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The automated Galaxy-SynBioCAD pipeline
for synthetic biology design and engineering

Joan Hérisson1,9, Thomas Duigou 2,9, Melchior du Lac2,3, Kenza Bazi-Kabbaj2,
Mahnaz Sabeti Azad2, Gizem Buldum4, Olivier Telle2, Yorgo El Moubayed2,
Pablo Carbonell 5,6, Neil Swainston5,7, Valentin Zulkower8,
Manish Kushwaha 2, Geoff S. Baldwin 4 & Jean-Loup Faulon1,2,5

Here we introduce the Galaxy-SynBioCAD portal, a toolshed for synthetic
biology, metabolic engineering, and industrial biotechnology. The tools and
workflows currently shared on the portal enables one to build libraries of
strains producing desired chemical targets covering an end-to-end metabolic
pathway design and engineering process from the selection of strains and
targets, the design of DNA parts to be assembled, to the generation of scripts
driving liquid handlers for plasmid assembly and strain transformations.
Standard formats like SBML and SBOL are used throughout to enforce the
compatibility of the tools. In a study carried out at four different sites, we
illustrate the linkbetweenpathwaydesign andengineeringwith thebuildingof
a library of E. coli lycopene-producing strains. We also benchmark our work-
flows on literature and expert validated pathways. Overall, we find an 83%
success rate in retrieving the validated pathways among the top 10 pathways
generated by the workflows.

Computation has become an essential tool in life science research.
Synthetic biology,metabolic engineering and industrial biotechnology
make no exception to that trend. As part of this endeavor, significant
attention is being paid to the development of workflows adhering to
design principles from engineering such as standardization and
abstraction of modular parts, as well as the decoupling of design from
fabrication.

Following the electronic design automation (EDA) concept, there
are many design automation tools for genetic circuits, these are
extensively reviewed in Appleton et al.1. As an example, Cello2 applies
the EDA approach to genetic circuits. Cello comprises several steps,
which are connected and therefore need to use standardized input/
output formats. Among those formats are Verilog to represent a logic

function and Eugene3 to encode a set of parts and constraints between
the parts. Although Cello achieved the compilation and standardiza-
tion of several pieces of software for genetic design, in general, this is
not true for most freely available synthetic biology and metabolic
engineering design tools, where the fragmentation remains a sig-
nificant barrier to adoption. Nonetheless, two main standards have
emerged in the past two decades. The first, SBML4 is a biological
modeling standard that has been developed by the systems biology
community to encode strains and pathways. The second, SBOL5, is a
data exchange standard specific to synthetic biology. SBOL has been
developed to document genetic components (DNA, RNA, protein, etc.)
and their interactions for the purpose of biodesign engineering. SBOL
can now encode complex genetic circuits, metabolic pathways,
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vectors, and plasmids. Complying with SBML and SBOL standards a
suite of in silico genetic circuit design tools was recently proposed6.

As for genetic circuits, there are plenty of software tools to assist
the biosynthetic pathway design process7. Briefly, from a given target
compound and a given chassis strain, the first step consists of finding
metabolic reactions that link the target compound to the native
metabolites of the host strain. This step is carried out by retrosynthesis
software tools8–13 and, should onewish to search for novel pathways or
find pathways that produce unnatural target compounds, requires the
use of reaction rules14. The result of retrosynthesis is a metabolic map
and there is a need in a second step to enumerate the pathways linking
the chassis metabolites to the target. There are many solutions for
pathway enumeration and search15, which are sometimes integrated
into the retrosynthesis software itself. The third step is to find themost
promising enzyme sequences catalyzing the metabolic reactions. This
can be achieved either through similarity search to enzyme annotated
metabolic reactions16–18, or machine learning trained on metabolic
databases19,20. Once the pathways have been annotated with enzyme
sequences, they can be ranked in a fourth step. The ranking criteria are
diverse, they can be among others based on thermodynamics21, pre-
dicted yield of the target22, target rate of production through flux
balance analysis9,11,21, chassis cytotoxicity of the target and
intermediates21, along with simpler criteria like pathway length.

In addition to the enzyme identities, there are multiple layout
solutions and settings to engineer the top-ranked pathways. Indeed,
the individual genes coding for the enzyme can be placed under dif-
ferent promoters, in a different order within an operon, with different
RBS strength (if the chassis is a bacteria), and on different plasmids
with different origins of replication if the engineering is performed on
a plasmid. The fifth step deals with this issue by making use of tools
such as the RBS calculator23 to compute RBS sequences for different
strengths, and design of experiments (DoE)24,25 to sample the space of
possible constructs, which canbe very large. The result of that step is a
library of layouts representing either the same or different pathways.
At this stage, one can either synthesize thewhole layout DNA or, as it is
most commonly done, synthesize individual DNA parts and use com-
binatorial DNA assembly methods to include variations of the control
elements, such as promoters and RBS sequences. Several computa-
tional tools can be used to perform this sixth and last step of assembly
design before constructing the pathways, these tools compute parts to
be synthesized depending on the chosen assembly protocol. Compu-
tation tools to help the build tasks are sparser than for design. One can
cite here Aquarium26, which provides instructions to a person or a
robot to perform the assembly tasks along with Antha27, BioBlocks28,
and DNA-BOT29. Engineered pathways are generally evaluated using
HPLC or mass spectrometry analyses. Here too, computational tools
can help in particular the workflows produced by OpenMS30 or
Worlflow4Metabolomics31.

Considering the above, we are clearly at a stage where the path-
way engineering process is not that far from being fully driven by
computer software products. However, there are several hurdles that
prevent this from happening even for tools covering pathway design
only. First, the tools are not easily findable, they are stored in different
places and the keywords to search online are not obvious. Secondly,
some of the tools are difficult to access, some requiring registration,
purchase, or access fees. Thirdly, almost none of the tools are inter-
operable and cannot be chained one after another to ensure that
computational experiments are communicated well, and hence
reproducible. Lastly, and perhaps most problematic for wider accep-
tance, the tools can be difficult to comprehend, requiring a level of
expertize that limits their use by a large community.

