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Abstract

Molecular phylogenetic inference is inherently dependent on choices in both methodology and data. Many insightful studies have

shown how choices in methodology, such as the model of sequence evolution or optimality criterion used, can strongly influence

inference. In contrast, much less is known about the impact of choices in the properties of the data, typically genes, on phylogenetic

inference. We investigated the relationships between 52 gene properties (24 sequence-based, 19 function-based, and 9 tree-based)

with each other and with three measures of phylogenetic signal in two assembled data sets of 2,832 yeast and 2,002 mammalian

genes. We found that most gene properties, such as evolutionary rate (measured through the percent average of pairwise identity

across taxa) and total tree length, were highly correlated with each other. Similarly, several gene properties, such as gene alignment

length,Guanine-Cytosine content, and the proportionof tree distance on internalbranchesdividedby relative compositionvariability

(treeness/RCV), were strongly correlated with phylogenetic signal. Analysis of partial correlations between gene properties and

phylogenetic signal in which gene evolutionary rate and alignment length were simultaneously controlled, showed similar patterns

of correlations, albeit weaker in strength. Examination of the relative importance of each gene property on phylogenetic signal

identified gene alignment length, alongside with number of parsimony-informative sites and variable sites, as the most important

predictors. Interestingly, the subsets of gene properties that optimally predicted phylogenetic signal differed considerably across our

threephylogeneticmeasuresand twodata sets;however,genealignment lengthandRCVwereconsistently includedaspredictorsof

all threephylogeneticmeasures inbothyeastsandmammals. These results suggest thatahandfulof sequence-basedgeneproperties

are reliable predictors of phylogenetic signal and could be useful in guiding the choice of phylogenetic markers.
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Introduction

An accurate evolutionary history is the first step toward un-

derstanding the evolution of genes, pathways, phenotypes,

and lineages (e.g., Barraclough and Nee 2001; Clark et al.

2007; Parker et al. 2008; Tabach et al. 2013; Hahn and

Nakhleh 2016). Nowadays, most inferences of evolutionary

history stem from analyses of molecular sequence data, typi-

cally in the form of genes or, more precisely, in the form of

nuclear protein-coding portions of gene sequences (e.g., Song

et al. 2012; Salichos and Rokas 2013; Shen et al. 2013;

Wickett et al. 2014; Hahn and Nakhleh 2016). As a result,

errors in the inference of gene histories can greatly impact our

understanding of evolutionary history.

Accurate inference of gene histories is inherently depen-

dent on choices in both methodology (e.g., choices in opti-

mality criterion or model of sequence evolution) and data

(e.g., choices in which genes to use and which to exclude).

Many insightful studies have shown how choices in method-

ology can strongly influence the reconstruction of gene histo-

ries. For example, choices in the program and algorithm used

for multiple sequence alignment (Liu et al. 2009; Blackburne

and Whelan 2013; Hossain et al. 2015), in the model of
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sequence evolution employed (Yang et al. 1994; Lemmon and

Moriarty 2004; Luo et al. 2010; Hess and Goldman 2011), in

the partitioning scheme used to account for substitution rate

variation among sites (Nylander et al. 2004; Kainer and

Lanfear 2015), in the tree space search strategy (Takahashi

and Nei 2000; Lakner et al. 2008), or in the optimality criterion

(Kolaczkowski and Thornton 2004; Philippe et al. 2005; Doyle

et al. 2015), have all been shown capable of yielding different

topologies when applied to the same data matrix.

In contrast, much less is known about how the choice in data,

that is, usually, the choice of genes, influences phylogenetic in-

ference. One notable contribution in this direction is the work of

Townsend and coworkers on phylogenetic informativeness

(Townsend 2007; López-Giráldez and Townsend 2011; López-

Giráldez et al. 2013), which is estimated from the rate of evolu-

tion of a given gene (or any other given set of characters).

However, this method is more geared toward predicting the

gene’s power to optimally resolve particular internodes rather

than examining the gene’s influence on the whole phylogeny.

It can be argued that there are three key types of properties

for a gene used in phylogenetic inference; sequence-based

properties that have to do with the gene’s nucleotide or

amino acid sequence (e.g., Guanine-Cytosine [GC] content),

function-based properties associated with its function in the

cell or organism (e.g., cellular location or biological process),

and tree-based properties that pertain to its gene tree (e.g.,

total branch length). Several studies have examined the effect

of sequence- and tree-based properties, such as the number of

variable sites (Rokas et al. 2003; Aguileta et al. 2008), gene

alignment length (Rokas et al. 2003; Aguileta et al. 2008;

Betancur et al. 2014), amount of missing data (Wiens and

Morrill 2011; Roure et al. 2013), base composition (Collins

et al. 2005; Betancur et al. 2013; Romiguier et al. 2013), evo-

lutionary rate (Betancur et al. 2014; Xi et al. 2014; Doyle et al.

2015), phylogenetic information content (Dell’Ampio et al.

2014; Doyle et al. 2015), and the recovery of known biparti-

tions or topologies (Regier et al. 2010; SalichosandRokas2013;

Capella-Gutierrez et al. 2014; Chen et al. 2015) on phyloge-

netic inference. However, these studies usually examine certain

properties in isolation from other properties (Collins et al. 2005;

Wiens and Morrill 2011; Romiguier et al. 2013; Capella-

Gutierrez et al. 2014), they often involve small numbers of

genes (Regier et al. 2010; Betancur et al. 2013; Roure et al.

2013), and do not include function-based properties of genes.

The goals of this study were 1) to examine the associations

between sequence-based, gene function-based, and gene

tree-based properties, 2) to assess standard and partial corre-

lations between gene properties and phylogenetic signal, and

3) to identify the gene properties that best predict phyloge-

netic signal. To this end, we investigated 24 sequence-based,

19 gene function-based, and 9 gene tree-based properties

(see table 1 for their full description) and three phylogenetic

measures using genome-scale data from a highly diverged

yeast lineage (2,832 genes from 12 taxa) as well as from

the more recently diverged mammal lineage (2,002 genes

from 24 mammalian genomes).

