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1. Introduction
Closely spaced arrays of thin plates extending vertically from the bottom of an ideal fluid with
a free surface have been used recently by a number of authors to produce unusual effects on
water waves that are inaccessible using conventional changes in depth, notably the ability to
negatively refract waves. Contributions include Berraquero et al. [1], Maurel et al. [2,3] and
Marangos & Porter [4], all of whom assumed long wavelengths compared to the depth and
subsequently developed depth-averaged models to describe the wave propagation over this
plate-array structured bathymetry. Each of those models produces the same governing two-
dimensional wave equation in which the conventional fluid depth is replaced by a diagonal rank
two tensor but whose elements differ depending on further assumptions made about the spacing
of gaps within the plate array. The two diagonal tensor entries determine the phase velocities of
surface waves propagating in different directions over the bathymetry and this anisotropy leads
directly to negative refractive effects. It is also an important ingredient in bathymetric cloaking of
vertical cylinders [5].

The model of Marangos & Porter [4] applies to close spacing between the plates where tensor
elements are expressed explicitly in terms of the distances from the surface to the top of the
array of plates and to the base of the fluid. This model arises from homogenization which
exploits the contrast in the lengthscales in the problem and is adopted from Porter [6] and Zheng
et al. [7]. In these two problems, the plate arrays extend throughout the fluid depth allowing the
exact depth dependence of the fluid to be factorized from the solution without depth averaging
and is therefore not restricted to long wavelengths. This factorization implies the water wave
equations are analogous to the equations that govern two-dimensional acoustics and polarized
electromagnetics.

Whilst Porter’s [6] work concentrated on refraction across planar interfaces, Zheng et al. [7]
considered the effect on waves of plate arrays confined within a circular cylinder. The small gaps
between the plates provide an environment for resonance and slow wave propagation across the
cylinder giving it the ability to concentrate wave energy which can either be harnessed/dissipated
via a local damping mechanism or redirected to create a water wave lensing device. Moreover,
when the incident wave direction is aligned with the plates, the cylinder becomes completely
transparent to waves, making the cylinder an interesting prospect for marine energy harvesting
since it can be rotated to protect itself when necessary whilst possessing the potential to capture
significant amounts of energy when engaged against incident waves.

In this paper, we consider the effect that truncating the vertical extent of cylinder considered by
Zheng et al. [7] has on the scattering of incident waves. Specifically, we have assumed the cylinder
extends upwards from the base of the fluid to a constant level below the surface. Although this
particular configuration is not a candidate for wave energy capture, it does allow results to be
compared to the shallow water model of Marangos & Porter [4]. This serves an important purpose
and is one of the motivations for the present work: calibrating the conditions under which the
much simpler and more widely used shallow water approximation can be used to accurately
determine scattering by bathymetric plate array devices.

The structural uniformity in the depth exploited by Zheng et al. [7] is absent here and this
introduces additional mathematical challenges not previously encountered. It is the description
of this novel and bespoke solution process for the full depth-dependent model on which
the emphasis of this work is placed. We regard this as an important prototype problem for
developing the solution methods for more complex problems involving wave energy harvesting
by multiscale devices which involve mechanical damping components. A particular motivation
for considering the bottom mounted submerged truncated cylinder as opposed to cylinders
intersecting the surface is to avoid problems associated with undamped resonance for sufficiently
high frequencies as encountered by Zheng et al. [7].

Separation solutions are employed but, within the cylindrical region defined by the cylinder
radius, the field equation satisfied by the velocity potential above and below the submerged level
of the top of the cylinder switches from the three-dimensional Laplace equation to a reduced
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two-dimensional Laplace equation. Thus the expansion of the solution inside the cylindrical
region is reminiscent of situations that occur when considering wave propagation in, for example,
a density-stratified multi-layer fluid (e.g. [8]) in which vertical eigenfunctions are defined in
a piecewise fashion and satisfy a generalized orthogonality condition and a non-standard
dispersion relation. This description poses challenges. Appendix A of this paper provides a
discussion of the location of roots of the dispersion relation in the complex plane which is a matter
of significant practical importance. However, more technical aspects including the question as to
whether the eigenfunction form a complete basis addressed, for example, in a similar setting by
Lawrie [9,10] are not considered here.

