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Proteomic analysis defines kinase taxonomies specific for 
subtypes of breast cancer 
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ABSTRACT

Multiplexed small molecule inhibitors covalently bound to Sepharose beads 
(MIBs) were used to capture functional kinases in luminal, HER2-enriched and triple 
negative (basal-like and claudin-low) breast cancer cell lines and tumors. Kinase 
MIB-binding profiles at baseline without perturbation proteomically distinguished 
the four breast cancer subtypes. Understudied kinases, whose disease associations 
and pharmacology are generally unexplored, were highly represented in MIB-binding 
taxonomies and are integrated into signaling subnetworks with kinases that have 
been previously well characterized in breast cancer. Computationally it was possible 
to define subtypes using profiles of less than 50 of the more than 300 kinases bound to 
MIBs that included understudied as well as metabolic and lipid kinases. Furthermore, 
analysis of MIB-binding profiles established potential functional annotations for these 
understudied kinases. Thus, comprehensive MIBs-based capture of kinases provides 
a unique proteomics-based method for integration of poorly characterized kinases 
of the understudied kinome into functional subnetworks in breast cancer cells and 
tumors that is not possible using genomic strategies. The MIB-binding profiles readily 
defined subtype-selective differential adaptive kinome reprogramming in response to 
targeted kinase inhibition, demonstrating how MIB profiles can be used in determining 
dynamic kinome changes that result in subtype selective phenotypic state changes.
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INTRODUCTION

In 2014 the NIH established an initiative entitled 
Illuminating the Druggable Genome (IDG) to determine 
the function of understudied proteins including kinases 
encoded in the human genome (https://commonfund.

nih.gov/idg/index). The human kinome is comprised 
of ~520 protein kinases that are highly druggable using 
both competitive small molecule and allosteric inhibitors. 
Including both lipid and metabolic kinases enlarges this 
family to ~634 (druggable) kinases. Of the protein kinases, 
the function of about one-third are poorly defined with 
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the function and regulation of 50–100 kinases remaining 
largely unknown. To categorize our understanding of 
proteins in the human genome the IDG Knowledge 
Management Center (KMC) (http://targetcentral.ws/index) 
has developed a set of criteria for target development level 
(TDL) for druggable proteins such as kinases, G protein-
coupled receptors and ion channels [1]. This knowledge 
base was used to categorize the 634 kinases in the human 
genome as Tclin (50 kinases), Tchem (390 kinases), 
Tbio (163 kinases) and Tdark (31 kinases). Using TDL 
criteria, the KMC defines Tclin as bona fide disease-
involved kinases that are drug targets for at least one 
FDA approved pharmaceutical entity [2]. Tchem includes 
target kinases having characterized small molecules that 
bind with high potency (activity ≤ 30 nM), have active 
pharmacologic studies in relation to a disease, and likely to 
have medicinal chemistry efforts seeking highly selective 
molecules that perturb the functions of the kinase. Tbio 
is a biology- and disease-focused category that basically 
includes kinases not included in Tclin or Tchem, but above 
Tdark criteria. They often have an association with human 
disease and even small molecules that are less potent (e.g., 
above 30 nM). Finally, Tdark includes kinases having the 
least understood function (e.g., 5 or less publications) and 
molecular probes for their study are scarce. Tdark kinases 
are generally poorly characterized for their integration 
into kinase signaling networks, represent unknowns in 
disease associations, and are unexplored as drug targets 
alone or in combination with other proteins. Even with the 
growing databases of genomic information for different 
cancers, it is often still unclear how molecular taxonomies 
translate to phenotype. Additional methods characterizing 
proteomic taxonomies are needed to understand signaling 
networks, particularly of protein kinases due to their 
high druggability potential. Important for this analysis of 
the cancer kinome is a characterization of understudied 
kinases (including Tbio and Tdark), which represent 
a third of the kinome and lack essential functional 
characterization as well as molecular tools for their 
manipulation and study [3]. These understudied kinases 
need to be functionally integrated into kinase networks for 
a global understanding of kinome dynamics to be achieved 
both at baseline and in response to perturbation. 

We focused on exploring the integration of 
understudied kinases into kinase networks within the 
context of breast cancer, which has three primary subtypes 
that include luminal (further sub-divided into luminal A 
and B subtypes) as well as the majority of HER2+ breast 
cancers along with triple negative breast cancer (TNBC), 
that can itself be broken into basal-like and claudin-
low subtypes [4]. Interestingly, basal-like breast cancer 
using molecular taxonomies is as different from luminal 
and HER2+ breast cancers as lung cancer, leading to 
the proposal that basal-like breast cancers are in fact a 
unique disease [5, 6]. Estrogen and progesterone receptor 
dependence and HER2 addiction define vulnerabilities in 

luminal/HER2+ breast cancers. However, in basal-like 
and claudin-low triple negative breast cancer, there are no 
oncogenic drivers that define a common vulnerability that 
can be therapeutically targeted. 

In an attempt at having a more complete understanding 
of the integrated kinome in breast cancer, we have developed 
methods using multiplexed inhibitor beads (MIBs) coupled 
with mass spectrometry (MIB/MS) that have the ability to 
bind and identify a large percentage of kinases in the human 
kinome [7, 8]. By RNA-seq, most cell lines express ~350 
kinases and our MIB-binding profiling captures a significant 
percentage of the expressed kinome [9]. In the current study, 
we have compiled the baseline kinase MIB-binding profile 
using MIB/MS for 15 cell lines representing all four breast 
cancer subtypes in addition to patient tumors. It was possible 
to define kinase taxonomies for breast cancers using feature 
selection methodologies based on the MIB/MS profile of 50 
kinases among the kinases captured by MIB/MS that includes 
understudied protein kinases, lipid and metabolic kinases. 
Using the baseline MIB-binding state in a machine-learning 
framework further allowed the classification of breast cancer 
subtype in primary tumors. Kinases identified within these 
distinguishing profiles are distributed throughout subfamilies 
of the kinome, representing multiple subnetworks with a 
significant representation of understudied kinases. In particular, 
we utilize a regression approach to integrate known interaction 
and phosphorylation data with MIB-binding behavior to 
establish functional subnetworks and associated annotation 
for 89 understudied kinases, including 22 kinases defined as 
Tbio or Tdark. These findings demonstrate that determining 
the functional kinome based on MIB-binding has prognostic 
value in defining the integration of signaling networks that is 
not currently possible using genomic strategies.

