

After removing poly-A tags, no-insert tags, adapter sequences, oversized insertion tags, 5’-primer
contaminants, and small tags (sequences beyond 15–30 nucleotides or without 3’ primers), remaining
sequence reads were further analyzed using the Bowtie2 web program to determine the length
distribution of the sRNAs by mapping the clean reads to other sRNA databases and to the reference
genome [26].

The unique sRNAs were aligned to known ncRNAs in the Rfam database (http://www.sanger.ac.
uk/science/tools/rfam) to remove snoRNA, rRNA, snRNA, tRNA, and scRNA using NCBI BLASTN.
Perfectly matched reads were excluded from further analysis; and remaining sequences were compared
to Brassica database (http://brassicadb.org/brad/) to determine mismatched and matched sequences.
These reads with no more than three mismatched nucleotides were considered as conserved miRNA
candidates, whereas those with more than three unmatched sequences were considered as putative
novel miRNA. miRBase software [17] was used for further prediction of the novel miRNAs.

2.4. Analysis of Differentially Expressed miRNAs

The levels of miRNA expression were compared between HT and HS genotypes after the heat
treatments to determine differentially expressed miRNAs in flowering Chinese cabbage. To predict
heat tolerance associated miRNAs in flowering Chinese cabbage, the fold-change of miRNA was
determined as the ratio of miRNA expressions between HT and HS lines. The false discovery rate
(FDR) was adjusted by analyzing significant p-value thresholds in different tests [18]. The normalized
miRNA expression level was used to determine the fold changes (log2 ratio) of miRNA expression in
each sample. To avoid calculation error, miRNA expression level was normalized and converted to
transcripts per million (TPM) from 0 to 0.01 in all libraries. The minimum criteria for comparative
analysis of low expression of miRNAs was adjusted as if miRNA had normalized expression of < 1 in
all libraries.

http://www.sanger.ac.uk/science/tools/rfam
http://www.sanger.ac.uk/science/tools/rfam
http://brassicadb.org/brad/
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The normalization equation is as follow:
Normalized expression = actual miRNA read counts/total counts of clean reads × 106.
The fold-change values and p-values were calculated using normalized data, and the fold-change

values were used to generate a scatter plot:
Fold-change = log2 (N2/N1).
The p-value was determined as follows:

p(x|y) =
(

N2

N1

)y (x + y)!

x!y!
(
1 + N2

N1

)(x+y+1)

C(y ≤ ymin|x) =
∑y≤ymin

y=0
p(y|x)

D(y ≥ ymax|x) =
∑
∞

y≥ymax
p(y|x)

where x and y denote total clean sRNA reads, while N1 and N2 are the normalized miRNA expression
levels in the control and the treatment, respectively.

2.5. Prediction of miRNA Secondary Structure

The Zuker folding algorithm implemented in Mfold (http://mfold.rna.albany.edu/?q=mfold) was
used to determine the secondary structures of miRNAs using default parameters [27]. Minimal folding
free energy (MFE) and minimal free energy index (MFEI) parameters were used to differentiate the
miRNAs from other sRNA sequences. Moreover, sRNA sequences sustaining Meyers guidelines were
assumed as prospective miRNAs with following considerations: mature miRNAs have no more than
one bulge and the bulge size is not higher than two, mismatch sequences should be less than three,
and high MFEI values and high negative MFE values must be in predicted secondary structures and
properly fold into stem-loop hairpin structures [28].

2.6. Target Prediction of Differentially Expressed miRNAs

To identify and analyze differentially expressed miRNAs, the software packages TargetFinder [29]
and TAPIR [30] were used as described earlier [31]. To achieve reliable results with a confidence
interval, only common binding sites that were predicted by both tools were chosen for further analysis.

2.7. GO and KEGG Prediction of miRNA-Related Regulatory Pathways

Gene Ontology (GO; http://www.geneontology.org/) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway (http://www.genome.jp/kegg/pathway.html) databases were analyzed to
predict the key regulatory pathways using a corrected p-value (≤ 0.05) with a threshold derived from a
hypergeometric test [32]. GO and KEGG analyses were classified sequence reads into different groups
based on their function, including biological processes, cellular components, and molecular functions.

