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Abstract
Early life stress may have a lasting impact on the developmental programming of the dopa-

mine (DA) system implicated in psychosis. Early adversity could promote resilience by cali-

brating the prefrontal stress-regulatory dopaminergic neurotransmission to improve the

individual’s fit with the predicted stressful environment. Aberrant reactivity to such match

between proximal and distal environments may, however, enhance psychosis disease risk.

We explored the combined effects of childhood adversity and adult stress by exposing 12

unmedicated individuals with a diagnosis of non-affective psychotic disorder (NAPD) and

12 healthy controls (HC) to psychosocial stress during an [18F]fallypride positron emission

tomography. Childhood trauma divided into early (ages 0–11 years) and late (12–18 years)

was assessed retrospectively using a questionnaire. A significant group x childhood trauma

interaction on the spatial extent of stress-related [18F]fallypride displacement was observed

in the mPFC for early (b = -8.45, t(1,23) = -3.35, p = .004) and late childhood trauma (b =

-7.86, t(1,23) = -2.48, p = .023). In healthy individuals, the spatial extent of mPFC DA activity

under acute psychosocial stress was positively associated with the severity of early (b =

7.23, t(11) = 3.06, p = .016) as well as late childhood trauma (b = -7.86, t(1,23) = -2.48, p =

.023). Additionally, a trend-level main effect of early childhood trauma on subjective stress

response emerged within this group (b = -.7, t(11) = -2, p = .07), where higher early trauma

correlated with lower subjective stress response to the task. In the NAPD group, childhood

trauma was not associated with the spatial extent of the tracer displacement in mPFC (b =

-1.22, t(11) = -0.67), nor was there a main effect of trauma on the subjective perception of

stress within this group (b = .004, t(11) = .01, p = .99). These findings reveal a potential
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mechanism of neuroadaptation of prefrontal DA transmission to early life stress and suggest

its role in resilience and vulnerability to psychosis.

Introduction
Adverse early-life experiences such as abuse or parental loss are highly prevalent phenomena
in children with reports of up to 60% being exposed to at least one major traumatic event by
the time they are 16 years old [1]. These statistics become all the more concerning in the light
of epidemiological evidence linking traumatic experiences in early life to higher risk for psy-
chosis years later [2, 3]. Indeed, a comprehensive meta-analysis of case-control and popula-
tion-based studies revealed a threefold increase in risk of developing a psychotic disorder
among those reporting childhood trauma [4]. Moreover, compelling prospective evidence sug-
gests a dose-response relationship between the exposure to early life trauma and incidence of
psychotic symptoms [5] and the subsequent need for care [6]. Most individuals facing early
adversity, however, are resilient to psychosis, and only a small portion descends into psychotic
illness [7]. Thus, studying the effects of childhood trauma in healthy adults and patients with
psychotic disorder can potentially allow to identify some of the neurodevelopmental program-
ming mechanisms fostering resilience to adversity.

Various lines of evidence suggest that psychosis is associated with critical alterations in cen-
tral stress-regulatory mechanisms affecting neural and endocrine stress systems [8–10], and
manifested through maladaptive affective and psychotic reactivity to stress [11, 12]. Resilience
to psychosis, on the other hand, appears to be promoted by advantageous neuroadaptive
changes in the stress-modulatory network, through which early life stress likely exerts a hor-
metic effect on stress susceptibility later in life [13]. The dopamine (DA) system, which has
long been the subject of investigation in psychosis [14], has been implicated in these changes
[15, 16], making it a prime candidate for explorations into the putative protective versus psy-
chotogenic effects of early life stress.

Preclinical work has revealed the critical DAergic hubs of the stress network: the medial pre-
frontal cortex (mPFC), nucleus accumbens and striatum [15, 17–19], with recent work propos-
ing a reciprocal relationship between these hubs [20, 21]. Several reports suggest that exposure
to early life trauma may affect this pathway; rodents exposed to early adversity demonstrate
long-lasting stress blunted mPFC DA outflow [22, 23] and increased tonic DA levels in subcor-
tical areas [24]. Corroborating evidence in humans has also implied the DA system in stress
processing in most of the hubs within the stress network, primarily mediated by D2/3 receptors
[25–27]. Moreover, increased striatal DAergic reactivity to stress has been associated with both
childhood adversity [28, 29] and the psychosis continuum [27, 29].