RESULTS

Multiplexed kinase inhibitor beads capture 
kinases from every subfamily and provide a 
means to assay understudied kinases

Multiplexed kinase inhibitor beads (MIBs) are a 
set of Sepharose beads each with a specific covalently-
attached kinase inhibitor [7, 10]. Coupling MIB gravity-
flow affinity chromatography with mass spectrometry 
(MIB/MS) provides the ability to capture and identify 
kinases from whole cell lysates on a kinome scale. Binding 
of kinases is dependent on the functional expression 
and activity of the kinase and affinity for the different 
immobilized inhibitors. To determine the inhibitor bead 
selective distribution of bound kinases, we assayed kinase 
capture by six different inhibitors individually covalently 
coupled to Sepharose beads [8, 10]: CTx-0294885, VI-
16832, PP58, Purvalanol B, and two custom synthesized 
molecules, UNC-8088A and UNC-2147A. Four cell 
lines representative of breast cancer subtypes: HCC1806 
(basal-like), SUM159 (claudin-low), MCF7 (luminal), and 
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SKBR3 (HER2-enriched) were used for analysis of kinase 
capture by each bead (Figure 1A). Of these, CTx-0294885 
(CTx) and VI-16832 (VI) captured the most total kinases 
(265 and 254, respectively) and the most unique kinases 
(32 and 29, respectively). The other four beads bound a 
lesser number of kinases (PP58, 194 kinases; Purvalanol 
B, 164; UNC-8088A, 162; UNC-2147A, 130, Figure 1B, 
Supplementary Table 1). Although UNC-8088A binds 
the fewest unique kinases (only five), these include the 
atypical bromodomain and extraterminal (BET) domain-
containing family of chromatin readers BRD2, -3, and 
-4 [11]. Hierarchical clustering of identified kinase 
peptides shows each bead binds a unique set of kinases 
and UNC-2147A displays the most distinct binding profile 
selectively enriching the AGC kinases (Figure 1C).

Understudied kinases [3] make up approximately 
40% of the overall expressed kinome and are similarly 
represented through MIB-binding, with 23–34% of all 
kinases captured for any individual bead (Figure 1D; 
Supplementary Table 2). Characteristics of understudied 
kinases include: i) integration of the protein kinase in 
signaling networks is poorly defined, ii) function and/or 
regulation is poorly defined, iii) activation loop phospho-
antibodies and/or IHC grade antibodies may not exist, iv) 
lack of selective chemical tools for use in characterization 
of function (e.g., small molecule inhibitors), v) RNAi and 
CRISPR/Cas9 for knockout/altered expression and cDNAs 
for overexpression may be primary tools, vi) kinase 
knockout or altered expression may not provide readily 
assayable phenotypes (e.g., growth, migration, apoptosis 
or in vivo function in mouse organ physiology). 

Across all MIB/MS runs, 381 kinases in total were 
identified. Of these, 35 are metabolic and lipid kinases, 
346 are protein kinases of which 142 can be considered 
understudied (41% of protein kinases identified) 
(Figure 1E). The overall distribution of kinases bound 
indicates CTx and VI are clearly pan-kinase inhibitors 
(Figure 1F, circle size proportional to number of unique 
peptides identified per kinase). Purvalanol B also binds 
kinases across families but to a lesser extent. PP58 has some 
preference for tyrosine kinases (TKs), and UNC-8088A 
has preference for TKs, CMGC, and atypical kinases over 
other families. UNC-2147A, designed for interaction with 
the binding pocket of AKT, has a strong affinity for AGC 
kinases lacking in most of the other five kinase inhibitors. 
CTx, VI, and PP58 have a strong affinity for PRKDC 
(DNA-PK) not seen with the other three inhibitors. All 
inhibitor beads display high affinity for many understudied 
kinases (green circles and text). The most-highly captured 
understudied kinases across the four cell lines were GAK, 
SLK, MRCKB, AAK1, TBK1, and NEK9.

Kinases known to be oncogenic drivers in general 
and/or nodal signaling kinases display anticipated MIB-
binding profiles across the different breast cancer subtype 
cell lines (Figure 1G). For example, SKBR3 (luminal 
HER2+) and MCF7 (luminal) cells have abundant AKT1/2 

MIB-binding. Other well characterized kinases are highly 
represented in a specific cell line, such as EGFR and 
FAK1 in HCC1806, EPHA2 and UFO (AXL) in SUM159, 
IGF1R and KS6B1 (p70 S6K) in MCF7, and HER2/ERBB2 
and TGFBR1 in SKBR3 cells.  Several understudied 
kinases also show high selectivity in functional MIB-
binding including CDK13, DMPK, SIK3 and TESK1 in 
MCF7 and CLK4, CDK14 and NLK in SUM159 cells 
(Figure 1H). Figure 1I and Supplementary Table 1 show 
kinases whose MIB-binding is greatest in each of the four 
cell lines, proportional to the number of unique peptides 
identified. Unsupervised hierarchical clustering illustrates 
the differences in MIB-binding throughout the kinome for 
each cell line (Figure 1J). These findings indicate the four 
cell lines display a unique MIB/MS binding profile for both 
well characterized and understudied kinases.

Integrating understudied and well characterized 
kinases by kinome proteomic profiling defines 
breast cancer subtypes

We characterized the baseline kinome of 15 
breast cancer cell lines representing the four major 
breast cancer subtypes as previously defined by gene 
expression profiles [4]. Cell lysates were passed over 
an affinity column composed of the six kinase inhibitor 
beads and processed with LC-MS/MS (Figure 2A). Using 
label-free peptide quantitation measurements, a total of 
360 kinases were identified as having at least 3 unique 
peptides (Supplementary Data File 1). MIB-binding 
profiles generated from each of the respective cell lines 
were averaged into a single representative profile and a 
Pearson correlation matrix between each of these profiles 
was then generated and hierarchically clustered with a 
Euclidean distance function. As can be observed in Figure 
2B, claudin-low and basal-like cells (TNBC) are readily 
distinguished from HER2-enriched/luminal cells by MIB 
profiling of their cellular kinomes. The basal-like HER2-
amplified cell line HCC1954 clusters with basal-like lines 
through similarity of kinome profiles and is thus separated 
from the luminal HER2+ lines. Interestingly, the SKBR3 
HER2-enriched cell line shows an intermediate clustering 
between HCC1954 and other HER2+/luminal cell lines, 
and a previous report demonstrated SKBR3 patterns as 
basal-like in functional RNAi screens [12].  Hierarchical 
clustering of kinases further separated cell lines with 
the claudin-low phenotype, SUM159, MDA-MB-231 
and MDA-MB-468 (basal-like), showing the greatest 
difference from other cell lines (Figure 2C). SUM229 
cells have two subpopulations, a basal-like EpCAM 
positive/E-cadherin positive (SUM229pos) and a claudin-
low EpCAM negative/E-cadherin negative population 
(SUM229neg). The two populations are genomically 
similar by exome sequencing, but differ epigenetically 
[13] and cluster together based on their kinome MIB-
binding profile (Figure 2C).
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Figure 1: Assessment of multiplexed kinase inhibitor beads (MIBs) for kinase capture across breast cancer subtypes. 
(A) Experimental design to assess performance of six kinase inhibitor beads. (B) Combined data from all four cell lines assayed shows 
CTx-0294885 binds the most number of kinases. Number of kinases captured uniquely by each bead is shown in red. (C) Euclidean 
hierarchical clustering kinase peptides bound by the six beads shows each bead enriches for a distinct set of kinases. UNC-2147A displays 
the most unique binding profile. (D) A large proportion of kinases captured by MIBs (23–24%) are understudied or poorly characterized 
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Principal components analysis (PCA) of baseline 
MIB-binding kinase profiles revealed significant differences 
between subtypes within the first principal component, 
clearly separating triple-negative from HER2-enriched 
and luminal cell lines (Figure 2D). Further separation of 
the triple-negative group into claudin-low and basal-like 
subtypes is also readily achieved. Appreciable separation 
of HER2-enriched cell lines from luminal cell lines is 
observed in the second principal component, as is that of 
the basal-like/HER2-amplified cell lines from the basal-
like and claudin-low lines. A loadings plot, which defines 
relationships between MIB-binding for each kinase, 
highlights those kinases with significant variation within 
subtypes, with numerous understudied kinases being 
apparent (Figure 2E). Examples of understudied kinases 
with differences in MIB-binding among cell lines include 
ADCK1, PKN3, STK17A and TESK1. Similarly, well 
characterized kinases known for their relevance in breast 
cancer are observed, such as ERBB2, EPHA1, MET and 
TGFBR2.