The paper is laid out as follows. The problem is formulated in §2 and the full depth-dependent
solution is described in §3. Section 4 applies the shallow water approximation of Marangos &
Porter [4] to this particular configuration. The numerical results are presented in §5 before the
work is summarized in §6.

2. Description of the problem
We work with a mixture of three-dimensional Cartesian and cylindrical coordinates with z = 0
coinciding with the mean free surface of the fluid, which rests above a horizontal bed at z = −h.
Otherwise (x, y) = (r cos θ , r sin θ ) lie in the horizontal plane and a structured cylinder is enclosed
within the region r< a, −h< z<−d, 0 ≤ θ < 2π .

The internal structure of the cylinder comprised thin vertical barriers which extend to the
boundaries of the cylinder and are separated from one another by small uniform gaps through
which the fluid is allowed to flow (figure 1). Without loss of generality, the plates are aligned with
the x-axis since we allow a plane wave to be incident from infinity at an arbitrary angle, β. The
incident wave is of angular frequency ω and wavenumber k and described, under classical water
wave theory, by the velocity potential

φ(r, θ , z) = eikr cos(θ−β)ψ0(z), (2.1)

(a time-harmonic dependence e−iωτ , in which τ is time, is suppressed hereafter) where

ψ0(z) = N−1/2
0 cosh k(z + h). (2.2)

In the above, k is related to ω and the depth, h, by the usual dispersion relation

ω2

g
= k tanh kh. (2.3)

In (2.2) N0 is a normalization factor defined by

N0 = 1
2

(
1 + sinh 2kh

2kh

)
. (2.4)

Thus φinc is a solution of the governing equation in the fluid,

∇2φ = 0, −h< z< 0, (2.5)

(∇2 being the three-dimensional Laplacian) satisfying the bottom boundary condition,

φz = 0, on z = −h, (2.6)

and the combined linearized dynamic and kinematic boundary condition,

φz − Kφ = 0, on z = 0, (2.7)

in which K =ω2/g.
Within the cylinder, r< a, −h< z<−d, 0< θ ≤ 2π , additional zero normal flow conditions are

to be applied on both sides of each vertical plate within the array. The contrast in lengthscales
implied by the assumed small spacing between neighbouring plates relative to both the
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Figure 1. Illustration of the geometry. In (b) a plan view showing incident wave heading with respect to the internal cylinder
structure. (Online version in colour.)

wavelength and the dimensions of the cylinder allow us to replace the microstructure by the
effective field equation (formally derived in Porter [6])

φ̃xx + φ̃zz = 0, (2.8)

where we have written φ̃(x, y, z) ≡ φ(r, θ , z). The zero normal flow conditions on the individual
elements of the array are taken account of in the derivation of this reduced Laplace’s equation. It
is easy to interpret (2.8) as acting to restrict the fluid motion within the gaps in the cylinder to the
x − z plane only.

We must also consider how the field within the effective medium governing by (2.8) connects
to the fluid outside the cylinder. This can be done formally, but amounts (at leading order in the
small parameter on which the derivation of (2.8) is based) to matching the local pressures and
local fluxes across the boundary of the cylinder. Thus, on z = −d, r< a, 0< θ ≤ 2π we have

φ̃(r cos θ , r sin θ , −d) = φ(r, θ , −d) and φ̃z(r cos θ , r sin θ , −d) = φz(r, θ , −d). (2.9)

Over the curved surface of the cylinder, r = a, −h< z<−d, 0< θ ≤ 2π , the matching conditions
are

φ̃(a cos θ , a sin θ , z) = φ(a, θ , z) and cos θφ̃x(a cos θ , a sin θ , z) = φr(a, θ , z). (2.10)

The term cos θ is geometric and arises from the conservation of mass flux across local triangular
matching regions between the channel aligned with the x-axis and the radial flow into r> a.
(e.g. [7]).