While there is rising support for the role of midbrain DA release in the psychotogenic effects
of stress [27, 29], the evidence for the role of the mPFC remains inconclusive. Work of our
group recently offered evidence for unaltered stress-related prefrontal DA function in psycho-
sis: the DAergic response to psychological stress in mPFC was similar in healthy controls and
patients with a psychotic disorder, and correlated with subjective experience of stress in the
entire sample [25]. The effect of early life stress, however, was not taken into account, leaving
possible resilience or vulnerbaility mechanisms unidentified.

The current study, therefore, aimed to investigate the effect of childhood adversity on DAer-
gic stress processing in frontal cortical areas in non-medicated patients with non-affective psy-
chotic disorder (NAPD) as well as in healthy volunteers (HV) in order to further elucidate the
DAergic contribution to both vulnerability as well as resilience to psychosis. To this end, we
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used data acquired previously (25) in a single bolus-infusion [18F]fallypride positron emission
tomography (PET) during which psychosocial stress was induced using a well-validated Mon-
treal Imaging Stress Task (MIST; [28]). Conform previous reports implicating the mPFC in the
traumagenic dysfunction and stress modulation [25, 30] the mPFC as a whole, as well as its
ventral and dorsal portions, were a priori selected as the regions of interest (ROI). In these
regions, we hypothesized a differential effect of childhood trauma on the spatial extent of
stress-induced DA release among NAPD and HV. Moreover, differential effects of childhood
trauma on the subjective experience of stress during the scan were expected in the two groups.

Materials and Methods

Sample characteristics
The sample consisted of 12 HV and 12 unmedicated NAPDmatched on age, gender and edu-
cation described in detail previously [25]. All NAPD were currently off antipsychotic medica-
tion (AP) for longer than one year, did not currently use mood stabilizers, antidepressants or
benzodiazepines. Participants were recruited through regional and national media and, addi-
tionally, NAPD were recruited through local mental health services. Inclusion criteria indepen-
dent of group: I) age 18–60 II) able to provide informed consent. Exclusion criteria
independent of group: I) current/past use of illicit drugs according to the Composite Interna-
tional Diagnostic Interview (CIDI; WHO, 1990) (lifetime:>15 times cannabis,>5 times other
drugs; illicit drug use in the past year), II) ferromagnetic metal element in or on the body, III)
neurological disease, IV) pregnancy. HV-specific exclusion criteria: lifetime history of psychiat-
ric illness according to the diagnostic and statistical manual of mental disorders (DSM) IV cri-
teria and lifetime AP use. NAPD-specific inclusion criterion: diagnosis of non-affective
psychosis according to DSM-IV criteria (NAPD were not in remission according to the Posi-
tive and Negative Syndrome Scale (PANSS) criteria [31]. On the day of scanning, a urine
screening was performed to ascertain current drug use and pregnancy. The RWTH Aachen
University ethics committee approved the study. PET approval was additionally granted by the
national authority for radiation protection in humans in Germany (Bundesamt für Strah-
lenschutz, BfS). Written informed consent was obtained before participation, and participants
were treated in accordance with the Declaration of Helsinki.

Psychosocial stress paradigm
Psychosocial stress was induced using the MIST [28], a mental arithmetic task with social eval-
uative component. During the MIST task, participants were asked to solve arithmetic problems
first under a control condition during which no time constraint or feedback were present, and
subsequently under the experimental condition where time and difficulty were automatically
adjusted to ensure 30–40% error rate. Participants were continuously made aware of their sub-
optimal performance via a visual performance bar and scripted verbal negative feedback deliv-
ered approximately every 12 minutes throughout the experimental condition (6 times in total),
during which a confederate researcher reminded the participants that they were performing
worse than all previous participants. There were 10 6-minute blocks of MIST control and
experimental version (Fig 1). Dispositional subjective stress and positive symptoms of psycho-
sis were assessed pre scan (n = 1), during each PET condition (n = 8) and post scan (n = 1) (Fig
1) using validated 7-point Likert Scale items. Similar to previous work [11, 25, 30], subjective
stress was measured using items with sufficient variability and internal consistency (Cron-
bach’s alpha = .69): “I feel pressured”, “I feel judged”,and “I’m in control” (recoded). Moreover,
positive symptoms of psychosis were assessed using the items: “I hear voices”, “I see things”
and “I feel suspicious” (Cronbach’s α = .7). Factor analyses confirmed that the subjective stress
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items loaded on a single factor, which was also the case for the psychotic symptoms items.
Since the psychosocial stress task was always administered last, it might have been more
demanding for patients than for controls, thus influencing their subjective state and brain
activity. The perceived difficulty of the current task at hand was thus assessed with the item
“this is difficult for me”, rated on the same scale.