Supervised differential expression analysis of MIB-
captured kinases from claudin-low/basal-like (TNBC) 
versus HER2/luminal cell lines defined several statistically 
significant differences (Figure 2F). Multiple Ephrin receptors 
(EPHA2/A7/B2) and members of the TGF-beta superfamily 
(TGFBR2, ACVR1) are among the kinases most associated 
with TNBC while ERBB3 and RET are over-represented in 
HER2+ and luminal cell lines. Many understudied kinases 
display higher MIB-binding in HER2+/luminal cells, 
including DMPK, ADCK1, and TESK1. Individual plots for 
selected kinases, both characterized and understudied, are 
shown in Figure 2G, showing distinctive patterns of MIB-
binding across subtypes.

Kinase MIB-binding activity is independent 
from mRNA expression level

Our results clearly demonstrate that kinase MIB-
binding displays strong variation across breast cancer 
subtypes. Global gene expression measurements have 
similarly shown subtype-specific dynamics, with expression 
of selected gene sets being utilized in subtype determination 
and diagnosis [14–16]. We compared baseline RNA-
seq measurements with corresponding MIB-capture of 

protein kinases to assess the relationship between transcript 
abundance and functional kinome behavior. Similarity 
of kinase profiles for a given measurement modality was 
highly similar, with unsupervised hierarchical clustering 
grouping RNA-seq profiles separately from those derived 
from MIB-binding (Figure 3A). Furthermore, similarity 
within a modality was very high, such that breast cancer 
subtypes were largely clustered correctly, especially when 
looking at MIB-binding profiles that clearly grouped along 
luminal, HER2+ and triple negative subtypes. 

While within-group correlations were high, 
normalized RNA-seq was found to have a very poor 
correspondence to MIB-binding using label-free 
quantification of kinase peptide abundance. Quantitative 
comparison for each subtype achieved correlation 
coefficients of no more than 0.25, implying that less than 
7% of the observed variation between MIB-binding and 
RNA abundance in breast cancer subtypes is explained 
through this relationship. The distribution of the Pearson 
correlation coefficients of all kinases across all 15 cell 
lines similarly shows a low correspondence between 
MIB-binding and RNA-seq (Figure 3B), with the mean 
correlation being 0.2. These results are consistent with 
other work that found the average correlation between 
gene expression and protein abundance in TCGA 
colorectal cancer samples to be approximately 0.47, with a 
lesser correlation of 0.23 when comparing gene expression 
and protein variation [17]. A more recent comprehensive 
analysis of several data sets has further shown that mRNA 
levels are not predictive of protein levels for a given 
gene [18]. The low correlation between RNA-seq and 
MIB-binding suggests that the use of MIB/MS provides 
a picture of kinome behavior complementary to that 
provided through RNA expression measures. In particular, 
these results support the potentially significant role of 
post-translational and post-transcriptional regulation in 
kinome dynamics [18–20]. 

While there is significant overlap, there are a 
number of kinases that are only observed with one of 
the applied methods, MIB/MS or RNA-seq (Figure 3C). 
This discrepancy is partly due to the 50+ RSEM read 
threshold used here as a positive identification in RNA-
seq, potentially missing very lowly expressed kinases. 
Similarly, kinases not observed with MIB/MS but 

(green). (E) 381 kinases were identified across all four cell lines, including 346 protein kinases and 35 metabolic kinases. Of these protein 
kinases, 142 are understudied (green). (F) Chemical structures and kinase-binding of each inhibitor bead across the kinome. Circle size is 
proportional to the number of unique peptides identified per kinase. PRKDC (DNA-PK) is over-represented in VI-16832 and PP58 (large 
circle under Atypical protein kinases). Most beads capture kinases across families but UNC-2147 preferentially enriches for AGC family 
kinases. Shown to the right of each kinome tree are the 15 most-highly captured kinases for each bead. Green circles and text signify 
understudied kinases. (G) Comparison of relative binding of characterized kinases across breast cancer cell lines/subtypes. (H) Comparison 
of relative binding of understudied kinases across breast cancer cell lines/subtypes. (I) Each cell line representing the different breast cancer 
subtypes displays a unique kinome profile. Only kinases with the greatest number of peptides identified in each cell line are shown. Circle 
size is proportional to the number of peptides identified. (J) Hierarchical clustering of peptides identified for each kinase (rows) across the 
cell lines (columns) cluster triple-negative cell lines (SUM159, HCC1806) together and indicates HER2-positive SKBR3 cells have the 
most distinct kinome profile. 
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identified in RNA-seq may be missed due to being in 
an inactive, nonfunctional state and/or failure of chosen 
inhibitors to bind these kinases with adequate affinity. 
Pseudokinases that do not bind ATP will generally not be 
captured by MIBs. 