2.8. Validation of miRNAs Using RT-qPCR

To validate the sequencing data, four novel miRNAs and four conserved miRNAs—whose
expressions were either down- or up-regulated—were selected randomly for RT-qPCR as previously
described [33]. RT-qPCR used the same RNA samples used for sequencing that were collected from 0, 6,
and 12 h of heat-treated heat-tolerant and heat-sensitive genotypes. Reverse transcription was carried
out using RNA-tailing and primer-extension reverse transcription (RT)-PCR. For each quantitative
real-time (qRT)-PCR, 2 µl template cDNA was mixed with 10 µl 2× SYBR Green PCR master mix
(Takara Bio Inc., Kusatsu, Japan) and 5 pmol each of the forward and reverse primers in a final volume
of 20 µl. The amplification program started at 95 ◦C for 5 min, then for 40 cycles of 95 ◦C for 15 s, 60 ◦C
for 20 s, and 70 ◦C for 20 s, followed by a thermal denaturation step to generate the dissociation curves

http://mfold.rna.albany.edu/?q=mfold
http://www.geneontology.org/
http://www.genome.jp/kegg/pathway.html


Genes 2020, 11, 264 5 of 19

for verification of amplification specificity. Specific primers used in this study were listed in Table S1
with U6 as the internal control. Relative miRNA expression levels were quantified using the previously
described 2-∆∆CT method [34].

2.9. Statistical Analysis

Statistical analysis was conducted using the statistical product and service solution (SPSS)
software version 22.0 (IBM Corp., Chicago, USA). The significant differences between treatments were
determined using Student’s t-test or Tukey’s test for multiple comparisons after one-way analysis of
variance at significance level of p < 0.05 or p < 0.01. All the results were presented as means ± SEM.

3. Results

3.1. Analysis and Classification of sRNAs Sequence

Sequencing of six sRNA libraries constructed using samples from 0, 6, and 12 h of heat stress
yielded 28,414,730, 24,642,112, 33,929,955 raw sequence reads from the HT genotype, and 29,468,457,
28,889,080, and 28,574,442 raw reads from the HS genotypes, respectively. The sequence data were
deposited into the NCBI SRA database under the accession number PRJNA606901.

After discarding the low-quality reads that had invalid adapter, short valid length, and polyA
sequences, 25,331,960, 22,632,118, 19,999,279, clean reads for the HT genotype, and 27,647,469, 26,043,571,
and 26,275,173 clean reads for the HS genotype remained for 0, 6, and 12 h heat treated samples,
respectively. Table S2 listed comprehensive information on all classes of sRNA sequence tags.

To examine which type of sRNAs is associated with heat tolerance of flowering Chinese cabbage,
Rfam database was searched to categorize these clean sequence reads into different classes (Table 1).
rRNA reads were 0.36%–1.26% in HT genotypes and 0.69% in HS genotypes. tRNA read was higher
(0.26%–5.38%) in HT genotypes than in HS genotypes (0.09%–0.16%). In addition, snRNA was
0.06%-0.12% for HT genotypes and 0.03%-0.07% for HS genotypes; snoRNA was 0.03% for both HT
and HS genotypes. After removal of tRNA, rRNA, snRNA, and snoRNA, 22,222,402, 13,150,565,
and 17,741,890 unique reads from the HT genotype and 25,021,953, 13,857,771, and 24,056,406
unique reads from the HS genotype treated with 0, 6, and 12 h under high temperature were
mapped, respectively.

The sequence read length distribution patterns of sRNAs were similar between the HT and HS
libraries in general, but a higher proportion of sRNAs were observed in the HS genotype (79.1%) than
in the HT genotype (50.7%). The lengths of sRNAs were mainly from 21 to 24 nt (Figure 1) with the
predominant length of 21 nt, followed by 24, 23, and 22 nt in both the HT and HS genotypes (Table S3).

3.2. Known miRNAs from Flowering Chinese Cabbage

To identify the known miRNAs from flowering Chinese cabbage, sRNA sequences were searched
against the known miRNAs in miRBase (release 17.0) to find these reads with no more than three
mismatched nucleotides as known miRNAs. The lengths of the known miRNAs usually ranged from
21–24 nt. Sixty-two small RNAs were identified to have identical sequences to B. campestris in miRBase
and were considered as known bra-miRNAs (Table S4). Although many miRNAs had a relatively low
expression, they showed significantly differential expression between HT and HS genotypes. The top ten
abundantly expressed miRNAs were bra-miR398-3p, bra-miR168a-5p, bra-miR396-5p, bra-miR168b-5p,
bra-miR171e, bra-miR160a-5p, bra-miR159a, bra-miR162-3p, bra-miR171a, and bra-miR156a-5p.
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Table 1. Classification of heat-responsive small RNAs of heat tolerant (HT) and heat susceptible (HS)
genotypes of flowering Chinese cabbage.