Image acquisition and analysys
MRI. T1-weighted Magnetic Resonance Imaging (MRI) scans were acquired on a 1.5T

Philips (Philips Medical Systems. Herrsching, Germany) machine with TE = 4.59ms,
TR = 30ms, matrix dimensions = 256x256, slice thickness = 2mm, slice number = 176. This
scanner was replaced by a Siemens 3T scanner (Siemens Healthcare. Munich, Germany) and
all remaining scans (39%) were collected using the Magnetization Prepared Rapid Acquisition
Gradient-Echo (MP-RAGE) sequence, with TE = 2.52ms, TR = 1900ms, matrix
dimensions = 256x256, slice thickness = 1mm, slice number = 176. A similar proportion of
scans for HV and NAPD was collected on the second machine (5/12 vs. 4/12).

Tracer preparation. The radiosynthesis of [18F]fallypride was a high-yield modification of
the synthesis method for [18F]desmethoxyfallypride, described in detail previously [32].

PET acquisition. PET measurements were performed in three-dimensional mode on a
Siemens ECAT EXACT HR+ scanner (Siemens-CTY, Knoxville, TN, USA). Sixty-three slices
of 2.425mm slice thickness (pixel size = 2mm x 2mm) were reconstructed per time frame by fil-
tered back projection (Hamm filter) after Fourier rebinning into two-dimensional sinograms.
Data sets were corrected for random coincidences, scatter radiation and attenuation (10min
68Ge/68Ga-transmission scan). Image matrix was 128x128. PET data were smoothed (4mm
FWHM), realigned (realignment image based on first 15 minutes of the scan), co-registered
(transformation matrix based on first 10 realigned frames to individual T1 MRI (PMOD v3.1,
PMOD Technologies Ltd., Zurich, Switzerland) and normalized (SPM8, Wellcome Trust, UK).
Preprocessing details have been published previousled [25]. Data were collected in two seg-
ments, a control and experimental part, in a single session with single bolus administration
(Fig 1; [25, 33]).

PET analysis. Time-activity curves (TAC) were obtained for the cerebellum (reference
region) and temporal and frontal regions. Mask preparation details have been described previ-
ously. Briefly, regions were based on Brodmann definitions. Masks were custom-tailored to the

Fig 1. Schematic representation of the single bolus design.

doi:10.1371/journal.pone.0150746.g001
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individual’s MRI, transferred to co-registered PET data in PMOD v3.1 and visually inspected
for fit by two independent individuals. PET data were analyzed using a modified simplified ref-
erence tissue model (SRTM), in accordance with previous work [33–38]. Stress-induced [18F]
fallypride displacement was quantified using TAC plots and receptor kinetic parameters.
Tracer displacement was calculated for every person on a voxel-wise basis as the standardized
value of γ (γ/std(γ); [38]), where γ is considered an additional time-varying parameter in the
SRTM estimating the amplitude of ligand displacement at start of the experimental condition
in a single scan session (based on the assumption that changes in competition between DA
release and radioligand competition are reflected in the estimation of γ; [34]). γ was calculated
over an exponential decay function h(t) = exp[−τ(t−T), where t = measurement time, T = time
of experimental condition initiation and τ controls the rate at which activation effects die away
(dissipation rate set to τ = 0.03 min−1; [33, 36, 37]). The number of voxels surviving p(/number
of total voxels) = .05 reflects the spatial extent of task-induced ligand displacement and was
used as primary outcome measure of stress-related DA function. This approach has been vali-
dated for [18F]fallypride [36] and has been used to investigate phasic DAergic activity in extra-
striatal areas [33, 38].

Childhood trauma assessment
Childhood trauma was measured using Childhood Experience of Care and Abuse (CECA-Q;
[39]), a validated, retrospective questionnaire to assess childhood trauma in early childhood
spanning from 0 to 11 years of age, and late childhood encompassing years 12 through 17. For
the purpose of this study, a composite score was created for each time period using 15 dichoto-
mous (‘yes’ = 1 and ‘no’ = 0) items informing about family arrangements, parental loss, physi-
cal and sexual abuse, neglect and bullying.