Materials and Methods

Data Set Acquisition

We sampled nuclear protein-coding genes from an anciently

diverged yeast lineage (12 taxa) and from the more recently di-

verged mammal lineage (24 taxa) (see supplementary table S1,

Supplementary Material online). For yeasts, we used the synteny

and orthology information in the YGOB (version 7) database

(Byrne and Wolfe 2005) to identify orthologous groups. For

mammals, we used the human gene (annotation version

GRCh38.p3) to retrieve one-to-one orthologous groups pre-

dicted by Ensembl BioMart (www.ensembl.org/biomart; last ac-

cessedon January07,2015).Afterdiscardinggeneswithmissing

data, we constructed two data sets of 2,832 yeast and 2,002

mammalian genes. Original alignments and resulting trees are

available from Figshare at DOI: 10.6084/m9.figshare.1597710.

Phylogenetic Analysis

To obtain two distinct alignments (amino acid and nucleotide),

which were used to estimate some sequence-based properties

(e.g., GC content and number of sites containing RGC-CAM

substitutions), we first aligned the amino acid sequences from

each gene using the G-INS-i strategy for global homology

implemented by the program MAFFT, version 7.164 (Katoh

and Standley 2013), with the default gap opening penalty (–

op = 1.53). Next, we used a custom Perl script to map the

nucleotide sequences on the amino acid alignment and gen-

erate the codon-based nucleotide alignment.

Individual gene trees for the yeast data set were built using

the amino acid sequence-based alignments and for the mammal

data set using the codon-based alignments. For yeasts, the best-

fitting model of amino acid evolution for each gene was selected

using the Bayesian information criterion implemented in ProtTest

3.4 (Darriba et al. 2011). For mammals, the “GTRGAMMA”

model was used to accommodate for nucleotide substitution.

The unrooted maximum likelihood tree was reconstructed using

RAxML (Stamatakis 2014). For each gene, we conducted 500

rapidbootstrapping replicatesand thesearch for thebest-scoring

ML tree in one single run (-f a option).

For each lineage, the concatenation, coalescent-based, and

extended majority-rule consensus (eMRC) phylogenies were re-

constructed. The concatenation phylogeny was inferred using

RAxML under an unpartitioned “PROTGAMMAIWAGF”

model of amino acid substitution (yeasts) or an unpartitioned

“GTRGAMMA” model of nucleotide substitution (mammals).

To reconstruct the concatenation phylogeny, we first per-

formed 20 separate ML searches to find the best-scoring ML

tree, and then evaluated branch support for each internode in

this best-scoring ML tree with 500 rapid bootstrapping repli-

cates as implemented in RAxML. The coalescent-based
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Table 1

Information on the 52 Gene Properties Used in This Study

Property Name Description

Sequence-based Aln_quality Average of column confident scores (calculated using GUIDANCE2 from Landan and Graur [2008]; Sela

et al. [2015])

AlnLen Alignment length

AlnLen_nogaps Alignment length after exclusion of all sites containing gaps

CAM Number of sites containing RGC-CAM substitutions (as defined by Rogozin et al. [2007]; Polzin and Rokas

[2014])

CAM_pct Percentage of CAM substitutions

Gap_pct_mean Percent average of sites containing gaps across taxa

Gap_pct_var Variance of percentage of sites containing gaps across taxa

GC_pct_mean Percent average of GC content of all sites across taxa

GC_pct_var Variance of GC content percentage of all sites across taxa

GC1_pct_mean Percent average of GC content of first codon positions across taxa

GC1_pct_var Variance of GC content percentage of first codon positions across taxa

GC2_pct_mean Percent average of GC content of second codon positions across taxa

GC2_pct_var Variance of GC content percentage of second codon positions across taxa

GC3_pct_mean Percent average of GC content of third codon positions across taxa

GC3_pct_var Variance of GC content percentage of third codon positions across taxa

nonCAM Number of sites containing RGC_non-CAM substitutions (as defined by Rogozin et al. [2007]; Polzin and

Rokas [2014])

nonCAM_pct Percentage of non-CAM substitutions

PI_pct_mean Percent average of pairwise identity across taxa

PI_pct_var Variance of percentage of pairwise identity across taxa

PI_sites Number of parsimony-informative sites

PI_sites_pct Percentage of parsimony-informative sites

RCV Relative nucleotide composition variability (as defined by Phillips and Penny [2003])

Varsites Number of variable sites

Varsites_pct Percentage of variable sites

Function-based CAI Codon adaptation index for a S. cerevisiae or H. sapiens gene (calculated using codonw 1.4.2 from

Peden [1999])

CBI Codon bias index for a S. cerevisiae or H. sapiens gene (calculated using codonw 1.4.2 from Peden

[1999])

CC_regions Number of coiled–coil regions for a S. cerevisiae or H. sapiens gene (identified by Paircoil2 from

McDonnell et al. [2006])

Cen_distance The physical distance between gene and centromere divided by chromosome length for a S. cerevisiae or

H. sapiens gene

Function-based Exons Number of exons in a S. cerevisiae or H. sapiens gene

Gen_interactions Number of genetic interactions for a S. cerevisiae or H. sapiens gene (calculated using the BioGRID data-

base from Chatr-Aryamontri et al. [2015])

Gene_expression Number of mapped reads per kilobase for a given gene from one million mapped reads (calculated

using 2-replicate RNA-Seq data of S. cerevisiae from Busby et al. [2011] or H. sapiens RNA-Seq data

across 122 samples from Uhlén et al. [2015])