Scientific workflows help to address these issues by providing an
open, web-based platform for performing findable and accessible data
analyses linked to experimental protocols for all scientists irrespec-
tively of their informatics expertize, along with interoperable and

reproducible computations regardless of the particular platform that
is being used32. Indeed, without programming skills, scientists that
need to use computational approaches are impeded by difficulties
ranging from tool installation to determining which parameter values
to use, to efficiently combining and interfacingmultiple tools together
in an analysis chain. Scientific workflows provide solutions where data
is combined andprocessed into a configurable, structured set of steps.
Existing systems often provide graphical user interfaces to combine
different technologies along with efficient methods for using them,
and thus increase the efficiency of the scientists using them. In addi-
tion, workflow systems generally provide a platform for developers
seeking a wider audience and broad integration of their tools, and can
thus drive forward further developments in a specific field of research.
Among existing workflow platforms, Galaxy is a system originally
developed for genome analysis33 which now includes more than 8500
tools that can be found in the public ToolShed34.

Here, we introduce the Galaxy-SynBioCAD portal35, a Galaxy set of
tools for synthetic biology, metabolic engineering and industrial bio-
technology. It allows one to easily create workflows from the incor-
porated toolset or use already developed sharedworkflows. Theportal
is a growing community effort where developers can add new tools
and users can evaluate the tools performing design for their specific
projects. The tools and workflows currently shared on the Galaxy-
SynBioCAD portal cover an end-to-end metabolic pathway design and
engineering process from the selection of strain and target to auto-
mated DNA parts assembly and strain transformation.

Results
Tools selection criteria
To develop an integrated ecosystem, we selected software applica-
tions from among the computational tools mentioned above. Several
criteria were used for this selection: the tools needed to (i) be relevant
for pathway design and engineering, (ii) be published, (iii) be open-
source (MIT, GNU GPL, or related licenses), (iv) be well documented
and deposited in GitHub, (v) make use of standard input/output, and
(vi) exist as a standalone command-line tool. Within a workflow, each
tool connected to one or more tools must share common file format
for data exchange, i.e., each output file of a tool has to be compatible
with the input file format of downstream tools in the workflow. The file
format relies on the nature of the data (e.g., metabolic model, meta-
bolic pathway, and construct design) and the implementation choice
made for each tool. Among the standard formats used, some are rather
generic (CSV, TSV, JSON) while others are more specific to a scientific
field (e.g., SBOL, SBML).

Pathway design and engineering tools and workflows
The selected tools are further described in the ‘Supplementary_Text’
file (cf. Galaxy-SynBioCAD Tools). These tools can be divided in three
categories: (i) those aimed at finding pathways to synthesize hetero-
logous compounds in chassis organisms (RetroRules, RetroPath2.0,
RP2Paths, and rpCompletion), (ii) those aimed at evaluating and
ranking pathways (rpThermo, rpFBA, rpReport, rpViz, and rpScore)
and (iii) those related to genetic design and engineering (Selenzyme,
SbmlToSbol, PartsGenie, OptDOE, DNA Weaver, LCR Genie, rpBA-
SICDesign, andDNA-Bot). Following FAIRprinciples32, all selected tools
are open-sourcewith code available on GitHub and installable through
the Conda package manager36 (cf. Tools design and integration pro-
cess in the ‘Supplementary_Text’ file). Therefore, any user can install
the tools needed on their own computer and run these as standalone
programs or chain them together to process more complex
calculations.

To go further in chaining tools, three types of Galaxy workflows
are available on the Galaxy-SynBioCAD portal.
1. A Retrosynthesis workflow to enumerate the pathways enabling

the synthesis of a given target chemical in a host chassis organism
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(cf. Retrosynthesis from target to chassis in Methods section and
Retrosynthesis workflow in ‘Supplemetary_Text’ file).

2. A Pathway analysis workflow to score and rank the pathways
produced through Retrosynthesis step based on multiple criteria
(cf. Pathway analysis workflow in ‘Supplemetary_Text’ file). Some
criteria necessitated the development of specific methods for
pathways thermodynamics (cf. Thermodynamics in Methods sec-
tion) and theoretical product flux calculation (cf. Flux Balance
Analysis with Fraction of Reaction in Methods section). Pathway
scoring is performed via Machine Learning using a training set of
pathways extracted from literature and pathways validated by
pathway engineering experts (cf. subsection Benchmarking
workflows with literature data and expert validation trial).

3. Two Genetic design and engineering workflows that produce
assembly plans for plasmids encoding the pathways generated by
the Retrosynthesis or Pathway analysis workflows (cf. Genetic
design and engineering workflows in ‘Supplemetary_Text’ file).
The first workflow generates plans for Golden Gate37, Gibson38,
and Ligation Chain Reaction (LCR)39 assembly methods. It also
includes Design of Experiment (OptDoE tool) for combinatorial
experimental design. The second workflow (BASIC assembly)
generates plans for the Biopart Assembly Standard for Idempo-
tent Cloning (BASIC) technique40. This workflowprovides a direct
link betweenmachine-enabled design and automated assembly. It
takes as input a pathway and generates a script to operate an
Opentrons liquid handler robot performing assembly and chassis
transformation.

In the reminder of the paper, a metabolic pathway is a succession
of chemical reactions transforming reactants into products, while a
construct is the assembly of genetic parts that encodes a metabolic
pathway. Several constructs with different enzyme and regulatory
sequences can encode for the same pathway. The Retrosynthesis and
Pathways analysis workflowsgenerate annotated SBML files describing
pathways (cf. Pathwayannotation inMethods section),which are taken
as input to the Genetic design and engineering workflows to produce
constructs, i.e., plasmids encoded in SBOL format along with assembly
plans (in CSV files) and liquid handler instructions (python scripts
directly executable by Opentrons).

Benchmarking workflows for Lycopene production
The Retrosynthesis workflow was run at the Genoscope laboratory
(Paris region, France) for the production of lycopene in E. coli. We used
iML151541 as a model for E. coli. The retrosynthetic map was composed
of 12 unique compounds and 7 unique reactions, resulting in 3 “mas-
ter” pathways (cf. Retrosynthesis from target to chassis in Methods
section). Only the 10 best pathways were kept per master pathway,
after reaction completion with cofactors and removal of duplicates
only 9 pathways remained. Additional details are provided in the
Supplementary file ‘Dataset 1’.