Analyses
Final analyses were performed using STATA 11.2 (StataCorp, 2011). The percentage of voxels
in a ROI surviving the Bonferroni-corrected threshold was used as outcome for stress-induced
changes in DAergic activity [30, 36, 38]. Conform previous results from this sample [25], the
mPFC was a priori selected as the primary ROI, with its ventral and dorsal portions (vmPFC
and dmPFC, respectively) as two additional ROIs. The percentage of voxels of the left and right
regions were summed into a corresponding bilateral ROI and entered into regression analyses
as the dependent variable, with the childhood trauma score as the predictor and group (NAPD,
HV) as the interaction term. Separate linear regressions were performed for each ROI, and for
each trauma timeframe: early and late. Assessments of subjective stress and psychotic symp-
toms during the scan were averaged for the control and experimental part, and the difference
score (experimental-control) was used as the outcome variable in regression analyses, with
childhood trauma scores entered as predictors. To compare the two groups on the change in
perceived difficulty of the task, this variable was averaged for the control and experimental
part, the difference score was computed as above, and entered in a regression analysis as the
outcome, with group (NAPD, HV) as the predictor. Regression analyses were corrected for age
and gender.

Results

Sample demographics
As decribed in detail previously [25], HV and NAPD were matched on age (M = 48.08
(SD = 9.94) vs. M = 44.67 (SD = 11.24)), gender (8 male, 4 female per group), education,
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lifetime drug use and smoking frequency (all n.s.). Four NAPD were antipsychotics (AP)–
naïve; the remainder of the sample were off AP for 7.09 (SD = 4.96) years. Patients endorsed
moderate levels of positive symptoms of psychosis (PANSS positive symptom scale
mean = 11.83, SD = 3.93). The ability of the MIST to successfully induce stress and temporarily
increase positive psychotic symptoms in this sample has been reported previously [25]. Addi-
tionally, the ratings of the perceived difficulty of the task increased numerically from control to
experimental condition for both HV (M = 1.63, SD = 1.76) and NAPD (M = 1.54, SD = 1.40)
to the same extent (b = -.17, t(1,23) = -.25, p = .807). Healthy participants endorsed a mean of
2.42 (SD = 1.51) adverse events in early childhood and 2.67 (SD = 1.5) adverse events in late
childhood. NAPD scored 3.42 (SD = 1.88) and 2.75 (SD = 1.36) for early and late childhood
trauma respectively. The two groups did not differ in early (t(1,23) = -1.31, p = .20) nor late
childhood trauma scores (t(1,23) = -.29, p = .77).

The effect of childhood trauma on stress-induced [18F]fallypride
displacement
Binding potential relative to non-displaceable binding potential (BPND) calculated over the
complete paradigm using the SRTM [40] in mPFC was .51 (SD = .2). As evidenced by Fig 2, a
significant group x childhood trauma interaction on the spatial extent of stress-related [18F]
fallypride displacement was observed in the mPFC for early childhood trauma (b = -8.45, t
(1,23) = -3.35, p = .004), and late childhood trauma (b = -7.86, t(1,23) = -2.48, p = .023). Within
the control group, a significant positive association emerged between the spatial extent of
stress-induced tracer displacement in the mPFC and early childhood trauma (b = 7.23, t(11) =
3.06, p = .016; Figs 2 and 3) and late childhood trauma scores (b = 5.47, t(11) = 2.54, p = .035;
Fig 2). In the patient group, there was no association between childhood trauma and the spatial
extent of the tracer displacement in mPFC (early b = -1.22, t(11) = -0.67, p = .519; late b =
-1.68, t(11) = -.68, p = .513; Figs 2 and 3).

An analogous significant group x childhood trauma interaction effect was observed in the
vmPFC (early b = -9.53, t(1,23) = -3.15, p = .006; late b = -9.5, t(1,23) = -2.61, p = .018; Fig 2).
In healthy controls, a trend-level positive association between the spatial extent of stress-
induced tracer displacement in the vmPFC and childhood trauma was observed for both early
trauma (b = 7.2, t(11) = 2.22, p = .058) and late trauma scores (b = 6.02, t(11) = 2.24, p = .056).
Similarly to the mPFC, there was no significant association between tracer displacement in the
vmPFC and childhood trauma in the patient group (early b = -2.18, t(11) = -1.15, p = .282; late
b = -2.7, t(11) = -1.03, p = .331; Fig 2). There was no main effect, interaction effect or within-
group associations between the two childhood trauma scores and stress-related fallypride dis-
placement in the dmPFC (all p-values>.05).