GO_numbers Number of Gene Ontology terms for a S. cerevisiae or H. sapiens gene

InterPros Number of unique domains for a S. cerevisiae or H. sapiens gene

Paralogs Number of paralogs of a S. cerevisiae or H. sapiens gene

Phy_interactions Number of physical interactions for a S. cerevisiae or H. sapiens gene (calculated using the BioGRID data-

base from Chatr-Aryamontri et al. [2015])

Prot2Tran Number of protein isoforms divided by number of transcripts for a S. cerevisiae or H. sapiens gene

Protein_abundance Protein abundance levels for a S. cerevisiae or H. sapiens gene (calculated using the PaxDb database

from [Wang et al. 2012])

Proteins Number of protein isoforms for a S. cerevisiae or H. sapiens gene

Rel_distance The physical position of a S. cerevisiae or H. sapiens gene divided by the length of the chromosome on

which it resides

Repeats Number of repeat elements for a S. cerevisiae or H. sapiens gene (identified by RepeatMasker

[http://www.repeatmasker.org/; last accessed on March 21, 2016])
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phylogeny was estimated using ASTRAL (Mirarab, Reaz, et al.

2014). Briefly, individually estimated ML gene trees were used

as input to generate the coalescent-based phylogeny. The ro-

bustness of this phylogeny was evaluated by 100 replicates,

each of which consisted of individual gene trees each selected

randomly from the set of 500 rapid bootstrapping trees avail-

able for each gene to estimate a new coalescent-based phy-

logeny. The eMRC phylogeny was summarized from individual

estimated ML gene trees using the CONSENSE program in

PHYLIP package (http://evolution.genetics.washington.edu/

phylip.html; last accessed on March 21, 2016).

Calculation of the Three Phylogenetic Measures

To quantify the phylogenetic signal for each gene, we exam-

ined three commonly used phylogenetic measures of topolog-

ical resolution or accuracy. The two measures of topological

resolution examined were the average bootstrap support (ABS)

and the relative gene tree certainty (TCA). The former corre-

sponds to the average value of all bootstrap support values

across the maximum likelihood tree of a given gene. The

latter corresponds to the average of all internode certainty

(ICA) values across the tree (Salichos and Rokas 2013;

Salichos et al. 2014). Briefly, ICA calculates the degree of cer-

tainty for a given internode by considering the frequency of the

bipartition defined by the internode in a given set of trees in

conjunction with that of all conflicting bipartitions in the same

underlying tree set (Salichos et al. 2014). The tree set used to

quantify ICA and TCA was the 500 trees generated from boot-

strapping. The measure of topological accuracy that we used

was the normalized Robinson–Foulds tree distance (RFD)

(Robinson and Foulds 1981), which corresponds to the topo-

logical distance between the estimated individual ML gene tree

and the eMRC species phylogeny (the reference tree).

Although both ABS and TCA measure aspects of tree res-

olution in a set of bootstrap replicate trees, TCA focuses on

the distribution of resolution by considering all most prevalent

conflicting bipartitions rather than only the first most preva-

lent bipartition for each individual internode. For example,

assume that a given internode has two prevalent bipartitions;

one that is, supported by 60% of the bootstrap replicate trees

and another that is, supposed by the remaining 40%. In such

a case, the bootstrap support value for the internode would

be 60 but the ICA value would be ~0.03 (Salichos and Rokas

2013; Salichos et al. 2014). Finally, RFD measures topological

accuracy and is distinct from the ABS and TCA measures.

Examination of Gene Properties

A total of 52 properties were examined for each gene in yeasts

and mammals, which we classified into three categories—24

sequence-based, 19 function-based, and 9 tree-based prop-

erties (see table 1 for their full descriptions). For sequence-

based properties, we used custom Perl scripts to calculate

their corresponding values from a given gene alignment.

The only exception was gene alignment quality, which was

determined using the GUIDANCE2 software (Landan and

Graur 2008; Sela et al. 2015). For function-based properties,

we used Saccharomyces cerevisiae or Homo sapiens gene

name in a given gene alignment as the query to retrieve

their values (e.g., number of exons and protein isoforms)

through Ensembl BioMart (www.ensembl.org/biomart; last

accessed on February 17, 2015) and other curated databases

such as PaxDb (Wang et al. 2012), BioGRID (Chatr-Aryamontri

et al. 2015), Yeastract (Teixeira et al. 2014) and ITFP (Zheng

et al. 2008). For tree-based properties, we used custom Perl

scripts to estimate their values from the estimated ML gene

tree.

Table 1 Continued

Property Name Description

Syn_codons_fre Frequency of synonymous codons for a S. cerevisiae or H. sapiens gene (calculated using codonw 1.4.2

from Peden [1999])

TFs Number of transcription factors targeting a given gene (calculated using the Yeastract database of S. cer-

evisiae from Teixeira et al. [2014] or the ITFP database of H. sapiens from Zheng et al. [2008])

Transcripts Number of transcripts for a S. cerevisiae or H. sapiens gene

Tree-based Inter_len_mean Average length of internal branches across the maximum likelihood tree of a given alignment

Inter_len_var Variance of lengths of internal branches across the maximum likelihood tree of a given alignment

Leaf_len_mean Average length of external branches across the maximum likelihood tree of a given alignment

Leaf_len_var Variance of lengths of external branches across the maximum likelihood tree of a given alignment

Leaf2node_mean Average of the sum of all branch lengths that are between the outgroup node and each ingroup node

across the maximum likelihood tree of a given alignment

Leaf2node_var Variance of the sum of all branch lengths that are between the outgroup node and each ingroup node

across the maximum likelihood tree of a given alignment

Total_treelen Sum of all branch lengths across the maximum likelihood tree of a given alignment

Treeness Proportion of sum of internal branch lengths over sum of all branch lengths across the maximum likeli-

hood tree of a given alignment (as defined by Phillips and Penny [2003])

Treeness/RCV Treeness divided by RCV (as defined by Phillips and Penny [2003])