Read Type HT HS
0 h 6 h 12 h 0 h 6 h 12 h

Total 25,331,960
(100%)

22,632,118
(100%)

19,999,279
(100%)

27,647,469
(100%)

26,043,571
(100%)

26,275,173
(100%)

Intergenic 15,914,365
(62.82%)

7,884,837
(34.84%)

14,061,923
(70.31%)

15,559,731
(56.28%)

9,035,253
(34.69%)

12,686,730
(48.28%)

Intron 1,074,553
(4.24%)

420,049
(1.86%)

423,989
(2.12%)

939,369
(3.4%)

560,265
(2.15%)

894,981
(3.41%)

Exon 794,907
(3.14%)

580,063
(2.56%)

318,139
(1.59%)

842,483
(3.05%)

650,488
(2.5%)

1,283,163
(4.88%)

Precursor 144,519
(0.57%)

249,867
(1.1%)

137,914
(0.69%)

198,968
(0.72%)

103,036
(0.4%)

176,153
(0.67%)

Mature 4,129,468
(16.3%)

3,858,651
(17.05%)

2,127,450
(10.64%)

7,304,825
(26.42%)

3,398,482
(13.05%)

8,806,566
(33.52%)

Rfam other
sncRNA

4412
(0.02%)

15,136
(0.07%)

81,044
(0.41%)

5515
(0.02%)

7588
(0.03%)

6884
(0.03%)

rRNA 98,508
(0.39%)

112,095
(0.5%)

252,496
(1.26%)

148,003
(0.54%)

83,184
(0.32%)

180,019
(0.69%)

snRNA 16,377
(0.06%)

27,407
(0.12%)

11,777
(0.06%)

13,109
(0.05%)

8068
(0.03%)

18,387
(0.07%)

snoRNA 7442
(0.03%)

6920
(0.03%)

6907
(0.03%)

5794
(0.02%)

4392
(0.02%)

7306
(0.03%)

tRNA 65,593
(0.26%)

22,894
(0.1%)

1,076,247
(5.38%)

43,977
(0.16%)

27,661
(0.11%)

24,478
(0.09%)

Unmapped 3,081,816
(12.17%)

9,454,199
(41.77%)

1,501,393
(7.51%)

2,585,695
(9.35%)

12,165,154
(46.71%)

2,190,506
(8.34%)
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3.3. Identification of Novel miRNAs

Novel miRNA candidates were identified on the basis of MFE value, the miRNA/miRNA* duplex
and secondary structure of precursor sequences. The stem-loop hairpin secondary structures were
predicted from precursor sequences, suggesting that most of the identified miRNAs rely on the 5′ arm
of the hairpin structure. To determine if novel miRNAs were involved in heat tolerance in flowering
Chinese cabbage, all mappable sRNA sequences were searched against the Brassica database and
the miRBase to eliminate previously known miRNAs. Any sRNAs that could be exactly mapped to
the reference genome but not as conserved miRNAs were assumed to be novel miRNA candidates.
To increase the accuracy of novel miRNA prediction, the miRNA/miRNA* criterion was evaluated.
A total of 49 novel miRNA candidates were identified from the HT and HS libraries of flowering Chinese
cabbage (Table S5). The mean MFE value predicted for pre-miRNAs was –42.13 kcal/mol, ranging from
–23.6 to –217.2 kcal/mol. The identified novel miRNA length varied from 21 to 24 nt. Novel-mir09,
novel-mir112, novel-mir125, novel-mir149, novel-mir187, novel-mir202, and novel-mir248 had striking
secondary structures with lower MFE values and were considered as key putative miRNAs (Figure 2).
Of all the novel miRNAs, novel-mir202, novel-mir225, novel-mir255, novel-mir248, novel-mir187,
novel-mir170, and novel-mir99 had the highest expression levels.
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3.4. Differential Expression Profiling of Known and Novel miRNAs

To investigate the heat induced miRNAs in flowering Chinese cabbage, differentially expressed
miRNAs were identified between heat treated (6 and 12 h heat treatments) and non-heat treated (0 h
control) HT and HS genotypes (Figure 3). A total of 43 known and 49 novel miRNAs were differentially
expressed in at least one of two time points (6 and 12 h) of heat treatments.