The Pathway Analysis workflow was run at the University Poly-
technic of Valencia, Spain. The workflow took as inputs the list of nine
pathways generated by the Retrosynthesis workflow. Results are
shown in Fig. S6 in the ‘Supplementary_Text’ and ‘Dataset 1’ files. The
top-ranked pathway was composed of 3 reactions with EC numbers
listed fromchassismetabolites to target: 2.5.1.29, 2.5.1.96 and 1.3.99.31.

TheGenetic design and engineering workflow for BASIC assembly
was run at two different locations: Paris (Micalis Institute) and London
(Imperial College). In both cases, as design input we used the top
lycopene ranked pathway predicted by the Pathway analysis. Con-
straining the enzyme search within the organism Pantoea ananas,
enzymes CrtE (UniProt ID: P21684), CrtB (P21683), and CrtI (P21685)
were predicted by the Selenzyme tool for the three-reaction pathway
(Fig. S8 in the ‘Supplementary_Text’ file and ‘Dataset 1’ Supplementary
file). A total of 88 construct designs were automatically generated by

the genetic design and engineering BasicDesign tool. The designs were
coded in a CSV file that was fed to DNA-Bot, which was executed in
Paris and London with different labware identifiers and associated
parameters (cf. Genetic design and engineering workflow execution in
Methods). In both laboratories, DNA-Bot generated four executable
python scripts (clip reactions, purification, assembly and strain trans-
formation) thatwere run onOpentrons robots. Additional information
can be found in the Supplementary file ‘Dataset 1’.

Following the executable scripts produced by the Genetic
design and engineering workflow the three genes of the pathway
(crtE, crtB and crtI) were assembled in varying gene order in an
operon, together with six different RBS-linkers (Fig. 1.a). Each of
these linkers held a ribosome-binding site of high or low strength for
each of the three genes (cf. Supplementary file ‘Dataset 1’); the
remaining untranslated region upstream of the RBS provides the
overlap sequence that drives the assembly. For consistent RBS con-
text the three untranslated sequences of the linkers were always
upstream of the same gene in the assembly. The pathway operonwas
expressed using one of two different promoters (medium strength
PJ23105 and low strength PJ23116).

In both laboratories (Paris and London) the scripts were used for
the 88 constructs and to spot 10 µL of the transformed cells (E. coli
DH5-alpha) on a rectangular LB-agar plate (cf. Lycopene production in
Methods section). Of these, only 30 (22 red + 8 white) and 33 (21
red + 12 white) constructs gave transformant colonies at Paris and
London respectively (Fig. 1b). However, only 12 (11 red + 1 white) of
these transformants were common across the two laboratories, sug-
gesting that 10 µL may be too low a volume to spot for these trans-
formations. To test if more transformants can be obtained by
increasing this volume, we manually plated 100 µL of the transformed
cells in Paris and repeated the spotting step in London using 40 µL on a
12-well plate (cf. Lycopene production in Methods). Of the 88 con-
structs, this time transformantswereobtained for 51 (41 red + 10white)
and 63 (49 red + 14 white) constructs at Paris and Imperial, respec-
tively, including 36 (33 red + 3 white) constructs in common.

An analysis of the number of successful transformants obtained in
the two laboratories for the different combinations of promoter, RBS,
and gene order indicates a preference for the weaker J23116 promoter
(Fig. 1c). Overexpression of the three pathway genes from a strong
promoter may be too toxic for the cell, resulting in overall reduced
fitness and consequently fewer successful transformants. Four trans-
formant colonies with visibly different levels of red color (Fig. 1e) were
used for acetone extraction of lycopene at Micalis (cf. Genetic design
and engineering workflow execution in Methods), and similarly eight
colonies were used for lycopene extraction at Imperial. The highest
lycopene production was obtained for construct G6 (4.389mg/
gDCW), a yield comparable to those from E. coli in similar conditions
(5.69mg/gDCW from E. coli DH5-alpha in 2xYT42 and 6.52mg/gDCW
from E. coli ATCC 8739 in LB43). In both the weak (J23116) and the high
(J23105) promoter groups, low lycopene production was observed
from constructs withmore than one high-strength RBS (Fig. 1d). When
comparing the constructs with the same gene order, for example crtE-
crtI-crtB (H10, B9), crtB-crtI-crtE (B11, D2), or crtI-crtE-crtB (C9, D8),
constructs with more low-strength RBSes exhibited higher lycopene
production. There was also an apparent preference for the crtI-crtE-
crtB (G6, C9, D8) among the highest producing constructs. Taken
together, these data indicate that maximizing the expression of path-
way genes can increase cellular burden, resulting in lower pathway
productivity.

Benchmarking workflows with literature data and expert vali-
dation trial
Criteria computed by the Pathway analysis workflow like target pro-
duct flux, thermodynamic feasibility, pathway length, and enzyme
availability score inform the user as to the best potential candidate
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pathway to produce a compound of interest. These criteria can be
combined in a global score value. To that end,wedeveloped amachine
learning scoring tool (cf.Machine LearningGlobal Scoring inMethods)
taking training data from literature and a validation trial conducted by

metabolic engineering experts (cf. Acknowledgement section for the
list of experts enrolled). The process is summarized in Fig. 2, the lit-
erature benchmarking and expert trial results are provided in the fol-
lowing subsections.

Fig. 1 | Automated construction of 88 distinct plasmids coding for lycopene
pathwayoperons containinggenes in different orders,with varyingpromoters
and RBSes. a Plasmids coding for lycopene genes were assembled using the BASIC
method (with DNA linkers). Genes in the lycopene pathway, crtE, crtB, and crtI (parts
3, 4, and 5), were assembled in an operon with UTR-RBS linkers containing different
RBSes. The promoter (part 2) and the 3-gene operon were assembled into a back-
bone with p15A origin of replication (ORI) and chloramphenicol resistance gene
(Cmp-R). The assembled parts were flanked by methylated linkers that recapitulate
BASIC prefix and suffix (LMP and LMS). b Number of constructs with successful
transformant colonies and their color are reported fromMicalis Institute, Paris, and
Imperial College, London. Number of constructs common to both laboratories are
in the intersection. Data are from spotting 10 µL of transformation reactions by

Opentrons (left) and from spotting 100 µL manually or 40 µL by Opentrons (right)
on LB plates. cCount-plots show the number of constructs with successful colonies,
grouped by position and gene (details in Supplementary file ‘Dataset 1’). Results are
from Paris (left), from London (right), and in common (middle). Constructs have a
weaker promoter (top) or stronger promoter (bottom). The RBSes are differ-
entiated by colors. The genes’ positions in the operon are indicated on the x-axis.
Means of the number of constructs for each promoter are shown by dashed lines.
d Lycopene measurement (mg of lycopene per gDCW) from different constructs
from both laboratories. Types of RBSes and promoters, and gene orders are indi-
cated. E: crtE, B: crtB, I: crtI. Promoters and terminators are shown at the extremities.
e Examples of red andwhite colonies (top), pellet preparation (middle) and acetone
extracted lycopene (bottom). Source data are provided in the ‘Source Data’ file.