Shen et al. GBE

2568 Genome Biol. Evol. 8(8):2565–2580. doi:10.1093/gbe/evw179 Advance Access publication August 4, 2016

http://evolution.genetics.washington.edu/phylip.html
http://evolution.genetics.washington.edu/phylip.html
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text: T
http://www.ensembl.org/biomart


Statistical Analysis

Standard Pearson’s correlations between the 52 gene proper-

ties as well as between the 52 gene properties and the three

phylogenetic measures were analyzed using R 3.1.3 (Ihaka

and Gentleman 1996). The analysis of partial correlations be-

tween the gene properties and the three phylogenetic mea-

sures was performed following (Drummond et al. 2006), in

which gene alignment length and evolutionary rate were si-

multaneously controlled. To visualize the correlations between

the 52 gene properties and the three phylogenetic measures,

we converted their Pearson’s correlation coefficients (see sup-

plementary tables S7 and S8, Supplementary Material online)

to heat maps using HemI (Deng et al. 2014). The relative im-

portance of each gene property to each of the three phylo-

genetic measures was determined using the function of the

“calc.relimp” in the R package “relaimpo” (Groemping

2006). Finally, identification of the subset of gene properties

that optimally models each of the three phylogenetic mea-

sures using the subset selection technique was implemented

by the function of the “Regsubsets” in the R package “leaps”

(Lumley 2009; James et al. 2013). All bar or dot plots were

generated using the ggplot2 package (Wickham 2009) in R.

Results

Characteristics of the Two Data Sets

We assembled two complete (i.e., without any missing data)

data sets of 2,832 genes from 12 yeast genomes and 2,002

genes from 24 mammalian genomes (see supplementary

tables S1–S3, Supplementary Material online). The lengths

of the yeast gene sequence alignments ranged between 57

and 5,070 amino acid sites (aa), with an average length of

609 aa, and the lengths of the mammalian gene sequence

alignments ranged between 270 and 23,937 base pairs (bp),

with an average length of 2,452 bp.

All internodes in both the yeast and the mammalian con-

catenation phylogenies received 100% BS values (see supple-

mentary fig. S1, Supplementary Material online). Similarly,

most internodes in coalescent-based phylogenies of yeasts

and mammals also received 100% BS values (yeasts, 8 of 9

internodes; mammals, 19 of 21 internodes) (fig. 1), but the

gene support frequency (GSF) and all TCA values of several

internodes in the eMRC phylogenies were low (yeasts: average

GSF = 57.8; average relative TCA = 0.40; mammals: average

GSF = 56.9; average relative TCA = 0.43) (fig. 1). Moreover,

the concatenation, coalescent-based, and eMRC phylogenies

of yeasts were topologically identical; the coalescent-based

and eMRC phylogenies of mammals were topologically iden-

tical but differed from the concatenation phylogeny (see

fig. 1B and supplementary fig. S1B, Supplementary Material

online). Interestingly, all three observed conflicts between the

coalescent-based or eMRC phylogeny and the concatenation

phylogeny (the root of the placental mammals, the placement

of bats, and the placement of horses) were also observed in

recent phylogenomic studies (see fig. 1B and supplementary

fig. S1B, Supplementary Material online) (McCormack et al.

2012; Song et al. 2012; Morgan et al. 2013; Romiguier et al.

2013; Tsagkogeorga et al. 2013; Mirarab, Bayzid, et al.

2014). Conversely, a clade comprising tree shrews and

Glires (Romiguier et al. 2013; Mirarab, Bayzid, et al. 2014),

which was contradictory to the placement of tree shrews as
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FIG. 1.—The eMRC phylogenies inferred from 2,832 yeast genes (A)

and 2,002 mammalian genes (B). Branch support values near internodes

are indicated in order of bootstrap support values (* represents 100%)

using ASTRAL (Mirarab, Reaz, et al. 2014), GSF, and ICA. The branch

lengths were estimated on the eMRC topology, as implemented in

RAxML (Stamatakis 2014) (-f e option). Note that the eMRC topology is

identical to the ASTRAL topology.
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sister to primates (McCormack et al. 2012; Song et al. 2012;

Morgan et al. 2013), was consistently recovered in all of our

concatenation, coalescent-based, and eMRC phylogenies of

mammals (see fig. 1B and supplementary fig. S1B,

Supplementary Material online). Because the mammalian to-

pology supported by eMRC and coalescent-based approaches

is more compatible with the topologies supported by previous

phylogenomic studies, we used the eMRC topology rather

than the concatenation topology as the reference phylogeny

in measuring the topological incongruence between gene

trees and the mammalian species phylogeny.

We quantified the phylogenetic signal of each yeast and

mammal gene tree in terms of its phylogenetic resolution

(measured by the ABS), topological conflict (measured by

the TCA, in the 500 trees generated from bootstrapping),

and topological distance of the gene tree from the eMRC

phylogeny (measured by the normalized RFD) (see supplemen-

tary fig. S2, Supplementary Material online). The distributions

of yeast and mammalian genes were highly similar in all three

of these measures (yeast averages: ABS = 63%, TCA = 0.38,

and RFD = 0.42; mammal averages: ABS = 60%, TCA = 0.38,

and RFD = 0.43) (see supplementary fig. S2, Supplementary

Material online). Seventy five of the 2,832 yeast gene trees

(2.65%) were topologically identical to the eMRC phylogeny,

whereas none of the 2,002 mammalian gene trees showed

the same topology as the eMRC phylogeny and only one gene

tree was topologically identical to the concatenation phylog-

eny (see supplementary fig. S2C, Supplementary Material

online).