Among the heat induced known miRNAs, 21 (4 up-regulated and 17 down-regulated) were
differentially expressed in both HT and HS genotypes, whereas nine (1 up-regulated and 8
down-regulated) were differentially expressed only in the HT genotype (Table 2) and 13 (2 up-regulated
and 11 down-regulated) were differentially expressed only in the HS genotype (Table S6). Among
the novel miRNAs, 6 (1 up-regulated and 5 down-regulated) were differentially expressed in both HT
and HS genotypes, 14 (3 up-regulated and 11 down-regulated) were differentially expressed in HT
genotype only, and 29 (7 up-regulated and 22 down-regulated) were differentially expressed in HS
genotype only (Table S7). The five differentially expressed known miRNAs and novel miRNAs that
were common in both HT and HS genotypes are listed in Table 3.
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Table 2. Differentially expressed heat responsive novel and known miRNAs identified in heat tolerant (HT) flowering Chinese cabbage.

miRNA Name Sequence (5>3) HT Count
(0 h)

HT Count
(6 h)

log2 Ratio
(HT 6/HT 0) p-Value HT Count

(0 h)
HT Count

(12 h)
log2 Ratio

(HT 12/HT 0) p-Value

Novel miRNAs
novel_mir27 TCAAGCTGGTGTCTGGATGAGT 155 47 −1.71 3.28 × 10−5 155 0 −17.23 6.96 × 10−41

novel_mir95 GGTGAGGTCGCTCTGAGAGGATAG 29 0 −14.8 1.89 × 10−6 29 0 −14.77 3.32 × 10−8

novel_mir149 GGGGAACGACGATTTGTGACACC 143 0 −17.1 2.41 × 10−29 143 29 −2.25 7.67 × 10−15

novel_mir46 GAAAACTATTCGATACATATGGCC 0 15 13.66 5.58 × 10−6

novel_mir89 AGGGACAGAGGACTGACATGTGGC 107 0 −16.62 1.96 × 10−28

novel_mir105 ACTAAATCTACACCAATATTGAT 85 0 −16.29 9.93 × 10−23

novel_mir114 ATTCTTGAGTCCTTAATACATATA 20 0 −14.29 7.16 × 10−6

novel_mir120 GACTCTAAAAATACCCTTGGTACTT 79 21 −1.85 6.84 × 10−7

novel_mir177 TATTCCCGCGAAACCCACGGC 0 13 13.55 1.82 × 10−6

novel_mir238 CCTGCGGCTGCGGCGATATT 241 0 −17.86 3.46 × 10−63

novel_mir240 CAATGGGATCCGCGAACAGTGCA 17 0 −14.05 4.29 × 10−5

novel_mir243 GCTGATGGAACACTGGCCCGGCCCA 0 20 14.21 1.03 × 10−7

novel_mir250 TATAGTTAGGCGTTAGGCACTATG 104 0 −16.67 1.17 × 10−27

novel_mir255 CAAGCGGTTCAACTGCGGTGCGGT 1494 494 −1.67 5.79 × 10−31

Known miRNAs
bra-miR156e-3p TGCTCACCTCTCTTTCTGTCAGT 1971 696 −1.51 6.29 × 10−90

bra-miR824 TAGACCATTTGTGAGAAGGGA 1026 396 −1.39 2.77 × 10−13 1026 261 −2.01 7.86 × 10−77

bra-miR1885a CATCAATGAAAGGTATGATTCC 1271 396 −1.68 4.82 × 10−31

bra-miR1885b TACATCTTCTCCGCGGAAGCTC 1546 572 −1.42 1.63 × 10−22

bra-miR172d-5p GCAGCATCATTAAGATTCACA 1 14 3.70 0.00011
bra-miR400-5p TATGAGAGTATTATAAGTCAC 750 231 −1.7 1.77 × 10−19

bra-miR396-3p GCTCAAGAAAGCTGTGGGAAA 1694 693 −1.29 2.00 × 10−16

bra-miR391-5p TTCGCAGGAGAGATAGCGCCA 335 110 −1.59 3.48 × 10−8

bra-miR2111b-3p ATCCTCGGGATACGGATTACC 30 1 −4.75 1.48 × 10−5 30 0 −14.72 1.82 × 10−8

Missing values refer to that differentially expressed miRNAs were not significant between this heat treatment time point and control (0 h).
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Table 3. Heat-induced differentially expressed known and novel miRNAs identified from both heat tolerant (HT) and heat-susceptible (HS) flowering Chinese
cabbage genotypes.

miRNA Name Sequence (5>3) HT Count
(6 h)