Article https://doi.org/10.1038/s41467-022-32661-x

Nature Communications |         (2022) 13:5082 4



Literature data benchmarking. A list of 77 pathways corre-
sponding to 60 expressed compounds in engineered organisms (E.
coli, S. cerevisiae, and P. putida) was collected from the literature (cf.
Supplementary file ‘Dataset 2’). For each of the 77 collected pathways
and each heterologous pathway reaction, we compiled the EC number
of the reaction along with the corresponding substrates and products.
Each target compound within that list was used to run the Retro-
synthesis and Pathways analysis workflows to generate a collection of
5874 predicted pathways that produced the same target molecule in
the same host organism as those reported in the literature. Following
that, the predicted collection of pathways were compared with their
corresponding literature pathways using a matching algorithm
described in the ‘Supplementary_Text’ file. Figure 2d shows for each
literature pathway, the predicted pathway with the highest matching
score (raw data is in Supplementary file ‘Dataset 2’). Any pathway
generated by Galaxy-SynBioCAD is labeled ‘literature pathway’ if its
score is above 0.5 and that pathway is added to the training set of a
machine learning model predicting global score (Fig. 2f, g).

Expert validation trial benchmarking. Pathways generated by
Galaxy-SynBioCAD should not be discarded even when they do not
appear in the literature, for the obvious reason that not all pathways
have been engineered for the 60 targets of our literature bench-
marking. To palliate this shortcoming, we generated a set of 7919
predicted pathways for 80 (target, chassis) pairs using the Retro-
synthesis and Pathway analysis workflows. The set included the 5874
pathways generated for our literature benchmarking along with 2045
additional pathways corresponding to 20 additional (target, chassis)
pairs taken from the LASER database44, which includes some pathways
from B. subtilis. We next spliced the set in batches of 5 pathways syn-
thesizing the same target in the same chassis. The predicted pathways
best matching the literature pathways (when known) were included
and the 4 remaining pathways were drawn randomly. We next recrui-
ted 40 experts in the metabolic engineering community (see
Acknowledgement section) and asked them to select valid pathways in
the list they received. To help the selection process, the experts
received a clickable map of the 5 pathways (Fig. 2e) where they could

Fig. 2 | Scoring Galaxy-SynBioCAD predicted pathways with literature path-
ways and expert validation data. a Pathways for different targets and different
hosts are extracted from literature (cf. Literature data benchmarking subsection),
this is illustrated here for production of phenol in E. coli. b Galaxy-SynBioCAD
workflows are run on the literature targets and hosts. c A collection of Galaxy-
SynBioCAD generated pathways is compiled. Pathway ‘A’ producing phenol in E.
coli from tyrosine is highlighted. d The Galaxy-SynBioCAD generated pathways are
compared with the literature pathways using a matching algorithm (cf. ‘Supple-
mentary_Text’ file). The plot shows for each literature pathway the best matching
pathways among all Galaxy-SynBioCAD generated pathways. Pathways having a
matching score above 0.5 are identical (similarity of 1) to literature pathways as far
as main substrate and products are concerned. The raw data can be found in
Supplementary file ‘Dataset 2’, tab ‘literature_matching_score’. eGalaxy-SynBioCAD

generated pathways are evaluated bymetabolic engineer experts whose task is to
select in batches of 5 generated pathways which ones are valid (cf. Expert vali-
dation trial benchmarking subsection). f Valid pathways according to experts and
pathways matching literature are added to a training set of labeled pathways.
g The set of labeled pathways is used to train a classifier printing out a machine
learning score to assess if a given pathway is valid or not (cf. Machine Learning
Global Scoring in Methods section). The figure plots the results obtained for all
pathways generated by Galaxy-SynBioCAD. The raw data, including the training
set, can be found in the Supplementary file ‘Dataset 3’. Using a machine learning
global score threshold of 0.5, the accuracy retrieving literature of expert labeled
pathways is 0.91 with a false positive rate of 0.10 in 4-fold cross validation (cf.
Supplementary file ‘Dataset 3’, tab ‘Pathway_PredictedScore’). Source data are
provided in the ‘Source Data’ file.

Article https://doi.org/10.1038/s41467-022-32661-x

Nature Communications |         (2022) 13:5082 5



collect information on compounds and reactions, reaction and path-
way thermodynamics, a ranked list of enzymes catalyzing each reac-
tion, and reaction and pathway production fluxes. An example of such
a map can be found on the Galaxy-SynBioCAD portal. The results were
recorded and merged with the literature benchmarking results using
an OR function for identical pathways. At the end of this process,
among the 7919 pathways, 754 were labeled positive either because
their matching score with a literature pathway was above 0.5 or
because they were selected as feasible to engineer by the experts (cf.
Supplementary file ‘Dataset 3’).

Using the literature and expert validated pathways, we developed
a machine learning model whose purpose was to evaluate if any given
pathway is a valid one or not. To that end, we used a classifier (cf.
Machine Learning Global Scoring in Methods section), which returned
a global score for each queried pathway. The global score distribution
for the dataset of 7919 pathways is given in Fig. 2g (raw data are in

Supplementary file ‘Dataset 3’). The classifier exhibited excellent per-
formances with an average cross-validation accuracy of 0.91.