While the degree of correlation between RNA-
seq and MIB-binding can vary significantly for a given 
kinase, we do observe a broad range of behaviors across 
cell lines, with representative high and low correlation 
profiles shown in Figure 3D. ERBB2 is strongly expressed 

Figure 2: MIB/MS kinome profiling assigns breast cancer cell lines to functional subtypes. (A) Individual samples run 
across 6-bead composition with LC-MS/MS analysis. (B) Heat map of correlation between MIB/MS samples for cell lines analyzed. Color 
bars indicated the subtype of each cell line (blue: basal-like, red: claudin-low, pink: HER2-enriched, black: luminal, purple: basal-like/
HER2amp). White in the heat map indicates a low correlation between samples, while red shows higher correlation. Rows and columns 
are hierarchically clustered. (C) Heat map of MIB/MS average for each of the 15 cell lines analyzed. Rows are kinases; columns are MIB/
MS cell line averages. Color bar for columns indicates the subtype associated to each cell line. Each column is an average of 2 or 3 MIB/
MS samples, depending on the cell line. Colors in the heat map are relative by row minimum (blue) and maximum (red). A total of 254 
kinases passed filtering (see Methods). Rows and columns are hierarchically clustered using Euclidean distance and average linkage. (D) 
Principal Component Analysis (PCA) on the entire MIB/MS data set. PC1 and PC2 account for 14.0% and 10.3% of the variance in the 
data set, respectively. A total of 32 samples across the four subtypes are represented by their subtype (red circle: claudin-low, blue square: 
basal-like, pink upward triangle: HER2-enriched, black right-pointing triangle: luminal, purple square: basal-like/HER2amp). (E) PCA 
on the MIB/MS data set to show highly variable kinases across the samples. Characterized and understudied kinases are shown in black 
and green, respectively. PC1 and PC2 account for 44.0% and 7.83% of the variance in the data set, respectively. (F) Volcano plot showing 
characterized (black) and understudied (green) kinases that are significantly (p < 0.05) different between the Luminal/HER2-enriched and 
TNBC (basal-like/claudin-low) cell line samples in the MIB/MS data set. (G) Profiles of selected characterized (top row) and understudied 
(bottom row) kinases across breast cancer subtypes.     
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in HER2+ cell lines and MIB-binding is correspondingly 
strong in these samples, consistent with the importance 
of transcriptional regulation in this kinase’s functional 
output. PDPK1 similarly shows high correlation of 
expression and MIB-binding across all cell lines, while 
conversely EPHA1 and M3KL4 (MAP3K21) show very 
poor correlation between these two data types. 

Such proteomic behavioral properties cannot be 
detected by RNA-seq alone. Together, MIB/MS coupled 
with RNA-seq provides an integrated perspective, 
providing a post-transcriptional measure of kinase 
protein levels. While the functional consequences of post-
transcriptional regulation in relation to kinase networks 
and signaling is not understood, the observed differential 
relationship of transcript versus protein expression for a 
subset of poorly correlated kinases suggests an unknown 
control mechanism possibly involving differential 
covalent regulatory modifications and/or protein stability. 
Importantly, MIB/MS measurements avoid the use of 
recombinant kinases, often used to profile on-target/
off-target inhibitor profiles that are not representative 
of endogenous kinase complexes [21, 22]. Using MIB 
capture and MS quantification of endogenous kinases in 
cell lysates that have associated regulatory subunits and 
post-translational modifications thus provides a functional 
measure of cellular kinase protein expression. 

Kinome profiles accurately define tumor biopsies

Cumulatively, our data show that measurement of 
kinases by MIBs capture allows integration of a significant 
fraction of the expressed kinome, defining a taxonomy of 
breast cancer determined by the functional behavior of 
protein kinases. This kinome taxonomy is used below to 
define a subset of understudied and well characterized 
kinases that are capable of distinguishing between breast 
cancer tumor subtypes.  

Given both the variation in kinase MIB-binding 
profiles observed across subtypes, as well as their differing 
information content when compared to RNA expression 
measurements, we sought to better understand which 
kinases were key nodes in the subtype-selective baseline 
breast cancer kinome. To address this question, we 
investigated the MIB-binding behavior of kinases across 
all four subtypes. We considered three major classes of 
kinases: 1) those that show variation in MIB-binding 
across all subtypes, 2) those that exhibit more limited 
subtype-specific behaviors, and 3) kinases that have 
nominal distinguishing behavior. Standard application 
of PCA identifies those kinases displaying the greatest 
variation across all samples (“pan-subtype kinases”; 
Figure 2E) and thus we used a feature selection approach 
based on the Bhattacharyya distance [23] to determine 
subtype-specific kinases that are highly distinguishing/
informative for a single cancer subtype (see Methods). 
Integrated with PCA-identified kinases (“pan-subtype”), 

this combined set of the 50 most informative kinases 
is shown in Figure 4A, with column ordering based 
on similarity of the kinome profile and recapitulating 
similarity between claudin-low and basal-like subtypes 
as well as HER2-enriched and luminal. The HER2+ cell 
line that profiles as basal-like (HCC1954, in purple) is 
displayed in its own column. Recognized cancer-related 
kinases are again observed in this set, including ERBB2, 
FGFR2, PTK6, RAF1 and RON (MST1R) as well as 22 
understudied kinases. 

The kinases shown in Figure 4A have the greatest 
variation within and across subtypes and are representative 
of each of the major subfamilies of kinases in addition 
to three metabolic kinases captured by MIBs (Figure 4B). 
Under the assumption that TNBC (represented by the 
basal-like and claudin-low cell lines) and HER2/luminal 
breast cancer are separate diseases, we again used 
unsupervised feature selection of MIB/MS data to identify 
kinases that distinguish TNBC (basal-like/claudin-low) 
from HER2/luminal breast cancer [23]. As shown in 
Figure 4C, obvious differences in the kinome profiles of 
TNBC and HER2/luminal are observed, demonstrating the 
unique functional phenotypic features of the kinome in the 
two different breast cancers. Sixteen understudied kinases 
showed strong variance between TNBC and HER2/
luminal breast cancer, with higher-ranked understudied 
kinases being DAPK3, ADCK1, MRCKA (CDC42BPA), 
STK17A, DMPK and VRK2. 

Using the kinases chosen through feature selection 
and shown in Figure 4C, we evaluated the ability to use 
MIB-binding profiles to define subtypes of human HER2+ 
needle biopsies and TNBC breast tumors (Figure 4D  
and 4E). Diagnostic needle biopsies of 2 patient tumors 
(2 HER2+) having ~1 mg of total protein were processed 
using MIB enrichment. With just 1 mg of tumor lysate 
protein, the total number of kinases purified from each 
biopsy ranged from ~200 to 275. Utilizing only the 
kinases identified from cell lines as the identifying 
features (Figure 4C) within a SVM classifier, it was 
possible to clearly identify HER2+ and TNBC primary 
patient tumors. We note that heterogeneity within these 
tumor samples was significant, with between 15 and 27 
of our 50 most informative kinases not being measured/
measurable within these primary samples, supporting the 
need for the identification of a larger number of kinases 
showing dynamic behavior across subtypes. Of further 
interest, we found that markers such as ERBB2 were not 
required for accurate classification of HER2+ cancers - 
i.e., exclusion of ERBB2 as a feature during classification 
led to the same classifications of primary tumors shown 
in Figure 4D and 4E. These results indicate that subtype 
information was encoded across multiple other kinases 
as assessed through MIB/MS. Thus, MIB-binding 
activity of significantly less than 50 kinases is sufficient 
to discriminate the functional phenotypic nature of the 
kinome in breast cancer. As with cell lines, application of 
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Figure 3: Overall MIB-binding and mRNA expression levels are not correlated. (A) Heatmap of autoscaled mRNA expression 
and MIB-binding for all of the samples analyzed. Rows and columns are hierarchically clustered. Rows are the 254 kinases. The “Data 
Type” track along the columns indicates which methodology the sample is derived from (green: RNA-seq or red: MIB/MS). The “Subtype” 
track along the top of the heatmap indicates which subtype the cell line is classified as (blue: basal-like, red: claudin-low, purple: basal-
like+HER2-amp, pink: HER2-enriched, and black: luminal). (B) Frequency distribution of Pearson’s correlation coefficient across all cell 
lines in MIB/MS and RNA-seq for each of the 254 kinases. (C) KinomeTree for MIB-binding (blue dots), RNA expression (red dots), and 
the overlap between the two data sets (yellow dots) for the HCC1806 (basal-like) cell line. (D) Representative raw profiles of ERBB2, 
PDPK1, EPHA1, and M3KL4 in MIB/MS intensity (orange bars) and mRNA RSEM counts (blue bars), showing both highly correlated 
and poorly correlated behavior between the two data sets. 
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PCA to MIB-binding profiles showed a clear separation 
between TNBC tumors and HER2+ tumors (Figure 4F). 
Kinases driving the variation within the data included 
ERBB2 as might be expected, along with understudied 
kinases such as TESK1 and DMPK (Figure 4G). 