HS Count
(6 h)

log2 Ratio
(HT 6/HS 6) p-Value HT Count

(12 h)
HS Count

(12 h)
log2 Ratio

(HT 12/HS 12) p-Value

bra-miR156a-3p GCTTACTCTCTCTCTGTCACC 39 92 −1.21 3.5 × 10−6 26 111 −2.09 3.02 × 10−9

bra-miR164e-3p CACGTGCTCCCCTCCTCCAAC 15 0 13.66 1.85 × 10−5 14 0 13.77 6.52 × 10−6

bra-miR164e-5p TGGAGAAGCAGGGCACGTGCAA 4 49 −3.61 4.42 × 10−11 36 11 1.66 3.41 × 10−6

bra-miR390-5p AAGCTCAGGAGGGATAGCGCC 130 63 1.02 1.26 × 10−7 577 164 1.77 4 × 10−83

bra-miR5712 AATATTAATATAATTGGTGAG 18 71 −1.97 4.17 × 10−8 95 477 −2.40 1.41 × 10−41

novel_mir23 ACCCGTCCATGGGCCCCAGGCTCA 0 37 −15.13 2.31 × 10−11 26 182 −2.79 1.98 × 10−16

novel_mir112 AGGCTCCGAATGGTAACATCCGTCCC 97 0 16.55 2.93 × 10−31 92 477 −2.37 1.38 × 10−30

novel_mir128 AATTAAGAAACTCCCATTGGACCGC 0 16 −13.87 2.56 × 10−5 24 79 −1.72 3.31 × 10−5

novel_mir134 ACGTGGAACACTCTGACTAGTCTGAC 21 0 14.35 2.39 × 10−7 0 97 −16.56 2.1 × 10−24

novel_mir225 CCTGCGGCTGCGGCGATATT 56 13 1.97 2.52 × 10−8 409 1569 −1.96 9.67 × 10−98
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3.5. Putative Target Genes of Differentially Expressed miRNAs in HT and HS Genotypes

TAPIR [30] and TargetFinder [29] were used to identify the targets of the differentially
expressed miRNAs under heat stress. Predicted target genes of heat responsive miRNAs included
dihydrolipoyllysine-residue acetyltransferase component 1 of pyruvate dehydrogenase complex
(novel-mir128), protein phloem protein 2-like A5-like (novel-mir243), protein phloem protein 2-like
A8-like (novel-mir243), protein suppressor of npr1-1, constitutive 1-like (bra-miR1885b), flowering time
control protein FCA (bra-miR824), interferon-induced guanylate-binding protein 2-like (bra-miR824),
agamous-like MADS-box protein AGL16 (bra-miR824), IAA-alanine resistance protein 1-like
(bra-miR400-5p), probable receptor-like protein kinase At5g47070 (bra-miR400-5p), pentatricopeptide
repeat-containing protein At1g06580 (bra-miR400-5p), vacuolar protein sorting-associated protein
32 homolog 1-like (bra-miR396-3p), G-type lectin S-receptor-like serine/threonine-protein kinase
RLK1 (bra-miR396-3p), transcriptional regulator SUPERMAN (bra-miR391-5p), reticuline oxidase-like
protein (bra-miR391-5p), and several disease resistance proteins including TAO1-like (novel-mir243),
RML1A-like isoform X1 (novel-mir243), At4g11170 (novel-mir243), RPS6 (bra-miR1885b), and RPS6-like
isoform X1 (bra-miR1885b) (Table 4; Table S8). These genes may play key roles in responses to heat-stress.

Table 4. Potential targets of differentially expressed novel miRNAs in flowering Chinese cabbage
genotypes under heat stress.

miRNA Target Name Target Id E-Value Putative Function of Target

Target genes of heat responsive miRNAs in the heat-tolerant genotype

novel-mir128 BraA09g043410.3C XP_018458905.1 1.40E-77 Dihydrolipoyllysine-residue acetyltransferase
component 1 of pyruvate dehydrogenase complex

novel-mir243 BraA09g015030.3C XP_013688447.1 2.10E-291 Disease resistance protein RML1A-like isoform X1
novel-mir243 BraA02g007610.3C XP_013616826.1 4.5E-53 Disease resistance protein TAO1-like
novel-mir243 BraA02g036020.3C XP_009129096.1 2.2E-82 Protein PHLOEM PROTEIN 2-LIKE A5-like
novel-mir243 BraA06g012120.3C XP_009149053.1 1.30E-195 Protein PHLOEM PROTEIN 2-LIKE A8-like
novel-mir243 BraA09g016880.3C XP_013659354.1 4.20E-87 Putative disease resistance protein At4g11170