The Correlation Networks of Gene Properties

To examine and visualize the correlations between the 52

gene properties, we used their correlation coefficient r

values (see supplementary tables S4 and S5, Supplementary

Material online) to construct correlation networks of gene

properties in yeasts and mammals (fig. 2). The network of

gene properties in yeasts consisted of 49 nodes corresponding

to the 49 gene properties measured in the yeast data set, and

1,305 edges corresponding to the 1,305 pairwise correlations

between the 49 gene properties in which Pearson’s correla-

tion coefficient r was equal or greater than 0.1 (fig. 2A). Three

additional properties (Proteins: number of protein isoforms for

a S. cerevisiae or H. sapiens gene, Transcripts: number of tran-

scripts for a S. cerevisiae or H. sapiens gene, and Prot2Tran:

number of protein isoforms divided by number of transcripts

for a S. cerevisiae or H. sapiens gene) had standard deviations

(SDs) of 0 and were uncorrelated with the remaining 49 prop-

erties. The network of gene properties in mammals consisted

of 51 nodes and 827 edges (fig. 2B), when only considering

edges where Pearson’s correlation coefficient r was equal or

greater than 0.1 between the 52 gene properties (the corre-

lation coefficient of one additional property, Protein abun-

dance (measuring abundance levels for a S. cerevisiae or

H. sapiens protein), to each of the other 51 properties was

less than 0.1). Several gene properties exhibited high correla-

tions with other gene properties, including but not limited to

the percent average of pairwise identity across taxa (r� 0.1

with 39/48 other yeast gene properties, average r = 0.41) and

total tree length (r� 0.1 with 24/50 other mammal gene

properties, average r = 0.35) (supplementary table S6,

Supplementary Material online). Overall, the most correlated

gene properties (to other gene properties) were sequence-

based and tree-based in both yeasts and mammals.

The Relationships Between Gene Properties and
Measures of Phylogenetic Inference Using Standard and
Partial Correlation Analysis

We first evaluated the standard correlations between 52 gene

properties (24 sequence-based, 19 function-based, and 9

tree-based) and three phylogenetic measures (ABS, TCA,

and RFD) for yeast and mammalian data sets, respectively.

All the correlations where Pearson’s correlation coefficient r

was equal or greater than 0.1 between the 52 gene properties

and the three phylogenetic measures were statistically signif-

icant in yeasts and mammals (P value< 0.05; see supplemen-

tary table S7, Supplementary Material online).The proportions

of such correlations (coefficient r� 0.1, P value<0.05) be-

tween the 52 gene properties and the three phylogenetic

measures were similar in both lineages (yeasts, 77 of 156

correlations examined or 49.4%; mammals, 74 of 156 corre-

lations examined or 47.4%). Sequence-based properties

showed the highest proportion of correlations with the tree

phylogenetic measures (yeasts, 52 of 72 correlations exam-

ined or 72.2%; mammals, 45 of 72 correlations examined or

62.5%), followed by tree-based properties (yeasts, 7 of 27

correlations examined, 25.9%; mammals, 7 of 27 correlations

examined, 25.9%), and function-based properties (yeasts, 18

of 57 correlations examined, 31.6%; mammals, 22 of 57 cor-

relations examined, 38.6%) (fig. 3A).

For both yeasts and mammals, 12 sequence-based proper-

ties (AlnLen: gene alignment length, nonCAM: number of

sites containing RGC_non-CAM substitutions [i.e., substitu-

tions between amino acids that can occur via a single nucle-

otide substitution], Varsites: number of variable sites, PI_sites:

number of parsimony-informative sites, Varsites_pct: percent-

age of variable sites, PI_sites_pct: percentage of parsimony-

informative sites, AlnLen_nogaps: gene alignment length after

exclusion of all sites containing gaps, RCV: relative composi-

tion variability, GC3_pct_mean: percent average of GC con-

tent of third codon positions, GC_pct_mean: percent average

of GC content of all sites across taxa, GC1_pct_var: variance

of GC content percentage of first codon positions, and

GC2_pct_var: variance of GC content percentage of second

codon positions across taxa), two function-based properties

(InterPros: number of protein domains and CC_regions:

number of potential coiled-coil regions), and one tree-based
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FIG. 2.—The correlation networks of 52 gene properties in yeasts (A) and mammals (B). Networks were explored and visualized with the interactive

platform Gephi 0.8.2 (Bastian et al. 2009). The size of each node (nodes are depicted by circles) is proportional to the number of connections (edges) where

Pearson’s coefficient r was� 0.1. The full descriptions of the 52 gene properties are given in table 1. Values for the Pearson’s coefficients and the correlation

networks are provided in supplementary tables S4–S6, Supplementary Material online.
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A B

FIG. 3.—Heat maps representing all correlations between 52 gene properties and three phylogenetic measures (ABS; TCA all, RFD, Normalized RFD in

recovering the eMRC phylogeny) before (A) and after (B) simultaneously controlling for gene alignment length and evolutionary rate in yeast and mammalian

data sets. Only correlations having Pearson’s coefficient values� 0.1 and P values< 0.05 are displayed in the heat map. Black cells represent cases in which

the SD of a gene property is zero. The full descriptions of the 52 gene properties are given in table 1. Detailed values for the Pearson’s coefficients are

provided in supplementary tables S7 and S8, Supplementary Material online.
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property (Treeness/RCV: the proportion of tree distance on

internal branches divided by RCV), were consistently corre-

lated (Pearson’s correlation coefficient� 0.1 and P<0.0001)

with the three phylogenetic measures (fig. 3A; see supple-

mentary table S7, Supplementary Material online). Of these

15 gene properties, gene alignment length (AlnLen) was the

property showing the highest correlations to the three phylo-

genetic measures in yeasts (AlnLen against ABS, r = 0.57;

AlnLen against TCA, r = 0.61; AlnLen against RFD, r =�0.45;

see supplementary table S7, Supplementary Material online).

In mammals, the property with the highest correlations to

three phylogenetic measures was the number of parsimony-

informative sites (PI sites against ABS, r = 0.67; PI sites against

TCA, r = 0.69; PI sites against RFD, r =�0.42; see supplemen-

tary table S7, Supplementary Material online). Gene alignment

length was the third most correlated property, after the

number of parsimony-informative sites (PI_sites) and the

number of variable sites (Varsites); however, both properties

were significantly correlated with gene alignment length

(number of parsimony-informative sites: r = 0.90,

P<0.0001; number of variable sites: r = 0.93, P< 0.0001;

see supplementary table S5, Supplementary Material online).