A functional interaction network of MIB-binding 
kinases

To establish a basic picture of the architecture of the 
human kinome using MIB-bound kinases, we compiled 
protein interaction and phosphorylation data from multiple 
data sources and established a functional interaction 
network among 246 of the 254 kinases commonly identified 
in the panel of 15 breast cancer cell lines (see Methods). 
Spectral clustering of this network further enabled the 
identification of 16 subnetworks, with many showing 
functional enrichment of one or more Gene Ontology 
functional categories (Figure 5A; GO term enrichment for 
subnetworks is provided in Supplementary Data File 4). Of 
note is that understudied kinases (green nodes) are widely 
distributed across all the major subnetworks, demonstrating 
that these poorly characterized kinases are integrated 
into subnetworks along with well characterized kinases. 
The 50 distinguishing kinases identified for cell lines in 
Figure 4A (triangle nodes) were also distributed throughout 
the network and associated subnetworks. The breadth of 
subnetwork coverage by these kinases suggests that their 
predictive value in our subtype classification comes from 
their distribution across many subnetworks, providing an 
overall estimate of the state of many functional processes 
simultaneously. 

Of the kinases bound by MIBs, we identified four 
Tdark kinases within our data, including ADCK1, CSK23, 
SG196 and M3KL4 (MAP3K21). As defined in the NIH 
Illuminating the Druggable Genome (IDG) program, Tdark 
kinases are very poorly characterized in terms of publications, 
small molecule inhibitors and gene references to functionality 
[1]. To provide an example of how MIB/MS can be used 
to help provide putative functional roles for such poorly 
characterized kinases, we utilized Lasso regression to identify 
potential functional linkages for these kinases as well as all 
understudied kinases, including those identified as Tdark and 
Tbio by the IDG program. As described in greater detail in 
Methods, known physical interactions were first identified 
from multiple data sources for all kinases. These were 
then integrated with potential functional linkages between 
kinases identified through Lasso regression across MIB-
binding profiles. Together, these data established functional 
subnetworks centered on each individual understudied 
kinase. In total, 89 understudied kinases were annotated with 
such functional subnetworks, of which 18 were defined as 
Tbio and 4 as Tdark kinases. Functional annotation of these 
groups was then performed to identify enriched functional 
GO categories or signaling pathways, with results for all 89 
kinases provided in Supplementary Data File 5.

An example of this analysis as applied to the Tdark 
kinase SG196 (Sugen Kinase 196 or protein-O-mannose 
kinase) is shown in Figure 5B. SG196 was found to have 
two known physical interactions in addition to eight 
regression linkages that reveal over-representations of the 
ERBB signaling pathway, MAPK cascade, and positive 
regulation of GTPase activity as well as several other 
statistically enriched biological functions as identified 
through GO and pathway analysis of the entire functional 
subnetwork identified in Figure 5B. Similarly, M3KL4 
(MAP3K21) has only a single known physical interaction 
but by utilizing the correlated behavior of the regression 
kinases the functional network has overrepresentation 
of MAPKK activity, regulation of immune system, 
and response to stress (Figure 5C). The networks and 
functional annotations for the other Tdark kinases, CSK23 
and ADCK1 are provided in Supplementary Data File 5.

Kinome MIB-binding profile and response to 
drug perturbation

To assess how the baseline kinome and associated 
understudied kinases change in their functional MIB-
binding profile in response to targeted drug perturbation, 
we exposed four cell lines to three subtype-relevant 
kinase inhibitors: SUM159 and HCC1806 with trametinib 
(a MEK1/2 inhibitor); SKBR3 with lapatinib (a HER2/
EGFR inhibitor); and MCF7 with buparlisib (a PI3K 
inhibitor). Each inhibitor strongly suppressed growth of 
the selected subtype specific cell line (Figure 6A). We 
have previously shown that the kinome is dynamic and 
rapidly adapts to targeted perturbation by kinase inhibitors 
[7, 8]. This adaptive response is readily observed by 
changes in the MIB-binding profiles for each drug 
treatment (Figure 6B, Supplementary Data File 3), with 
SUM159 cells showing the strongest dynamic response to 
drug perturbation relative to the other cell lines, but each 
line clearly shows an adaptive response of the kinome 
measured by MIB-binding profiles. Figure 6C shows the 
kinases that are unique to each subtype defined in Figure 
2C (Supplementary Table 3). 