Target genes of general heat-stress responsive miRNAs that were differentially expressed between HT and HS genotypes
novel-mir23 BraA01g022410.3C XP_018508806.1 1.30E-183 Protein strictosidine synthase
novel-mir78 BraA05g033150.3C XP_009146435.1 1.60E-77 Uncharacterized protein LOC103870086
novel-mir78 BraA05g027310.3C XP_009145697.1 8.20E-247 Uncharacterized protein LOC103869376
novel_mir99 BraA08g020340.3C XP_009109238.1 1.9E-272 Protein NBR1 homolog
novel-mir125 BraA04g007130.3C KHN00936.1 1.60E-250 SEC12-like protein 1
novel-mir151 BraA10g012290.3C XP_013639528.1 7.70E-54 Uncharacterized protein LOC106344762
novel-mir187 BraA07g017040.3C XP_009103473.1 4.80E-200 Serine/threonine-protein kinase SRK2I
novel-mir202 BraA01g001310.3C XP_013683960.1 7.40E-229 Probable N-acetyltransferase HLS1
novel-mir214 BraA08g005730.3C XP_013605618.1 3.20E-27 Serine hydroxymethyltransferase 7
novel-mir214 BraA09g031950.3C XP_009123743.1 1.30E-280 Protein DETOXIFICATION 23
novel-mir255 BraA08g009450.3C NP_198334.1 3.30E-260 Purple acid phosphatase 26

Targets of the differentially expressed miRNAs that are usually responsive to heat-stress
include protein strictosidine synthase (novel-mir23), agamous-like MADS-box protein AGL17
isoform X1 (novel-mir23), protein NBR1 homolog (novel_mir99), SEC12-like protein 1 (novel-
mir125), serine/threonine-protein kinase SRK2I (novel-mir187), probable N-acetyltransferase HLS1
(novel-mir202), serine hydroxymethyltransferase 7 (novel-mir214), protein detoxification 23
(novel-mir214), CBL-interacting serine/threonine-protein kinase 8 (bra-miR5718), protein ABC
transporter 1 (bra-miR172c-3p, and bra-miR172d-3p), 1-aminocyclopropane-1-carboxylate synthase 9
(bra-miR398-5p), NAC domain-containing protein 92-like (bra-miR164b-5p), presenilin-like protein
At1g08700 (bra-miR156a-3p), auxin response factor 16 (bra-miR160a-5p), heat shock 70 kDa protein
6 chloroplastic-like (bra-miR162-3p), and probable disease resistance protein At1g12290 isoform X2
(bra-miR172b-5p). Bra-miR1885, bra-miR824, bra-miR156, and bra-miR1885 are well-known for their
putative functions in B. campestris ssp. Chinensis [24].



Genes 2020, 11, 264 12 of 19

3.6. Functional Annotation of miRNA Target Genes

GO analysis on the putative miRNA target genes further divided them into three function
categories: biological process, molecular function, and cellular component (Figure 4; Table S9). In the
biological process category, the most enriched GO terms include biological regulation, cellular process,
metabolic process, response to temperature stimulus, regulation of biological process, and single
organism process. Interestingly, these target genes might play a significant role in diversifying biological
processes such as signaling, localization, response to stimulus, and developmental process. In cellular
component category, the most enriched GO terms include cell, cell part, membrane, macromolecular
complex, organelle, and organelle part. The majority of molecular functions include nucleic acid
binding transcription factor activity, catalytic activity, and transporter activity and binding.
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Figure 4. Gene Ontology (GO) annotation for target genes of heat responsive microRNAs in the
heat-tolerant (HT) and heat-sensitive (HS) genotypes of flowering Chinese cabbage.

KEGG analysis predicted the potential pathway networks that were involved in response to
heat stress in flowering Chinese cabbage including transport and catabolism, signal transduction,
folding, sorting and degradation, environmental adaptation, replication and repair, transcription,
and translation (Figure 5; Table S10).

The KEGG pathway analysis also predicted various miRNA-regulated pathways based on the
miRNA targeted genes identified and demonstrated enriched target genes including genes for stress
response, stress tolerance, and stress adaptation [32,35]. MEKK1 and SnRK2 were up-regulated and
their expression might play a key role in responses to cold/salt stresses, pathogen infection, and drought
tolerance in HT genotype. SUMM2 and WRKY33 were expressed in both HT and HS genotypes and
might be involved in regulation of cell death defense response and camalexin synthesis, respectively
(Figure S1).
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3.7. Validation of Differentially Expressed miRNAs by RT-qPCR

To confirm the results from the RNA sequencing, four novel and four conserved miRNAs
were randomly selected to represent both down- and up-regulated miRNAs for RT-qPCR. A strong
correlation (r2 = 0.843) was detected between RT-qPCR and RNA-seq data (Figure 6), indicating a
good agreement in expression levels (down-regulation or up-regulation) between RT-qPCR and RNA
sequencing data for the selected miRNAs, confirming that the differentially expressed miRNAs of B.
campestris ssp. Chinensis predicted by RNA sequencing were real.
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novel-mir225, bra-miR5726, bra-miR160a-3p, bra-miR164e-5p, and bra-miR156e-3p, respectively.
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4. Discussion