Themachine learning global scoring process was used to rank the
top 50Galaxy-SynBioCADpathways generated for 60 targetmolecules
taken fromour literature pathway training set. More precisely, a global
score was calculated for all SynBioCAD generated pathways using
machine learning. Concomitantly, literature or expert selected path-
ways were identified using the matching algorithm described in the
‘Supplementary_Text’ file. Results are shown in Fig. 3 where each row is
a ranked list of collections of SynBioCAD generated pathways for a
given target molecule in a given chassis. Literature or expert selected
pathways are flagged with a black square and pathways are ranked
according to the global score aforementioned. Overall, we find that in
83% cases, the literature or expert selected pathways have a score in
the top 10 scores of all the pathways generated for the same target and
chassis. The number rises to 94% in retrieving literature or expert

Fig. 3 | Ranking predicted pathways with machine learning global score. The
color code on the right side shows themachine learning global score (from 1 top to
0). The black boxes show the location of the literature or expert selected pathways
for a set 60 literature target engineered in E. coli (*), S. cerevisiae (**) or P. putida
(***). If a row does not contain a black box, then the literature or expert selected

pathway is not foundwithin thefirst 50 scoredpathways. Thenumbers listed on the
right side are the total numbers of pathways generated by the Galaxy-SynBioCAD
workflows. The data used to generate the figure can be found in Supplementary file
‘Dataset 3’, tab ‘Lit_Pathway_Rank_ML’. Source data are provided in the ‘Source
Data’ file.
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validated pathways among the top 50 machine learning scored
pathways.

To assess the advantage of making use of a machine learning
scoring schema, we computed a direct score based on (i) the inverse of
the pathway length (favoring shorter pathway), (ii) the opposite nor-
malized pathway free energy (favoring high negative values), (iii) the
normalized averaged enzyme availability score, and (iv) the normal-
ized FBA calculated product flux value. All these valueswere calculated
using the Pathway analysis workflow (addition information are found
in Table 3 in Methods section). A direct score calculation, which does
not make use of machine learning, can simply be obtained summing
the above four parameters. Results are presented in the Supplemen-
tary file ‘Dataset 3’ (tab ‘Lit_Pathway_Rank_noML’) where 58% of the
identified literature/expert pathways are found within the top
10 scored pathways generated by Galaxy-SynBioCAD, this number is
lower than the one obtained when using machine learning (83%).

Discussion
We have presented several Galaxy workflows to design and engineer
pathways in host organisms. These workflows have been built using 25
different computational tools. Chaining the tools together to form
workflows was made possible only because the input and output of
each toolwere standardized. As far as standardization is concerned,we
chose community adopted standards like InChI and SMARTS for
compounds and reactions, SBML for pathways and strains, and SBOL
for genetic constructs.

We illustrated our workflows by designing and engineering a
library of 88 pathway variants designed to produce lycopene in E. coli
DH5-alpha on Opentrons liquid handlers. The workflows were exe-
cuted at four different locations demonstrating the ability of the
Galaxy-SynBioCAD portal to run workflows (including robot drivers
with different labwares) at different sites, and consequently the pos-
sibility of completing multi-partners design and engineering projects.

There aremany standard protocols for biological engineering but
as argued elsewhere45, written protocols without practical guidance
can lead to problems, as protocols often contain ambiguities or rely on
tacit knowledge. Here the possibility of running several times the same
workflow that incorporates automated experiments provides a sys-
tematic way to quantify reproducibility (cf. Fig. 1).

To assess the validity of our generated pathways, we used a
double-blind testing strategy performed by a pool of participants. In
that strategy, used previously to evaluate synthesis planning46, neither
the participants nor the conductors are aware of the origin of the
pathways, and the participants are asked toflagpathways theydeemed
valid without having explicit information on pathways found in the
literature. We applied this approach to develop a machine learning
based scoring function reaching high predictability when ranking
pathways.

The Galaxy-SynBioCAD portal presented in this paper, proposes a
set of synthetic biology and metabolic engineering computational
tools in aGalaxy framework33.We choseGalaxy as ourworkflowsystem
because the tools found in the ToolShed34 have reached way beyond
genome analysis for which Galaxy was originally developed. Just by
focusing on the tool categories relevant to our study, one can cite
proteomics, transcriptomics, metabolomics, flow cytometry analysis,
and computational chemistry. Several communities are using Galaxy
and many papers can be found online for omics (752 publications are
found asof 16 February 2022)microbiome (380publications), diseases
like cancer (386 publications), and drug design and discovery (96
publications). At our request, a new Galaxy category named ‘Synthetic
Biology’ was created, currently comprising 25 tools stored in the
ToolShed.

The offering in Galaxy-SynBioCAD focuses on providing tools for
pathway design and engineering. However, as Galaxy-SynBioCAD is a
community effort, we anticipate our toolset will grow. Regarding

pathway design tools, many of the software products listed in the
introduction could be considered to be added to the portal. In parti-
cular, strain design including knockout genes to maximize targeted
product fluxes could easily be implemented via the flux balance ana-
lysis tools. Additionally, there are already Galaxy workflows to take up
and analyze metabolomics flow cytometry data in the ToolShed34, and
these workflows could directly be incorporated into the portal to deal
with data generated in the ‘Test’ step of the synthetic biology Design-
Build-Test-Learn (DBTL) cycle. As mentioned in the introduction, sev-
eral open-source software products deposited in GitHub26–28,47 could
address the ‘Build’ step and eventually provide drivers to automated
constructions using different robotic workstations beyond those
provided by Opentrons. Regarding the ‘Learn’ step in DBTL, the Opt-
DoE tool could easily be adapted to propose new designs as it was
done in Carbonell et al.25. Other approaches to be considered are
methods that make use of active machine learning as in Borkowski
et al.48. Although all design examples provided in the current paper are
for engineering pathways in host organisms, because of the recent
development of models (similar to genome scale models) for cell-free
systems49, one can also consider adapting the portal for design and
engineering in cell-free.

All of the above-suggested additions could be implemented in
our portal with relatively small efforts (cf. Tools design and inte-
gration process in ‘Supplementary_Text’ file). There are other appli-
cations that could be envisioned beyond pathway design and
engineering. For instance, as shown in Delépine et al.10 retrosynthesis
software can easily be adapted to design biosensors. Such an adap-
tation has been proposed as a Galaxy-SynBioCADworkflow to predict
and implement biosensors for the detection of various metabolites
using the hydrogen peroxide compound as a metabolic hub, such
that the metabolite signals are transduced to hydrogen peroxide
before being sensed by the OxyR transcription factor50. Tools for
genetic logic circuits engineering could also be considered. Also, as
the cell resources consumption due to the level of expression of
heterologous genes are not considered in the global score of a
pathway, integrating in the overall design pipeline a tool enabling the
prediction of the metabolic burden of genetic constructs based on
enzyme expression levels would be of great interest and should be
targeted for the future.