Since percent average of pairwise identity across taxa

(PI_pct_mean, i.e., evolutionary rate) was broadly correlated

with many of other gene properties in both yeasts and mam-

mals (fig. 2) and alignment length (AlnLen) was strongly cor-

related with measures of phylogenetic inference (fig. 3A), we

next examined the partial correlations between the remaining

50 gene properties and the three phylogenetic measures by

simultaneously controlling for the effect of both percent aver-

age of pairwise identity across taxa and alignment length for

yeast and mammalian data sets, respectively. The partial cor-

relation analysis showed that 7 of 15 gene properties (all

except gene alignment length, number and percentage of

variable sites, gene alignment length after exclusion of all

sites containing gaps, percent average of GC content of

third codon positions across taxa, variance of GC content per-

centage of second codon positions across taxa, number of

protein domains, and number of potential coiled-coil regions)

originally identified in the standard correlation analysis main-

tained Pearson’s correlation coefficient r values� 0.1 and

P<0.0001 (fig. 3B; see supplementary table S8,

Supplementary Material online), albeit weaker in strength.

Furthermore, three additional sequence-based properties

(Gap_pct_mean: average of percentage of sites containing

gaps across taxa, Gap_pct_var: variance of percentage of

sites containing gaps across taxa, and nonCAM_pct: percent-

age of non-CAM substitutions) were consistently correlated

with the three phylogenetic measures in yeasts and mammals

(fig. 3B). Finally, these analyses showed that the correlations

between function-based properties and the three phyloge-

netic measures were weakly reduced, whereas the

correlations between tree-based properties and the three phy-

logenetic measures were substantially increased. Interestingly,

two tree-based properties (Leaf2node_mean: average of all

branch lengths that are between the outgroup node and

each ingroup node across the maximum likelihood tree and

Total_treelen: sum of all branch lengths across the maximum

likelihood tree) were negatively correlated with two of the

phylogenetic measures (ABS and TCA) in yeasts, but were

positively correlated with the same two measures in mammals

(fig. 3B).

Identifying the Gene Properties That Best Predict
Phylogenetic Signal

Finally, we sought to estimate the power of each gene prop-

erty to predict phylogenetic signal as well as to identify the

subset of gene properties that best models phylogenetic

signal. Addressing both questions requires techniques that

take into account the fact that most gene properties are

highly intercorrelated (fig. 2).

To identify which gene property is the most important and

to create their ranking with respect to phylogenetic signal, we

used the relative importance technique (Groemping 2006).

Briefly, relative importance creates a set of new independent

variables that are the maximally related to the set of gene

properties but which (unlike gene properties) are uncorrelated

to each other. Because these new variables are not intercor-

related, they can be regressed onto measures of phylogenetic

inference, and their R2 values of the coefficients of determi-

nation can be used to rank variables according to their relative

importance in predicting phylogenetic signal.

The relative importance of the different gene properties

was very similar for all three phylogenetic measures (ABS,

TCA, and RFD) in yeasts (fig. 4A) but not in mammals

where it was similar for ABS and TCA but differed for RFD

(fig. 4B). Overall, the relative importance values of sequence-

based properties were higher than the values of tree-based

and function-based ones in both yeasts and mammals (fig. 4;

see supplementary table S9, Supplementary Material online).

Specifically, seven gene properties (AlnLen: gene alignment

length, Varsites: number of variable sites, PI_sites: number

of parsimony-informative sites, non-CAM: number of sites

containing RGC_non-CAM substitutions, AlnLen_nogaps:

gene alignment length after exclusion of all sites containing

gaps, RCV: relative composition variability, and Treeness/RCV:

the proportion of tree distance on internal branches divided by

RCV) were highly correlated with the three measures of phy-

logenetic inference in both yeasts and mammals (fig. 4). In

addition, GC content of all sites across taxa (GC_pct_mean)

and percent average of GC content of third codon positions

across taxa (GC3_pct_mean) also highly contributed to phy-

logenetic signal in yeasts (fig. 4A) but not in mammals (fig.

4B). In contrast, the contributions of percentage of variable

sites (PI_sites_pct), percent average of sites containing gaps

across taxa (Gap_pct_mean), and number of exons (Exons) in
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mammals were significantly greater than those in yeasts, and

were highly ranked.

To identify the subset of gene properties that best models

phylogenetic signal, we used the best subset selection tech-

nique (Lumley 2009; James et al. 2013). Briefly, we split our

data into ten roughly equal sized bins (folds): nine bins were

used as training data to identify the best regression model for

a given number of predictors (i.e., gene properties) and a

dependent variable (i.e., phylogenetic measure) while one

bin was used as testing data. This process was repeated 10

times (each time using a different one of the 10 bins as testing

data) and the mean squared error (MSE) of each model in

predicting the testing data was calculated. The predictors

from the model with the lowest MSE were considered the

best subset of gene properties in predicting phylogenetic

signal.
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FIG. 4.—Relative importance of each of the gene properties to three phylogenetic measures in yeasts (A) and mammals (B). Full descriptions of the 52

gene properties are given in table 1. Note that three gene properties (Transcripts, Proteins, and Prot2Tran) whose SDs are zero, are not included in the analysis

of yeast gene properties (A); similarly, the TFs gene property, which has a lot of missing data, is not included in the analysis of mammal gene properties (B).