4.1. miRNA in Flowering Chinese Cabbage

Vegetable plants have to cope with diverse environmental stresses that may trigger numerous gene
regulatory mechanisms, such as orchestration of gene expression regulation at a post-transcriptional
level, and re-establishing and restoring cellular homeostasis, reducing cell-cycle regulation, and adaptive
growth response [36,37]. Since the plant miRNA may involve in many functions in response to stress
environments, it is an integral topic in functional genomic research. To date, numerous reports have
revealed miRNA as key regulatory molecules that participate in plant metabolisms, stress responses,
tissue development and many other functions [38,39]. The functional involvement of plant miRNAs
in response to abiotic stresses was originally suggested by surveys of NCBI expressed sequence tags
and profiling miRNA expression after challenging plants with certain stress stimuli to predict miRNA
targets [40]. Flowering Chinese cabbage has much fewer miRNAs registered in miRBase compared to
other vegetable crops and model plant Arabidopsis [11,41].

Using high-throughput sequencing, we identified 43 previously reported and 49 putative novel
miRNAs in the HT and HS genotypes of flowering Chinese cabbage after heat treatments. sRNAs
showed wide variation in sequence length, with 21 to 24 nt as most abundant, which agree with several
previous reports [11,18]. Previously, we identified 41 conserved and 18 novel miRNAs in a flowering
Chinese cabbage, Youlv 501, after heat treatment using high-throughput sequencing [21]. Likewise,
using computational and deep sequencing methods, 24 novel and 161 known miRNAs from 51
families were identified in HT and HS genotypes of Brassica oleracea L. var italic [11]. High-throughput
sequencing has been successfully used to identify novel and known miRNAs in response to stress
in various species including soybean [42], maize [43], Populus euphratica [44], and rice [45]. In B. rapa,
21 novel miRNAs belonging to 19 miRNA families that were identified using NGS, bra-miR1885b.3
and bra-miR5718 were reported to be involved in response to heat [18]. Likewise, 221 conserved and
125 novel miRNAs were reported to play key functions in plant development and growth, metabolism,
and stress responses in B. rapa [46]. Using a comparative genomics approach, 126 novel miRNAs were
identified in B. juncea and were predicted to participate in regulation of different biological processes
in response to drought, salinity, and high temperature stresses [20]. These findings reveal that more
novel miRNAs with important regulatory functions in flowering Chinese cabbage can be identified
using improved reference genome sequences.

4.2. miRNAs Are Involved in Heat Stress Responses

Plant growth and development are highly affected by various types of stresses [47–50]. miRNAs in
plants possess multiple mechanisms to respond to different stresses in tissues. Heat stress may induce
different metabolic pathways and uncouple enzymes to add excess reactive oxygen species (ROS).
To survive under high temperature, plants may use cellular antioxidant defense systems to defend
vegetable crops from heat stress [51,52]. In the current study, bra-miR1885a, bra-miR5718, bra-miR5726,
bra-miR160a, bra-miR172c-3p, bra-miR390-5p, and bra-miR400-5p were significantly up-regulated
and bra-miR157a, bra-miR398-5p, bra-miR5719, bra-miR156e-3p, bra-miR400-5p were significantly
down-regulated in the HT and HS flowering Chinese cabbage genotypes. In a previous report,
bra-miR9557-3p, bra-miR160a-5p, bra-miR390-3p, bra-miR164a, bra-miR158-5p, and bra-miR156a-3p
were downregulated and bra-miR5725, bra-miR159a, miR172c-3p, and bra-miR5726 were up-regulated
in Youlv 501 under heat stress [21]. In addition, differentially expressed bra-miR391-3p, bra-miR9408-3p,
bra-miR159a, bra-miR5712, bra-miR1140, bra-miR158-3p, bra-miR390-3p, and Novel-mir013 were
reported as the known miRNAs in Youlv 501 [21], which were also identified in the current study.
miR827, miR156h, and miR156g, miR5718, bra-miR1885b.3, and bra-miR571 were reported to be
specifically up/down-regulated under heat stress in Brassica plants [18,53]. In a HT Brassica genotype,
Catalase 2 enzymes reduced HSP expression, which in turn detoxified heat-induced ROS [11].
miR827 directly targeted to Catalase 2 gene in broccoli [18] and Arabidopsis [54]. bol-novel-09
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and bol-novel-39 targeted different proteins that played an important role in heat-induced oxidative
stress in Arabidopsis [55]. Yu et al. [18] reported that transgenic plants that overexpressed bra-miR5718,
bra-miR398, and bra-miR1885b.3 showed improved thermotolerance. miR156 has been reported to be
specifically induced under heat stress in broccoli [18] and wheat [56]. Moreover, after summarizing the
results from various species, Zhang et al. [57] found that miR159, miR396, miR399, miR159, miR393,
miR156, and miR395 were heat-stress related miRNAs. All these findings indicate that miRNAs play
important roles in regulating heat stress in different species.