Scatter plots of the SUM159 and HCC1806 dataset 
defines specific kinases and kinome subnetworks that 
drive the adaptive response to MEK1/2 inhibition that are 
represented by both understudied and well characterized 
kinases (Figure 6D). Understudied (i.e. NEK2 and PASK) 
and well characterized (i.e. DDR1 and EPHA4) kinases 
respond differently in the two subtypes (basal-like and 
claudin-low) when they are treated with the same kinase 
inhibitor (trametinib). The kinases in the subnetworks 
defined in Figure 5 also respond uniquely in the basal-like 
and claudin-low subtypes when treated with trametinib 
(Figure 6E). The adaptive kinome response measured by 
dynamic changes in MIB-binding profiles is more clearly 
seen when specific subnetworks are analyzed (Figure 6F). 
The global response of the seven largest subnetworks to 
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Figure 4: Baseline kinome of cell lines and tumors across breast cancer subtypes. (A) Compilation of subtype specific and 
pan-subtype kinases chosen from feature selection and PCA, respectively. All data is log2 normalized and autoscaled by sample, with heat 
map colors indicating low (blue) to high (red) MIB-binding. Column color bar indicates subtype (red: claudin-low, blue: basal-like, pink: 
HER2-enriched, black: luminal, purple: basal-like/HER2amp; Understudied kinases are denoted by *). Global maximum and minimum 
color assignment. (B) KinomeTree with the 50 distinguishing features from (A) are denoted. Black circles denote characterized kinases, 
while green circles represent understudied kinases. (C) Kinases chosen from feature selection when comparing Luminal/HER2-enriched 
cell line samples against basal-like/claudin-low (TNBC) cell line samples. Kinases are ordered from top to bottom in the same ordering 
as from the feature selection (most heavily weighted kinases are at the top of the heat map). All data is log2 normalized and autoscaled 
by sample, with heat map colors consistent with those in (A) (Understudied kinases are denoted by *). Global maximum and minimum 
color assignment. (D) Heat map of Luminal/HER2-enriched cell line average (HER2+/Luminal column; black in “Sample Type” column 
color bar) across the kinases shown in (C) with two tumor samples (teal in “Sample Type” column color bar). Data is log2 normalized 
and autoscaled by samples, as previously noted. Yellow in the “Classification” column bar shows which samples are classified correctly 
as Luminal/HER2-enriched by the SVM using the kinases from (C). Blue in the heat map indicates a low MIB-binding, red indicates high 
MIB-binding, and grey (in the tumor samples only) indicates that a kinase was not detected by MIBs in the tumor sample. Global maximum 
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these drug perturbations is shown with their functional 
annotation as estimated from Gene Ontology terms 
and KEGG pathway enrichment shown on the x-axis 
and MIB-binding response reported on the y-axis as a 
mean across all cell lines and drugs. Subnetworks have 
heterogeneous responses, with some subnetworks being 
fairly coordinated in response and others having kinase 
members acting in a more strongly divergent manner. 
For instance, subnetwork 3 (SN3) is enriched with many 
kinases relevant to cytoskeleton, adhesion and motility and 
has many of its members strongly up-regulated in response 
to drug perturbation. In comparison, SN2, involved in cell 
cycle and cell division, contains both strongly up- and 
down-regulated kinases, with the largest responses being 
loss of MIB-binding, consistent with the inhibition of cell 
growth. Understudied kinases (green labels in Figure 6F) 
often display large responses to drug treatment within a 
given subnetwork, demonstrating these kinases actively 
contribute to adaptive kinome reprogramming in response 
to targeted kinase inhibition. Similarly, a more detailed look 
at targeted inhibition of specific subnetworks for each of 
the cell lines shows the dynamic response of the kinome to 
be highly dependent on the drug, subtype and subnetwork 
context (Figure 6G, Supplementary Table 4). More broadly, 
the response of kinases in subnetworks is consistent with 
a unique functional regulation of the kinome in cancer 
subtypes and in response to different perturbations. 

DISCUSSION

While the creation of molecular taxonomies has 
established the existence of subtypes in many tissue-
specific cancers, how these taxonomies can be leveraged 
to characterize phenotype or to guide the development 
of targeted therapeutics remains unclear. A complication 
for improving therapeutic intervention with targeted 
kinase inhibitors in cancer is the extensive number 
of understudied kinases, whose poor characterization 
presents significant challenges to understanding their 
role in emergent processes such as adaptive bypass 
reprogramming and resistance to kinase inhibitors. Despite 
such challenges, understudied kinases do have potential 
as novel drug targets once their functional integration into 
signaling networks is more clearly determined. Methods 
generally have been lacking to capture kinases, both well 
characterized and understudied, to define the functional 
kinome en masse. Characterization of kinase MIB-

binding in tumor cell lysates has proven to be a powerful 
technique for characterizing functional architectures of the 
kinome that provides the capability to identify prognostic 
signatures and differential response to perturbations such 
as targeted kinase inhibition, as well as better establishing 
the integration and function of understudied kinases. This 
is clearly seen in the 50-kinase profile distinguishing 
TNBC from HER2+/luminal breast cancer, with many of 
the 50 kinases representing understudied kinases. 

The highest weighted understudied kinases 
distinguishing TNBC from HER2+/luminal breast cancer 
include ADCK1 (AarF Domain Containing Kinase whose 
function is unclear), DAPK3 (Death-associated protein 
kinase thought to be involved in apoptosis), DMPK 
(Dystrophia myotonica protein kinase whose function 
is not well-defined), MRCKA (Myotonic dystrophy 
kinase-related CDC42 binding protein kinase alpha that 
may signal CDC42 control of the actin cytoskeleton and 
is related to DMPK), STK17A (Serine/threonine kinase 
17A has apoptosis-inducing activity and is a member 
of the DAP kinase-related family), TLK2 (Tousled-like 
kinase 2 is involved in chromatin assembly and possibly 
DNA repair) and VRK2 (Vaccinia-related kinase 2 that is 
believed to regulate apoptosis and cell growth). Screening 
of the cBioPortal for Cancer Genomics (http://www.
cbioportal.org/public-portal/) indicates amplification of 
MRCKA (CDC42BPA) in 13–25% of invasive breast 
cancer while TLK2 is amplified in 10% of invasive breast 
cancer and 25% of adenoid cystic breast cancer. ADCK1, 
DAPK3, DMPK STK17A and VRK2 were found to be 
similarly amplified in other cancers including prostate 
adenocarcinoma, uterine carcinosarcoma and pancreatic 
adenocarcinoma. Prominent MIB-binding signatures 
combined with potential increased expression in tumors 
suggests these understudied kinases have important 
functions for the tumor cell phenotype that have not been 
characterized to date. 

While MIB/MS provides a unique picture of the 
functional state of the kinome, this approach does come with 
its own challenges. Binding of a kinase to an immobilized 
inhibitor is dependent on multiple factors including inhibitor 
selectivity, total protein concentration, functional activation 
state, non-specific binding as well as other variables. 
The choice of inhibitors used here was done to provide a 
broad picture of kinome behavior, which could potentially 
improve with testing of additional complementary inhibitor 
combinations. We also note that our analysis is based on a 