The only other constraint on φ is that it satisfies a standard radiation condition to ensure
everything apart from the incident wave is radiating energy towards infinity.

3. Solution
The solution of the problem will be expressed using separation of variables inside and outside
the cylindrical surface r = a and subsequently completed by matching across r = a appropriately.
In r> a, we follow the standard method of expanding the incident wave into polar coordinates
using the Jacobi–Anger expansion,

φinc =
∞∑

n=−∞
inJn(kr) ein(θ−β)ψ0(z), (3.1)
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in terms of Bessel functions, Jn, and then the total potential, incorporating waves outgoing to
infinity, is written in its most general form as

φ(r, θ , z) = φinc +
∞∑

n=−∞
ineinθ

[
an,0Hn(kr)ψ0(z) +

∞∑
m=1

an,mKn(kmr)ψm(z)

]
, (3.2)

where an,m are Fourier-Bessel expansion coefficients, to be determined, Hn ≡ H(1)
n are first-kind

Hankel functions and Kn are second-kind modified Bessel functions. We have defined depth
eigenfunctions by

ψm(z) = N−1/2
m cos km(z + h) and Nm = 1

2

(
1 + sin 2kmh

2kmh

)
, (3.3)

where k = ikm are roots of (2.3) for m = 1, 2, . . ., lying on the positive imaginary k-axis: that is,
defined by the positive real roots of K = −km tan kmh such that (m − 1

2 )π < kmh<mπ for m =
1, 2, . . .. In doing so the orthogonality condition

1
h

∫ 0

−h
ψn(z)ψm(z) dz = δn,m (3.4)

holds for n, m = 0, 1, 2, . . ., where δn,m denotes the Kronecker delta, which is 1 if n = m, and 0
otherwise. The notation has been extended to include (2.2) via k0 ≡ −ik.

By contrast, determining the solution in r< a is more complicated on account of there being
two distinct domains above and within the structured cylinder within which the governing
equations differ, their solutions connected by the conditions (2.9).

We write the solution in r< a satisfying (2.5) in −d< z< 0 and (2.8) in −h< z<−d in its most
general form, being a superposition over all possible wavenumbers and wave angles, thus

φ(r, θ , z) =
∞∑

q=0

∫π
−π

Bq(t)eiμq(t)r cos(θ−t)Zq(z, t) dt, (3.5)

where Bq(t) are undetermined functions. The depth variation is defined in a piecewise fashion
designed to satisfy (2.6), (2.7) and the matching conditions (2.9) on z = −d, by

Zq(z, t) =
{

cosh[μq(t)z] + (K/μq(t)) sinh[μq(t)z], −d< z< 0
Aq(t) cosh[μq(t)(z + h) cos t], −h< z<−d

(3.6)

where

Aq(t) = coshμq(t)d − (K/μq(t)) sinhμq(t)d
cosh[μq(t)(h − d) cos t]

, (3.7)

such that μ=μq(t) are solutions of

cos t tanh[μ(h − d) cos t] = K − μ tanhμd
μ− K tanhμd

. (3.8)

For every value of t in [−π ,π ) there exist an infinite number of discrete roots of (3.8) labelled μ=
μq(t) where q = 0, 1, 2, . . .. It is shown in appendix A that these consist of two real roots labelled
μ= ±μ0(t) and an infinite sequence of roots lying on the imaginary axis at μ= ±μq(t), q = 1, 2, . . ..
It is also shown in appendix A that there are no roots lying off the real and imaginary axes. We
need only include the single positive real root and the sequence of roots that lie on the positive
imaginary axis in (3.5) since these contribute to propagating and evanescent waves heading in the
direction t, a variable which is integrated over all angles, −π ≤ t<π .
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Using the governing equations satisfied by Zq in −d< z< 0 and −h< z<−d, it can be readily
shown that these functions satisfy the generalized orthogonality condition

∫ 0

−d
Zq(z, t)Zm(z, t) dz +

∫−d

−h
Zq(z, t)Zm(z, t) cos2 t dz = C2

q(t)hδq,m, (3.9)

on account of Zq being real; Cq(t) can be determined explicitly. The identity (3.9) is not used
beyond this point, but could be useful in other problems.