4.3. miRNA–Targeted Gene-Networks Involved in Response of Flowering Chinese Cabbage to Heat Stress

Upon heat stress, several genes that are responsive to abiotic stress in plants can be directly
targeted by miRNAs. Target mRNA cleavage depends upon its complementary miRNA. It has been
shown that conserved miRNA miR398a targeted BracCSD1 gene, and there is an inverse relationship
between miRNA and its target in Brassica rapa [18], indicating that the gene is heat-sensitive and the
miRNA exhibits a heat-inhibitive function in response to heat stress. Furthermore, it has been revealed
that several plants used more phosphate and nitrogen under heat stress than normal growth conditions,
and this phenomena may be due to miRNA repression and roles of the target genes in adaptation and
regulation of Pi starvation [58]. Moreover, miR156h and miR156g targeted SPL -family genes that were
involved in floral transition and vegetative phase of B. rapa [19], and miR156a regulated SPL2, SPL3,
SPL9, and SPL10 targets, but SPL2 showed a significant down-regulation under heat stress.

In our study, bra-miR156a-5p and 14 other miRNAs were involved in different biological
functions (Table 4 and Table S8). We previously identified 432 potential mRNA targets for both
conserved and novel miRNAs in Youlv 501 under heat stress. The identified targets were involved in
regulation of the key functions including abiotic stress responses, cell, cell parts, cellular processes,
and catalytic activity [21]. Meanwhile, miR395a, miR169f, miR827, bol-novel-26, miR169f, miR156b,
bol-novel-01, and bol-novel-03 were significantly up-regulated between HT and HS genotypes [11].
It is suggested that numerous miRNAs play key roles in increasing head-forming capacity through
regulation of molecular mechanisms of thermotolerance by targeting several genes including miR156b
(SPL9), miR169f (NF-YA1), miR827 (CAT2), miR395a (APS1), miR172d (TOE1), bol-novel-01 (PAPS2),
and bol-novel-03 (ARF1) [11]. Furthermore, miR169f targeted the AtNF-YA transcription factor
and miR172 putatively targeted APETALA2 (AP2)-like family of transcription factors such as TOE2,
AP2, SCHLAFMÜTZE (SMZ), and TOE1, and these genes play a significant role in flowering and
maintaining floral meristem size in broccoli [11]. In our study, 14 novel and nine known miRNA were
differentially expressed only in the heat-tolerant genotype under heat-stress, therefore, their target genes
including disease resistance protein TAO1-like, RPS6, reticuline oxidase-like protein, etc. may play
important roles in enhancing heat-tolerance. Likewise, miRNAs targeted the disease resistance protein
RPS6 in soybean [59]. In our study, bra-miR172 putatively targeted AP2-like transcription factors
including floral homeotic protein APETALA 2, AP2-like ethylene-responsive transcription factor TOE2,
and TOE3 under heat stress in flowering Chinese cabbage. Moreover, numerous miRNAs targeted
transcription factors, including those disease resistance protein TAO1 (bra-miR5719), transcription
factor TCP (bra-miR319-3p), probable N-acetyltransferase HLS1 (novel-mir202), squamosa promoter
binding proteins (bra-miR156/ bra-miR157), and serine/threonine-protein kinase SRK2I (novel-mir187).
Likewise, bol-novel-34 (phosphatase 2C), miR395 (ATP sulfurylases), and bol-novel-26 (auxin response
factor 1) were involved in mediating the thermotolerance mechanisms in broccoli [19].

In conclusion, in this extensive study, we analyzed heat-responsive miRNAs from HT and HS
genotypes of flowering Chinese cabbage after heat stress treatments and identified 49 novel and 43
known miRNAs that possess important regulatory roles in regulating heat stress responses by targeting
numerous genes. The relationships between the target genes and the miRNAs in response to heat stress
revealed from this study could help us design new breeding tools using biotechnological approaches
for genetic improvement of heat tolerance of flowering Chinese cabbage.
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