and minimum color assignment. (E) Heat map of TNBC cell line average (TNBC column; black in “Sample Type” column color bar) across 
the kinases shown in (C) with five tumor samples (teal in “Sample Type” column color bar). Data is log2 normalized and autoscaled by 
samples, as previously noted. Yellow in the “Classification” column color bar shows which samples are classified correctly as TNBC by 
the SVM using the kinases from (C). Dark red in “Classification” indicates that the tumor sample was incorrectly classified (not classified 
as TNBC) by the SVM using the kinases identified in (C). Color scheme in the heatmap is consistent with that described in (D). Global 
maximum and minimum color assignment. (F) PCA scores plot of tumor samples with PC1 and PC2 accounting for 58.4% and 16.1% of 
variance, respectively. TNBC tumors are blue and HER2-enriched tumors are pink. (G) PCA loadings plot of tumor samples with PC1 and 
PC2 accounting for 71.5% and 16.5% of variance, respectively. Black points are characterized kinases and green points denote understudied 
kinases. 
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Figure 5: Subnetworks in the functional kinome. (A) Compiled and spectral clustered protein-protein interaction network from 
public data sources of the 246 out of 254 kinases analyzed in the MIB/MS cell line data set. Green nodes represent understudied kinases, 
while grey and blue nodes represent well characterized kinases. Triangles are kinases that are also in the distinguishing features found in 
Figure 4A. (B and C) Local functional network for SG196 (B) and M3KL4 (C) as defined through Lasso regression of MIB/MS data with 
sample enriched annotations from GO, Kegg and Reactome pathways.
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Figure 6: Kinome drug response overall and by subnetwork. (A) Growth curves for HCC1806 + Trametinib, SUM159 + 
Trametinib, SKBR3 + Lapatinib, and MCF7 + Buparlisib (i.e. BKM120). All curves were done at two different doses. (B) Response of 
kinome in representative cell lines across four subtypes of breast cancer (claudin-low: SUM159, basal-like: HCC1806, HER2-enriched: 
SKBR3, luminal: MCF7) when treated with the indicated kinase inhibitor. Distribution of the kinome response on the log2-scale is shown 
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sampling of 15 breast cancer cell lines and we expect that 
other informative kinases will be identified, and some of our 
identified kinases down-weighted, as additional samples are 
acquired. Molecular heterogeneity inherent within primary 
tumors will require the characterization of greater samples, 
though it is encouraging that kinases identified through cell 
lines were able to make relatively reliable classifications. The 
complementary nature of MIB-binding profiles with those 
derived from gene expression would suggest that combining 
profiles from these data types would likely improve future 
classification approaches as well as enhance understanding 
of regulatory relationships. Regardless, these results support 
the potentially significant role of post-translational and post-
transcriptional regulation in kinome dynamics that drives 
differences between these two measures of kinome behavior.

The dynamic nature of the kinome is clearly captured 
in the kinase MIB-binding profiles characterizing baseline 
versus post-drug treated cells. This adaptive reprogramming 
of the kinome is involved in the epigenetic development 
of resistance to kinase inhibitors [24]. We have proposed 
that blocking this adaptive reprogramming is important 
clinically for making single kinase inhibitors more durable 
[8]. Pre- and post-drug treatment MIB/MS analysis 
allows for the quantitative measure of kinome adaptive 
responses and the rapid screening of combinations of 
kinase or epigenetic inhibitors that would block the adaptive 
behavior of the kinome [7, 8, 24]. This analysis can be 
done in preclinical models as well as patient trials where 
biopsy accessible tumor specimens are available. We have 
been able to capture more than 200 kinases with as little 
as 300 micrograms (ug) of protein. Thus, MIBs provide 
a proteomic approach to characterize the functional state 
and dynamics of the kinome and thus define therapeutic 
response and targetable adaptive resistance networks. 
Importantly, MIBs capture both well characterized and 
understudied kinases for a comprehensive measure of the 
functional kinome.

MATERIALS AND METHODS

MIB affinity chromatography

Broad spectrum Type I kinase inhibitors (CTx-
0294885, VI-16832, PP58, Purvalanol B, UNC-2147A, 

and UNC-8088A) were custom-synthesized with 
hydrocarbon linkers and terminal amine groups and 
covalently attached to ECH-activated Sepharose beads 
as previously described [8]. Cells were rinsed in PBS 
and processed in lysis buffer (50 mM HEPES, 150 mM 
NaCl, 0.5% Triton X-100, 1 mM EDTA, 1 mM EGTA, 
at pH 7.5 containing 10 mM NaF, 2.5 mM NaVO4, 
cOmplete protease Inhibitor Cocktail (Roche), and 1% 
Phosphatase Inhibitor Cocktails 2 and 3 (Sigma)). Tumor 
biopsies obtained from UNC Tissue Procurement were 
manually homogenized with a chilled mortar and pestle 
in lysis buffer. For individual bead profiling (Figure 1), 
2 mg of total protein was gravity-flowed over 100 uL of 
each bead. For Figure 2 (cell lines), 5 mg of total protein 
lysate and for Figure 4 (human tumor biopsies), 1 mg of 
total protein was gravity-flowed over a mixture of the six 
kinase inhibitor-linked beads (175 uL total beads). Beads 
were washed with at least 30 volumes of high salt (1M 
NaCl) and low salt (150 mM NaCl) lysis buffer, then 500 
uL of low salt lysis buffer containing 0.1% SDS. Bound 
proteins were eluted by boiling with 0.5% SDS and 1% 
β-mercaptoethanol in 100 mM Tris-HCl, pH 6.8, 2X 
15 minutes, treated with DTT (5 mM, 25 min at 60° C) 
and Iodoacetamide (20 mM, 30 min in the dark at RT), and 
spin-concentrated to 100 μL (Millipore Amicon Ultra-4, 
10K cutoff) before Methanol/Chloroform precipitation. 
Proteins were trypsinized overnight at 37° C and then 
dried down in a speed-vac. Peptides were cleaned with 
C-18 spin columns (Pierce).

Mass spectrometry and analysis

Peptides were resuspended in 2% ACN and 0.1% 
Formic Acid. For Figure 1 (bead profiling) 20% of each 
sample was injected onto a Thermo Easy-Spray 75 μm × 
15 cm C-18 column using an Easy nLC-1000 in technical 
triplicate and separated on a 150 min gradient (5–40% 
ACN). For Figures 2 and 4 (cell lines and tumor biopsies), 
40% of the final peptide suspension was injected onto an 
Easy-Spray 75 μm × 25 cm C-18 column and separated on 
a 300 min gradient (cell lines) or a 180 min gradient (tumor 
biopsies). For all runs, ESI parameters: 3e6 AGC MS1, 
80 ms MS1 max inject time, 1e5 AGC MS2, 100 ms MS2 
max inject time, 20 loop count, 1.8 m/z isolation window, 

for each cell line/subtype; each point represents a kinase. (C) KinomeTree showing the kinases that are uniquely captured in each of the 
subtypes in the baseline data set. Blue circles denote kinases bound to the MIBs only in basal-like samples. Similarly, red circles represent 
claudin-low, pink circles represent HER2-enriched, and black circles represent luminal uniquely bound kinases. (D) Scatter plot of the 
response of the basal-like vs. claudin-low cell lines to treatment with 100 nM Trametinib. All values are fold change to untreated cells 
and log2-transformed. Kinase points are colored black for characterized and green for understudied. (E) Scatter plot of the response of the 
basal-like vs. claudin-low cell lines to treatment with 100 nM Trametinib (same as in (D)). Kinases are colored by subnetwork assigned to 
each kinase from Figure 5. (F) Subnetwork response to drug perturbation showing mean fold change across the four representative cell lines 
(SUM159, HCC1806, SKBR3, and MCF7) for the top 7 subnetworks identified from Figure 5. Characterized and understudied kinases in 
each subnetwork are labeled in black and green, respectively. The color of each circle indicates the mean fold change (red = high/above 0, 
blue = low/below 0), while the area of the circle denotes the standard deviation of the fold changes across the representative cell lines. (G) 
Distribution of the kinome response in the three subnetworks SN1, SN7, and SN13 on the log2-scale is show for each cell line/subtype.
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45 s dynamic exclusion. Spectra were searched against the 
Uniprot/Swiss-Prot database with Sequest HT on Proteome 
Discoverer software (Figures 1 and 2) or MaxQuant 
(Figure 4). Only peptides with medium or greater 
confidence (5% FDR) were considered for quantitation, 
and only kinases having 3 or more unique peptides were 
considered for further analysis. Heat maps were generated 
using GENE-E software (BROAD institute). Kinome trees 
were generated using Kinome Render (http://bcb.med.
usherbrooke.ca/kinomerender.php).