Methods
Retrosynthesis from target to chassis
Typically, the target compound, also named “source compound” is the
compound of interest one wishes to produce, while the precursors
are usually compounds that are natively present in a chassis strain. In
the present implementation, the target can be any chemical that could
be described by an InChI, and the chassis should be ametabolicmodel
described in an SBML file. Starting from the source compound at the
first iteration, reaction rules matching the chemical structure of the
source are applied and newly predicted chemicals are generated.
Reaction rules are generic descriptions of (bio)chemical reactions
encoded into the community standard SMARTS51. The use of reaction
rules allows estimating the outcomes of chemical transformations
based on the generalization of reactions available in knowledge data-
bases such asBRENDA52,MetaCyC52, Rhea53, orMetaNetX54. The degree
of generalization is controlled by describing the surrounding envir-
onment of the reaction center up to a given diameter as described in
Duigou et al.14. To ensure the accuracy of the predicted transforma-
tions that will outcome from the reaction rules, the RetroRules dataset
provided by the Galaxy RetroRules tool has been validated by (i)
checking that rules allow to reproduce the template reactions, and (ii)
checking that results obtained by decreasing diameters are supersets
of results obtained with higher diameters. Only the reaction rules that
successfully passed the 2 checks are retained. The validation of this
dataset has a success rate of 99.3%.
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For each reaction rule, a score is calculated based on the ability to
retrieve enzyme sequences catalyzing substrate to product transfor-
mations, the method is detailed in Delépine et al.10. Newly produced
chemicals are scanned and kept for the next iteration if they are not
within the set of available precursors. In that way, a new iteration is
started using the previously collected chemicals as the new source set.
The iterative process stops when either no new chemicals are dis-
covered or the predefined number of steps is reached. RetroPath2.0
carries out this task.

The retrosynthesis tools RetroPath2.0 and RP2Paths output a set
of pathways composed by chemical transformations based on reac-
tion rules. To obtain reactions, we have to re-build them from tem-
plate reactions which have been used to generate the rules. In
addition, within a pathway one single chemical transformation can
reference multiple rules. Such pathways will be called master path-
ways. For each master pathway, the algorithm takes each transfor-
mation and creates one fork per reaction rule referenced. Then for
each reaction rule, again the algorithm creates a new fork per tem-
plate reaction used to build the current rule. The enumeration of all
forks create a set of slightly different pathways (made of chemical
reactions) for one master pathway. To perform the enumeration,
datasets from RetroRules and MetaNetX are used. The reaction
completion tool (rpCompletion) takes as input the CSV outputs of
RP2paths and RetroPath2.0 and produces a collection of annotated
SBML files. Those SBML files are “enriched” with additional infor-
mation that are not stored as part of the normal SBML schema (cf.
Pathway annotation section).

Pathway annotation
Some results generated by theworkflowproduced in this study cannot
be readily stored in the SBML files natively (informations about che-
mical reactions and species, thermodynamic and fluxes properties, as
well as pathway information).

Using the Minimal Information Required In the Annotation of
Models (MIRIAM) conventions, one can store within the SBML file
information that instructs the user on the provenance of the reactions
and chemical species within the model by cross-references to a wide
range of databases. However, this needs a third-party database lookup
to match the database ID with its structural information. In this work,
intermediate products are generated ad hoc references and may not
necessarily have database entries whereas some other information
cannot be contained under the MIRIAM annotations as it is: SMILES,
InChI, InChIKey for chemical species, reaction rule ID (RetroRules ID),
associated template reaction ID, and rule score based on the expected
enzyme availability.

As such, we elected to enrich the SBML format in such a way that
our information can be stored directly within the SBML file without
breaking any standard of the original file. Because SBML files are based
on XML, new XML annotations are created outside the standard scope
of an SBML file and thus are ignored by any standard SBML readers55.
As a result, this enriched file format (denoted rpSBML) is fully com-
pliant with SBML version 3 specifications.

Standard SBML extensions are also used in this project. The
“groups” package is used to link the heterologous reactions and che-
mical species to identify them easily, as well as classifying the chemical
species that are main actors in an heterologous pathway55. The
SBML FBA package is used to define the FBA simulation conditions56.
The tools also adhere to theMIRIAMannotation standard for the cross-
references of chemical species to public databases57.

Flux balance analysis with fraction of reaction
We need metrics to rank heterologous pathways, this is why we
developed an in-house Flux Balance Analysis (FBA) objective to
simulate the flux of a target while considering the burden that the
production of the target would cause on the cell. Under such

simulation conditions, the analysis that returns a low flux may be
caused by the starting native compound itself not having a high flux,
or the cofactors required having a low flux, while the pathways with
high flux would be caused by both the starting compound and the
cofactors being in abundance. In either case, bottlenecks that limit
the flux of the pathway may be identified and pathways that do not
theoretically generate high yields can be filtered out. Furthermore,
the production of heterologous molecules in an organism often
causes a burden on the growth of the cell. To emulate such a con-
dition, we use the method named ‘fraction of reaction’. We first
perform FBA (with COBRApy58) for the biomass reaction and record
its flux. The upper and lower bounds of the biomass reaction are then
set to the same amount, defined as a fraction of its previously
recorded optimum. This ensures that any further FBA solution would
have a fixed biomass production regardless of the conditions set for
further analysis.

The tool optimizes the target molecule and records the flux
directly to the SBML file and all changed bounds are reset to their
original values before saving thefile. It is important to note thatorphan
chemical species (those which are only consumed or produced by the
metabolic pathway) are ignored. Such species are documented in the
SBML file within the group named rp_fba_ignored_species.

Thermodynamics
Thermodynamics is critical in synthetic pathway design by providing
quantitative indicators to determine bestmetabolic pathways among a
set of predicted ones. Thus, one can perform thermodynamic analysis
to know whether a reaction direction of a pathway is feasible in phy-
siological conditions.

In this work, we performed thermodynamic analysis for species,
reactions and pathways. We use eQuilibrator59 to compute the for-
mation energy of chemical species and the Gibbs free energy for each
chemical reaction and the heterologous pathway.