The exact values of relative importance of each gene property to each phylogenetic measure can be found in supplementary table S9, Supplementary

Material online.
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The subset selection technique identified three subsets con-

taining 13 distinct gene property predictors of the three phy-

logenetic measures (ABS, TCA, and RFD) in yeasts (fig. 5C; the

subset modeling ABS contained six predictor gene properties,

the subset modeling TCA contained 13 predictors, and the

subset modeling RFD contained six predictors) and 10 distinct

ones in mammals (fig. 5D; the subset modeling ABS contained

five predictor gene properties, the subset modeling TCA con-

tained four predictors, and the subset modeling RFD con-

tained nine predictors).

Overall, gene property predictors identified by the subset

selection technique were either sequence-based or tree-based

(fig. 5; see supplementary tables S10 and S11, Supplementary

Material online). Furthermore, gene property predictors in-

cluded in subsets obtained from the yeast data were consid-

erably different from those obtained from the mammal data;

the same was true for gene property predictors included in

subsets obtained for each phylogenetic measure (fig. 5; see

supplementary tables S10 and S11, Supplementary Material

online). Specifically, only two sequence-based gene properties

(AlnLen: gene alignment lengthand RCV: relative composition

variability) were consistently included as predictors of all three

phylogenetic measures in both yeasts and mammals (fig. 5C

and D). Additionally, one tree-based gene property

(Inter_len_var: the variance of lengths of internal branches

across the maximum likelihood tree) and one sequence-

based property (PI_sites_pct: the percentage of number of

parsimony-informative sites) were consistently recovered as

predictors of all three phylogenetic measures in yeasts (fig.

5C; see supplementary table S10, Supplementary Material

online) and mammals (fig. 5D; see supplementary table S11,

Supplementary Material online), respectively. Finally, several

other gene properties were identified as predictors of one or

two of the three phylogenetic measures in either yeasts or

mammals (fig. 5; see supplementary tables S10 and S11,

Supplementary Material online).

Discussion

It has long been recognized that choosing “good” markers,

typically genes, is a vital component of phylogenetic inference.

In the last few years, high-throughput sequencing has greatly

facilitated the development of variety of approaches for con-

structing phylogenomic data matrices, including whole

genome sequencing (Jarvis et al. 2014; Neafsey et al. 2015)

and transcriptome sequencing (Hittinger et al. 2010; Misof

et al. 2014; Wickett et al. 2014), as well as more tailored

approaches that specifically target hundreds or thousands of

loci with specific characteristics (Faircloth et al. 2012; Lemmon

et al. 2012). Irrespective of the approach chosen and the

much larger amounts of data available for inference, identifi-

cation of reliable gene properties that predict “good” markers

is still a key aspect of molecular phylogenetic studies.

To address this question, we examined 52 properties ob-

tained from 2,832 genes in 12 yeast taxa and 2,002 genes

from 24 mammalian taxa and three measures of phylogenetic

signal obtained from these yeast and mammalian gene trees.

We found that most, but not all, gene properties were highly

correlated with each other and with phylogenetic signal and

identified a handful of sequence-based and tree-based gene

properties as the best predictors of phylogenetic signal. These

results bear on our understanding of the interrelationships

among different gene properties as well as what general at-

tributes of genes are most useful in the identification of

“good” phylogenetic markers.

Function-Based Properties are not Useful Predictors of
Phylogenetic Signal

In contrast to several sequence- and tree-based gene proper-

ties, none of 19 function-based properties consistently

showed strong correlation or were reliable predictors of any

of the three measures of phylogenetic signal (figs. 3–5).

Although it is possible that their impact on phylogenetic

signal may be truly weaker than that of sequence- and tree-

based properties, the difference may also be explained by

methodological disparities in examining the different types

of gene properties. For example, all function-based properties

were based on information from the gene of a single species

(S. cerevisiae in the case of yeasts, or H. sapiens in the case of

mammals), whereas sequence-based and tree-based proper-

ties were based on the entire gene alignment or on the re-

sulting gene tree reconstructed from the gene alignment.

Evolutionary Rate, One of the Largest Hubs in the
Correlation Network of Gene Properties, Is Not Predictive
of Phylogenetic Signal

Evolutionary rate is arguably one of the most informative

properties of a gene (Kimura 1968; Zhang and Yang 2015).

Consistent with the previous studies (e.g., Wall et al. 2005;

Drummond et al. 2006; Wei et al. 2014), we found that evo-

lutionary rate (as measured by the percent average of pairwise

identity across taxa or PI_pct_mean) was one of the largest

hubs in the correlation networks of gene properties in both

yeasts and mammals (fig. 2). However, we also found that

evolutionary rate was not an important predictor of phyloge-

netic signal in the two data sets we examined (figs. 4 and 5).

Understanding how a gene’s evolutionary rate influences phy-

logenetic inference has received considerable attention in

recent years (Rokas et al. 2003; Aguileta et al. 2008; Jian

et al. 2008; Regier et al. 2008; Zhang et al. 2012; Salichos

and Rokas 2013; Betancur et al. 2014), with some (Jian et al.

2008; Regier et al. 2008; Zhang et al. 2012; Betancur et al.

2014), but not all (Rokas et al. 2003; Aguileta et al. 2008;

Salichos and Rokas 2013), studies arguing that slowly evolving

genes are more useful for reconstructing anciently diverged

lineages than genes with other evolutionary rates. Thus, the
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FIG. 5.—The relative performance of optimal models comprised of varying numbers of gene property predictors in predicting the values of each of three

phylogenetic measures in yeasts (left panel) and mammals (right panel). For a given number of gene property predictors and the training data, the best

regression model was determined by the subset selection technique. For each given best regression model, its MSE in predicting the accuracy in the testing

data was calculated in yeasts (A) and mammals (B). The model with the lowest MSE value in each analysis is indicated by the red dot and was considered the

best subset selection. The identity and overlap of gene property predictors of the three different phylogenetic measures in the two data sets are summarized

into Venn diagrams (C and D). Full descriptions of the 52 gene properties are given in table 1. Note that three predictors (Transcripts, Proteins, and Prot2Tran)

whose SDs are zero, and the Treeness predictor, which is too collinear with other predictors, are not included in yeasts (A); similarly, the TFs predictor, which

has much data missing, is not included in mammals (B). Detailed values from the analysis of subset selections in yeasts and mammals are provided in

supplementary tables S10 and S11, Supplementary Material online.
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effect of the evolutionary rate on phylogenetic signal may be

dependent on the specifics of the diversification event under

study (e.g., how ancient, how rapid, etc.) or may be better

captured by some of the many gene properties it is correlated

with (fig. 2; see supplementary table S6, Supplementary

Material online).