RNA-seq

Total RNA was spin column purified using 
RNeasy Plus Mini kit (Qiagen). Library construction 
was performed at the UNC Lineberger Comprehensive 
Cancer Center Genomics Core and the sequencing at the 
UNC High-Throughput Sequencing Facility. mRNA-Seq 
libraries were constructed with 1 μg total RNA using the 
Illumina TruSeqTMRNA Sample Prep Kit according to the 
manufacturer’s protocol. 50-cycled single-end sequencing 
runs with multiplexing were produced using an Illumina 
HiSeq2000. CASAVA 1.8.2 generated bases and assessed 
sequence quality. The QC-passed reads were aligned to 
the hg19 human reference genome using MapSplice 
and the alignment profile was determined by Picard 
Tools v1.64 [25]. Aligned reads were sorted and indexed 
using SAMtools, and then translated to transcriptome 
coordinates and filtered for indels, large inserts, and zero 
mapping quality using UBU v1.0. Transcript abundance 
estimates for each sample were determined using an 
Expectation-Maximization algorithm [26]. Publicly 
available data from [27, 28] were also processed using this 
computational method. Data is available in Supplementary 
Data File 2. 

Data analysis

The MIB/MS data set was filtered so that only 
kinases that are represented in at least 30% of the 32 
samples were analyzed. Initially, over 380 kinases were in 
the MIB/MS data set but 254 kinases passed this filtering 
threshold. The MIB/MS data set was log2 transformed 
and mean-centered, variance-scaled by sample before 
downstream analysis. Hierarchical clustering, Principal 
Components Analysis (PCA), and feature selection 
were performed in MATLAB. PCA is a commonly-used 
data analysis and dimension-reduction technique that 
transforms variables into a set of linearly uncorrelated 
principal components [29]. Application of PCA also 
provides the ability to assign a weight to each feature 
(kinase) in the data set that can be used as a relative 
measure of its ability to distinguish subtypes. To identify 
kinases that dominate individual PCs, kinases having 
weights in the 90th-percentile (i.e. those weighted in the 
top 10% of weights) per PC were selected from the first 

three PCs and used in downstream classification tasks. 
Feature selection using the Bhattacharyya distance was 
also used as a secondary mechanism for ranking kinases 
in terms of their ability to distinguish subtypes [23]. 
Pairwise classification between subtypes (e.g. basal-like 
subtype from all others, claudin-low from all others, etc) 
was iteratively performed to identify the most informative 
features for each subtype.

Kinases identified through feature ranking and PCA 
are combined to create a list of the most distinguishing 
kinases in MIB-binding across the breast cancer subtypes. 
Subtype-specific signature kinases are defined as the 
top 5% of the highest-ranking kinases found using the 
Bhattacharyya feature ranking coefficient for each subtype 
are compiled for the overall list. Pan-subtype kinases are 
defined as the most heavily weighted kinases (top 10%) 
from the first three PCs are used. Subtype-specific kinases 
are compiled from each of the breast cancer subtypes then 
the pan-subtype kinases are added (in order from most 
heavily weighted to less heavily weighted) starting with 
PC1 kinases then moving to PC2 then to PC3 until a 
maximum of 50 kinases is reached to make up the list of 
distinguishing kinases. 

Comparison of MIB-binding to transcript 
abundance

The Z-score is calculated by sample based on the 
average log2 value per kinase and using the standard 
deviation of all kinases for a given sample for both data 
types, MIB/MS and RNA-seq (Figure 3A). The Pearson 
correlation of individual kinases is calculated for each 
kinase across the 15 cell lines (not distinguished by 
subtype) between MIB-binding and RNA transcript levels. 

Prediction of subtypes

Classification of subtype based on a previously 
unobserved kinome profile was performed using a 
Support Vector Machine (SVM). The SVM is a machine 
learning technique used in supervised classification, and 
thus requires a training set on which to learn parameters 
that can then be applied towards prediction of previously 
unobserved data [30]. The SVM used here utilized the 50 
distinguishing kinases previously identified in cell lines 
to predict the subtype of human primary tumors. Human 
tumors are classified into one of the major groups (TNBC 
or HER2+/Luminal) or as “other”.

Network analysis

Protein-protein interaction information was 
compiled from multiple public data sources for the 254 
kinases analyzed in this data set and included, the Human 
Integrated Protein-Protein Interaction rEference (HIPPIE) 
(updated 9/1/2015; [31]), Human Protein Reference 
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Database (HPRD Release 9; [32]), Interlogous Interaction 
Database (I2D version 2.9; [33, 34]), PhosphoSitePlus 
(phosphosite.org - downloaded 10/15/2015; [35]) and 
Reactome protein-protein interactions (downloaded 
12/15/2015; [36]). Out of the 254 kinases in the MIB data 
set, 246 were found to have kinase to kinase interactions in 
the public data sets. The union of all interactions between 
the 246 kinases was used to form a single network that 
was then clustered into communities/subnetworks with the 
spectral method in Mathematica (ver 10.3). Subnetworks 
were assessed for GO-term enrichment via Panther [37].

Annotation of Tdark kinases 

To identify sets of kinases that were functionally 
linked through common MIB-binding behavior, we 
utilized Lasso regression, which has strong utility as 
a feature selection tool [38]. Lasso regression was 
performed on each of the 254 kinases which passed initial 
filtering (from the Supplementary Data File 1). Iterating 
through all kinases, a single kinase’s MIB/MS data was 
used as the response vector while all other kinases formed 
the input matrix. The regression was performed in R 
utilizing the glmnet package [39]. The resulting features 
for each Tdark kinase, and the kinases which had it as a 
resulting feature, are all labeled as regression correlations 
in Figure 5.  Known interactions from earlier described 
public data sources were identified for each Tdark kinase 
and each of its regression correlations. The final Tdark 
kinase networks were created from the combination of 
both regression correlations and known interactions.  
All kinases involved in each Tdark kinase network were 
listed and compared against a list of all human kinases to 
find overrepresented GO biological processes, Kegg and 
Reactome pathways via Panther [37] and g:Profiler [40].  

Data and materials availability

All processed data is provided in Supplementary 
Data Files. Data from the Sequence Read Archive is 
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