The effect of childhood trauma on subjective stress and
psychopathology
The association between early trauma score and subjective stress scores during the MIST para-
digm was not significantly different for NAPD and HV (b = .7, t(1, 23) = 1.18, p = .26). How-
ever, when testing within-group main effect of childhood trauma on subjective experience of
stress, a trend for a negative association between early childhood trauma and the subjective
stress response was detected in HV (b = -.7, t(11) = -2, p = .07), with higher early childhood
trauma being associated with lower subjective stress responses to the task (Fig 3). No main
effect of childhood trauma on the subjective stress response to the task was present in NAPD
(b = .004, t(11) = .01, p = .99; Fig 3). There was no interaction or main effect between late child-
hood trauma and the subjective stress response to the task (all p-values>.05) and there was no
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association between the two childhood trauma scores and psychotic symptoms during the scan
in NAPD.

Discussion
We examined the association between childhood trauma and stress-induced prefrontal DA
activity of healthy individuals and patients with psychotic disorder using [18F]fallypride PET.
We observed a significant difference in the association between childhood trauma score and
spatial extent of stress-induced prefrontal DA activity in each group; In healthy subjects, sever-
ity of childhood trauma was associated with more extensive stress-related DA activity in

Fig 2. The effect of childhood trauma on spatial extent of DA activity in mPFC and vmPFC. Early (ages 0–11) and late (ages 12–17) childhood trauma
scores (x-axis) were associated with increased spatial extent of stress-induced mPFC and vmPFC [18F]fallypride displacement (y-axis) in HV. No such
associations were observed in NAPD. Association in HV significant at p<0.05.

doi:10.1371/journal.pone.0150746.g002
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mPFC. This effect was especially pronounced in relation to early childhood trauma, and largely
driven by DA activity in the ventral portion of mPFC. Contrarily, in the patient group, there
was no association between childhood trauma and the spatial extent of stress-related DA activ-
ity in this region, and this was the case for its ventral and dorsal portions, as well as for early
and late childhood trauma. While the interaction between group and childhood trauma on
behavioral stress response was not significant, a trend for a main effect of early trauma emerged
in the control group, where increased exposure to early trauma was associated with decreased
subjective stress responses to the task. No main effect of childhood trauma on subjective expe-
rience of stress was detected in individuals with psychotic disorder.

Healthy individuals
These results first of all implicate prefrontal DA transmission in the human stress response
and confirm the role of the mPFC in this function. Furthermore, they build upon our previous
findings of increased DA activity in mPFC under acute psychosocial stress in this [25] and
another sample [30], by showing that in the healthy brain, distal forms of stress impact the
acute prefrontal DAergic stress response. The results presented in this manuscript suggest that
increased DAergic activity observed in the striatum of those exposed to childhood adversity
[28] also extends to the cortex.

The positive association between childhood trauma and the spatial extent of mPFC DA
activity under stress in healthy adults could be interpreted as one of the mechanisms of adap-
tive neuroplasticity in the mPFC [16], characterizing resilience. The within-group behavioral
results suggest that this mechanism may underlie increased robustness to psychopathology, as
more severe trauma was associated with decreased sensitvity to the experimental stressor.

Fig 3. Correlation between early childhood trauma scores and subjective stress during PET. A trend-
level association between early childhood trauma scores (0–11) and decreased reactivity to the stress task in
HV, but not NAPD. Association in HV p = 0.07.

doi:10.1371/journal.pone.0150746.g003
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This notion corroborates the emerging evolutionary perspective on resilience to psychopa-
thology which maintains that early life adversity could induce adaptive changes that optimize
the individual’s fit with the predicted (adverse) environment [13]. That is, stress during devel-
opment could “inoculate” certain individuals to better cope with challenges encountered dur-
ing adulthood [7], such as those evoked by the present experiment.