Several Sequence- and Tree-Based Gene Properties are
Good Predictors of Phylogenetic Signal

Our analyses identified several sequence-based and few tree-

based properties that were predictive of phylogenetic signal

(figs. 4 and 5). In general, sequence-based predictors of phy-

logenetic signal involved gene properties associated with gene

sequence length (e.g., AlnLen: gene alignment length,

Varsites: number of variable sites, PI_sites: parsimony-informa-

tive sites, nonCAM: number of sites containing RGC_non-

CAM substitutions) or nucleotide composition (e.g.,

GC_pct_mean: GC content, and RCV: relative nucleotide

composition variability), whereas tree-based predictors were

associated with internode length (e.g., Treeness: proportion of

sum of internal branch lengths over sum of all branch lengths,

Leaf_len_mean: average length of external branches across

the maximum likelihood tree of a given alignment).

Predictors associated with gene sequence length were by

far the most influential on phylogenetic signal (figs. 4 and 5).

Genes with longer sequence lengths tended to exhibit stron-

ger phylogenetic signal, which has been shown to ameliorate

incongruence in phylogenomic data matrices (Salichos and

Rokas 2013). For example, the average alignment length of

the 75 genes whose gene trees were topologically identical

(RFD = 0) to the yeast eMRC phylogeny is more than 2-fold

that of the remaining 2,757 genes whose gene trees topolog-

ically disagreed (RFD> 0) with the eMRC phylogeny (see sup-

plementary table S2, Supplementary Material online).

Interestingly, a recent binning approach in which genes with

the same or weakly conflicting topologies were binned into a

single “supergene” with longer length (Mirarab, Bayzid, et al.

2014) was shown to improve the accuracy of species tree

methods.

The pervasive influence of gene sequence length on phy-

logenetic signal offers insights for understanding signal distri-

bution in phylogenomic data matrices as well as suggestions

for strengthening it. First, in phylogenomic data matrices that

contain genes with wide variance in their alignment lengths it

is the longest genes that will have the strongest phylogenetic

signal; thus, if the objective is to obtain the phylogenetic his-

tory supported by the majority of genes, standardization of

gene alignment lengths (or statistical standardization of their

effects) is essential. Second, approaches that typically gener-

ate short gene fragments (e.g., the average length of success-

fully captured loci in recent vertebrate phylogenetic studies

using target enrichment approaches ranged between 410

and 580 bp, (Crawford et al. 2012; Faircloth et al. 2013;

Brandley et al. 2015; Peloso et al. 2016) will yield phyloge-

nomic data matrices whose genes have weak phylogenetic

signal. In such cases, resorting to approaches such as condi-

tional binning into longer “supergenes” (Bayzid and Warnow

2013; Mirarab, Bayzid, et al. 2014) or optimizing protocols so

that longer gene fragments can be obtained, will likely be

advantageous.

The second influential set of predictors of phylogenetic

signal included gene properties that capture nucleotide com-

position and its degree of homogeneity across taxa. Genes

with lower compositional heterogeneity typically had stronger

phylogenetic signal (figs. 4 and 5). For example, the average

RCV of the 75 yeast gene trees that were topologically iden-

tical (RFD = 0) to the yeast eMRC phylogeny is about three

quarters that of the remaining 2,757 yeast genes that topo-

logically disagreed (RFD> 0) with the eMRC phylogeny (see

supplementary table S2, Supplementary Material online). In

general, models of sequence evolution assume that sequences

are compositionally homogeneous, an assumption often vio-

lated in biological data sets, leading to systematic error and

topological incongruence (e.g., Conant and Lewis 2001;

Betancur et al. 2013; Pisani et al. 2015; Romiguier et al.

2016). Thus, selection of genes that show high compositional

homogeneity or inference using models that take into account

compositional heterogeneity is likely to be advantageous.

The final influential set of predictors of phylogenetic signal

included gene properties associated with the internode

length. Gene trees with longer internode lengths tended to

yield stronger phylogenetic signal (figs. 4 and 5). For example,

the mean internode branch length (Inter_len_mean) of the 75

yeast gene trees that were topologically identical (RFD = 0) to

the yeast eMRC phylogeny is slightly higher than that of the

remaining 2,757 yeast gene trees that topologically disagreed

(RFD>0) with the eMRC phylogeny (mean internode length

in the 75 genes is 0.163 substitutions/site, whereas in the

2,757 genes is 0.145 substitutions/site; see supplementary

table S2, Supplementary Material online). This finding is con-

sistent with the previous work showing that shorter internode

branches are associated with poor resolution and higher phy-

logenetic incongruence (Salichos and Rokas 2013).

In conclusion, from a “choices in data” phylogenetic per-

spective, our analyses of thousands of genes from yeasts and

mammals suggest that “good markers” for phylogenetic in-

ference are likely to be genes that are long in sequence, that

show nucleotide composition homogeneity across the set of

taxa examined, and that generate gene trees with long inter-

nodes. Although it is self-evident that the accuracy of phylo-

genetic inference is not solely dependent on the underlying

data but also on many other biological (e.g., the tempo and

mode of evolution of a particular lineage) and analytical (e.g.,

model of sequence evolution) factors, we believe that selec-

tion of markers based on their underlying gene properties will

improve the accuracy of phylogenetic inference and reduce

topological incongruence.
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Supplementary tables S1–S11 and figures S1–S2 are available

at Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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