For each species involved in a heterologous pathway, the first
challenge is to find the corresponding compound in the eQuilibrator
database. To find the right compound, we try to exactly match spe-
cies ID, InChIKey, InChI or SMILES and stop with the first hit. Then, if
no compound is found, in the last resort, the first part of species
InChIKey is looked for within the eQuilibrator cache and when the
result (a list) is not empty, the first compound is taken. If species have
no known structure neither in eQuilibrator database nor in any public
one, the user has the possibility to specify substitution for identifier,
InChI and InChIKey for these species. This substitution is docu-
mented in the SBML file with the group named rp_thermo_sub-
stituted_species. If a species has no known structure and is not
substituted, then the reaction which involves this species will not
have a thermodynamics value. Conversely thermodynamics can be
computed by eQuilibrator for all reactions for which all species have
been identified.

At the level of the pathway, we build a global pseudo-reaction
linking chassis substrates to the target molecule and we compute
thermodynamics with the eQuilibrator engine for the global pseudo-
reaction.

Building the global pseudo-reaction requires finding the appro-
priate stoichiometric coefficients such that the intermediate com-
pounds of the pathway cancel out. A linear optimization program
(Eq. 1) can be set to find the stoichiometric coefficients. The program
can be solved using SciPy60 with a simplex algorithm.

max cTx

such that Ax =0

and 1≤ x

ð1Þ

where c is theobjective function,A the stoichiometricmatrix, and x the
unknown stoichiometric coefficient multipliers.
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As an example, let’s consider the following 3-reaction set:

Rxn1 : MNXM188 +MNXM4+MNXM6+3MNXM1

! CMPD4+CMPD3+MNXM13 +MNXM15 +MNXM5

Rxn2 : MNXM4+ 2CMPD3 ! 2MNXM1 +TARGET

Rxn3 : MNXM4+MNXM6+3CMPD4 ! MNXM13 +MNXM5

whereMNXM are species IDs from MetaNetX, CMPD are intermediate
specieswithin the heterologous pathwayandnot present in the chassis
organism, and TARGET is the product of interest. We note that Rxn2 is
the reaction to retain and CMPD3 and CMPD4 are species to remove as
intermediate compounds. Thus, the parameters of linear solver are:

R1 R2 R3

c= 0 1 0
� �

R1 R2 R3

A=
CMPD3

CMPD4

1 �2 0

1 0 �3

� �

The solver outputs the following coefficients of reactions:

R1 R2 R3

x = 3 1:5 1
� �

The global pseudo-reaction for the reaction sets becomes:

7:5MNXM1 + 3MNXM188 + 5:5MNXM4+4MNXM6

! 4MNXM13 + 3MNXM15 + 4MNXM5 +TARGET

Genetic design and engineering workflow execution
From amongst the pathway predicted by the Pathway analysis work-
flow, the top-rankedonewas selectedwith a scoreof 0.989. The search
scope of the Selenzyme tool was restricted to the taxon ID of Pantoea
ananas, i.e., 553 taxon ID. The combination of polycistronic constructs
was built using 2 constitutive promoters (PJ23105 and PJ23116), 2 RBS
linkers (A03 with a translation initiation rate of 46%, and A04 of 3%), 1

backbone (BASIC_SEVA_36_CmR-p15A.1) and enabling CDS permuta-
tion, resulting in a theoretical maximal number of constructs of 96 for
3 CDS. The labware IDs and parameters usedwith DNA-Bot parameters
are listed in Tables 1 and 2. Additional changes in the purification step
were needed because the 2 labs own different versions of themagnetic
module (generation 1 vs generation 2). An updated version of the
original DNA-Bot tool47 was developed to be fully compatible with the
Opentrons APIv2 and enabling a command-line interface, whilst
retaining the option of using an enhanced GUI for direct user control.

Lycopene production materials and methods
Lycopene genes were synthesized by Twist Bioscience, flanked by the
LMP prefix and the LMS suffix sequences40, and cloned into pTwist
high copy vector (AmpR, ColE1 replication origin) using Golden Gate.
The resulting storage plasmids (pTwist_High_BASIC_CrtE, pTwis-
t_High_BASIC_CrtB, pTwist_High_BASIC_CrtI) were confirmed by
sequencing.

Storage plasmids for lycopene genes and assembly vector
BASIC_SEVA_36_CmRp15A.1 were prepared using Monarch® Plasmid
Miniprep Kit (Micalis) and E.Z.N.A.® Plasmid DNA Mini Kit (Imperial).
The samples were diluted to 200 ng/µl ready to use in the clip reac-
tions. Plasmids coding for the lycopene pathway variants were con-
structed using Biopart Assembly Standard Idempotent Cloning
(BASIC) method. Five-part BASIC reactions were performed, repla-
cing the dropout mScarlet cassette in the assembly vector

Table 1 | Labware IDs used at Imperial College (London) and Micalis Institute (Paris) laboratories

Description London Paris Used in

P20 single channel pipette p20_single_gen2 p20_single_gen2 Steps 1,
3, and 4

P300 multi channels pipette p300_multi_gen2 p300_multi_gen2 Steps
2 and 4

Opentrons 4-in-1 tubes rack for
1.5ml eppendorf tubes

e14151500starlab_24_tuberack_1500ul opentrons_24_tuberack_eppendorf_1.5ml_safelock_snapcap Steps 1,
3, and 4

Opentrons 10μL tips rack opentrons_96_tiprack_20ul tipone_3dprinted_96_tiprack_20ul Steps 1,
3, and 4

Opentrons 300 μL tips rack opentrons_96_tiprack_300ul tipone_yellow_3dprinted_96_tiprack_300ul Steps
2 and 4

96-well rigid PCR plate (clip
reactions and
transformation steps)

4ti0960rig_96_wellplate_200ul green_96_wellplate_200ul_pcr Steps
1 and 4

96-well rigid PCR plate (purifica-
tion and assembly steps)

4ti0960rig_96_wellplate_200ul black_96_wellplate_200ul_pcr Steps
2 and 3

Agar plate (transformation step) nuncomnitraysingle_1_wellplate_35000ul
corning_12_wellplate_6.9ml_flat

thermoomnitrayfor96spots_96_wellplate_50ul Step 4

Reservoir plate 21mL 12 channels 4ti0131_12_reservoir_21000ul citadel_12_wellplate_22000ul Step 2

96 deep well plate 2mL wells 4ti0136_96_wellplate_2200ul transparent_96_wellplate_2ml_deep Step 2

Table 2 | DNA-Bot parameters that differ between Imperial
College (London) and Micalis Institute (Paris) laboratories

Step Parameter London Paris

Purification step magdeck_id magdeck magnetic module gen2

magdeck_height 20 10.8

settling_time 2 6

drying_time 5 15

elution_time 2 5

wash_time 0.5 0.5

bead_ratio 1.8 1.8

incubation_time 5 5

Transformation step incubation_temp 4 8

incubation_time 20 30
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(BASIC_SEVA_36_CmRp15A.1) by a promoter and three genes with
appropriate linkers. A collection of neutral and functional linkers
(encoding RBS sequences) is available in a ready to use 96-well plate
format (www.biolegio.com). For this work the standard BASIC linker
set (Biolegio: BBP-18500) was used.