While social support, parenting and other external circumstances undoubtedly play a role,
genetic makeup is thought to largely determine a stress-vulnerable versus stress-resilient phe-
notype [8]. Neuroadaptation to stress is multifold, and believed to involve variation in the glu-
cocorticoid receptor (GR; [41] and catechol-O-methyltransferase (COMT) expression, both of
which directly influence prefrontal DA function [42]. Stress has been shown to exclusively acti-
vate the GRs located on mPFC DA neurons leading to DA efflux, which in turn mediates DA
release downstream [43]. In the interaction with childhood trauma, common variants of the
GR gene predict increased biomarkers for, and actual vulnerability to, psychopathology in
adulthood [44]. Meanwhile, COMT genotype predicts the extent of prefrontal DA activity and
stress-sensitivity [38], and is reported to modulate the effect of childhood trauma on cognition
and symptoms of psychosis [45]. Collectively, these studies offer one possible explanation of
how childhood adversity in interaction with (epi)genetically optimized prefrontal DA reactivity
to stress may confer a resilient phenotype.

Individuals with psychotic disorder
In NAPD, on the other hand, there was no association between childhood trauma and the spa-
tial extent of stress-related DAergic activity in this region, and this was the case for its ventral
and dorsal portions, as well as for early and late childhood trauma. Moreover, no within-group
association between childhood trauma and subjective stress response to the task was observed.
Seeing that this pattern deviates from the putative adaptive DA response of HV, one could rea-
sonably speculate that in individuals that develop psychosis later lin life, childhood trauma fails
to evoke the necessary calibration of the DA system to better endure stress [8]. From the large-
scale brain network perspective, the dysregulation of the prefrontal node by childhood trauma
could have a noxious effect on stress responsiveness in the interconnected subcortical hubs
[46]. This notion is supported by reports from other groups implicating the striatum in aber-
rant reactivity to stress in psychosis in general [27] and in the pathogenesis of psychosis in par-
ticular [47, 48]. Furthermore, low maternal care in the early life has been shown to be more
prevalent in individuals with schizotypy and associated with increased stress-induced DA
release in the striatum [29].

The underlying mechanism of such divergent trajectories of individuals with psychosis
exposed to similar levels of childhood trauma as their healthy counterparts could be attribut-
able to a stress-susceptible genetic make-up. In addition to studies implicating GR and COMT
variants in poor outcomes following childhood trauma discussed earlier, an extensive general
population study identified the COMT polymorphism as significant moderator of the suscepti-
bility to psychotic experiences following childhood maltreatment [49]. Meanwhile, patients
with psychosis carrying the COMTMet/Met genotype demonstrated increased affective and
psychotic reactivity to stress [50]. Collectively, these studies support the existence of a stress-
vulnerable genotype implicating prefrontal DA function and warrant integrated exploration of
the trauma-stress-psychosis connection.

Strengths and limitations
A number of strengths and limitations regarding the design and methodology of the current
study were previously discussed in detail elsewhere[25].
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The most important consideration includes the fixed order of the control-experimental con-
dition to accommodate the model and prevent the long-lasting effects of stress from contami-
nating the control condition. It is possible that this design could introduce an order effect due
to, for instance, greater proneness to fatigue in the patient group. Although a recent [18F]fally-
pride PET experiment that employed the MIST reported a main effect of stress on mPFC DA
activity irrespective of the condition order [26], the two conditions were administered on sepa-
rate days, and the population under study only included healthy controls. While in the current
study patients did not endorse greater increase in perceived difficulty of the stress than the con-
trols did, it still does not rule out the possibility that they were more fatigued by it or more reac-
tive to it in some other way.

Other limitations specific to this article include the variation in BD present in both groups
that suggests that although the DA system plays an important role, other factors likely also con-
tribute to resilience and vulnerability to stress. Additionally, the relatively small sample size
could both preclude and inflate the subtle effect of childhood trauma on the arguably noisy
DA-ergic neurotransmission of the 12 patients included in this study. According to our post-
hoc power calculation, doubling this sample size would yield moderate-to-high power in future
exploration of this intriguing phenomenon.

Another limitation pertains to the CECA questionnaire used to quantify childhood trauma.
The retrospective nature of the self-report of stressful childhood experiences is subject to recall
bias. However, this questionnaire has been well-validated and widely-accepted as an accurate
and reliable index of exposure to adversity in childhood [51, 52]. Moreover, the structure of the
CECA questionnaire used in the current study only allows for quantification of the stressful life
events, but does not allow to qualify the frequency and gravity of the event self. This compro-
mise has been introduced in order to minimize memory bias, as it has been shown that the rec-
ollection of an event is more susceptible to forgetting and false memory formation than a mere
recognition of a presence or absence of the event [53, 54].
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