DNA-BOT was executed as described in detail in the Genetic
design and engineering workflow execution section. A clip reaction
master mix was prepared by combining 3 µL of 10X NEB T4 DNA ligase
buffer, 1 µL NEB BsaI-HF v2 (NEB #R3733), 1 µL T4 DNA Ligase (NEB
M0202 (Micalis), or PromegaM1804 (Imperial)) per 20 µL required for
each reaction. The Opentrons OT-2 pipetted the 20 µL master mix for
each reaction, plus 1 µL of Biolegio BASIC linkers and 1 µL of each DNA
parts, together with sufficient H2O to give a total volume of 30 µL. Clip
reactions were incubated in a thermocycler (Applied Biosystems) for
30 cycles (37 °C for 5min, 16 °C for 5min), followed by a 5min incu-
bation at 60 °C at Micalis. Clip reactions were incubated in Opentrons
Thermocycler Module for 20 cycles (37 °C for 2min, 20 °C for 1min),
followed by a 10min incubation at 60 °C at Imperial. For clip reaction
purification, 54 µL of Mag-Bind® TotalPure NGS magnetic beads
(OMEGABIO-TEK (Micalis) or AMPureXP (Imperial))were added; 150 µl
70% ethanol was used during wash steps; following re-suspension in
H2O, 40 µL of the eluent was transferred to a fresh well. Constructs
were assembled in volumes of 15 µL using 1.5 µL of each purified clip
reaction in a solution of 1X assembly buffer (CutSmart Buffer, NEB
#B6004). Assembly reactions were incubated at 50 °C for 45min in a
thermocycler (Applied Biosystems (Micalis) or Opentrons Thermo-
cycler Module (Imperial)). 20 µL of DH5-alpha Competent E. coli (NEB
#C2987H, Micalis) or home-made DH5-alpha competent E. coli
(Imperial) were distributed per well into 96-well plates; then, they were
used for transformation reactions. In all, 5 µL of the assembly reactions
were mixed with cells. Heat shock was conducted according to the
manufacturer’s instructions. SOC media (125 µL) was transferred to
each assembly and the reaction incubated at 37 °C for 1 h with lids off.
Transformation reactions were spotted on plates (Thermo Scientific™
OmniTray™ Single well) each containing 40mL LB-agar supplemented
with 17.5 µg/mL chloramphenicol. The spotting protocol was run twice
in order to spot 2 times 5 µL for each transformation reaction. The
spotting step at Imperial was repeated using 40 µL of transformation
reaction on a 12-well plate (Costar® 12-well 3737), each well containing
10mL of LB_agar supplemented with 17.5 µg/mL chloramphenicol.
100 µL of each transformation reactionwas platedmanually on LB-agar
plates containing 17.5 µg/mL chloramphenicol as well.

We selected 6 colonies at Micalis, and 8 colonies at Imperial, with
different levels of red color (visual inspection) and sequenced them.
This was followed by lycopene extraction from the 4 and 8 colonies,
respectively, that sequenced correctly. To quantify lycopene produc-
tion, 2mL of overnight cultures grown in LB (Cm 17.5μg/mL) were
pelleted at 5000×g (10min), washed by re-suspension in 1mL water,
re-pelleted at 5000×g (10min), and the pellet re-suspended for
extraction in 1mLacetone. The cells in acetonewere incubated at 55 °C
for 20min with continuous shaking (1300 rpm, Eppendorf Thermo-
mixer comfort), centrifuged at 19000xg (10min), and the supernatant

transferred to a fresh tube. Lycopene absorbance of the supernatant
wasmeasured at 474 nm using a quartz cuvette (Hellma 104.002B-QS)
in a spectrophotometer (UVisco V-1100D (Micalis) or NanoDrop™One
UV-Vis (Imperial)), and the pellet was dried at 50 °C for 48 h to deter-
mine the gDCW. Absorbance (OD474) was converted to molar con-
centration value by dividing by 150479, the molar extinction
coefficient (ε) of lycopene61. The yield per gram dry cell weight (mg/
gDCW) was calculated by dividing the absolute yield (mg) by the
weight of the dried cell pellet.

Machine learning global scoring
The purpose of the machine learning model is to predict if a given
predicted pathway is a valid one or not. To that end, we developed a
classifier based on the XGBoost library62. The classifier was trained on
7919 Galaxy-SynBioCAD generated pathways (comprising 43392
reactions) used during the expert validation trial where 754 pathways
were labeled positive. The training set can be found in the Supple-
mentary file ‘Dataset 3’. The input features used by the classifier are
given in the Table 3, these were computed for each training pathway
and each reaction within the pathways. XGBoost learn function was
parameterized with aMaximumdepth of a tree of 1000 and a step size
shrinkage used in update to prevent overfitting of 0.3 (default value).
The classifier accuracies were recorded during 4-fold cross validation.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data of figures are provided in the Source Data file. The eQui-
librator database is available online at Zenodo (https://doi.org/10.5281/
zenodo.4128543) and it can be queried using the equilibrator-api
python library which is available online at github (https://gitlab.com/
equilibrator/equilibrator-api). The LASERdatabase is available online at
bitbucket (https://bitbucket.org/jdwinkler/laser_release/src/master/).
All other relevant data are included in the paper and in the Supple-
mentary Text and Dataset files. Source data are provided with
this paper.

Code availability
All codes are accessible online following links provided in Table S1
found the Supplementary Text file.
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