It is helpful to employ the Jacobi–Anger expansion of the plane wave function

eiμq(t)r cos(θ−t) =
∞∑

n=−∞
inJn(μq(t)r) ein(θ−t), (3.10)

so that we have, in place of (3.5), the general expansion

φ(r, θ , z) =
∞∑

q=0

∞∑
n=−∞

ineinθ
∫π
−π

Bq(t)Jn(μq(t)r)e−intZq(z, t) dt. (3.11)

Now φ is continuous across r = a for all −h< z< 0, 0< θ ≤ 2π . So from (3.2) and (3.11),
matching Fourier modes in θ , multiplying by each of the depth eigenfunctions ψm(z) and
integrating over the depth gives

Jn(ka)e−inβ + an,0Hn(ka) =
∞∑

q=0

∫π
−π

Bq(t)Jn(μq(t)a)e−intF0,q(t) dt (3.12)

and

an,mKn(kma) =
∞∑

q=0

∫π
−π

Bq(t)Jn(μq(t)a)e−intFm,q(t) dt, (3.13)

where

Fm,q(t) = F+
m,q(t) + F−

m,q(t), (3.14)

and where

F+
m,q(t) = 1

h

∫ 0

−d
ψm(z)Zq(z, t) dz and F−

m,q(t) = 1
h

∫−d

−h
ψm(z)Zq(z, t) dz, (3.15)

which can be determined explicitly (see appendix B).
The matching of fluxes across r = a is more complicated since the condition changes across

z = −d. In −d< z< 0

φr|r=a− =
∞∑

q=0

∞∑
n=−∞

ineinθ
∫π
−π

Bq(t)μq(t)J′n(μq(t)a)e−intZq(z, t) dt. (3.16)

In −h< z<−d we note that

∂

∂x
eiμq(t)r cos(θ−t) = (iμq(t) cos t) eiμq(t)r cos(θ−t), (3.17)

and this allows us to write

cos θφx|r=a− = 1
2

∞∑
q=0

∞∑
n=−∞

in+1(ei(n+1)θ + ei(n−1)θ )
∫π
−π

Bq(t)μq(t)Jn(μq(t)a)e−int cos tZq(z, t) dt.

(3.18)
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These two expressions are matched over their respective intervals of depth to φr|r=a+ calculated
from (3.2) which results in

k(J′n(ka)e−inβ + an,0H′
n(ka)) =

∞∑
q=0

∫π
−π

Bq(t)μq(t)
{

J′n(μq(t)a)F+
0,q(t)

+ 1
2 (Jn−1(μq(t)a)eit − Jn+1(μq(t)a)e−it)F−

0,q(t) cos t
}

e−int dt (3.19)

and

kman,mK′
n(kma) =

∞∑
q=0

∫π
−π

Bq(t)μq(t)
{

J′n(μq(t)a)F+
m,q(t)

+ 1
2 (Jn−1(μq(t)a)eit − Jn+1(μq(t)a)e−it)F−

m,q(t) cos t
}

e−int dt, (3.20)

for m = 1, 2, . . ..
We can now eliminate an,0 between (3.12) and (3.19), the resulting equation holding for −∞<

n<∞, and an,m from between (3.13) and (3.20), resulting in equations for −∞< n<∞ and for
m = 1, 2, . . .. Combining these results gives rise to the system of equations

∞∑
q=0

∫π
−π

Bq(t)Mq,n,m(t) dt = Gn,m, m = 0, 1, . . . , n = −∞, . . . , ∞, (3.21)

where

Gn,m = δm,0e−inβ
(

Jn(ka)
Hn(ka)

− J′n(ka)
H′

n(ka)

)
= δm,0

2ie−inβ

πkaHn(ka)H′
n(ka)

(3.22)

(after using Abramowitz & Stegun ([11], §9.1.6)) and

Mq,n,0(t) = e−int
{(

Jn(μq(t)a)
Hn(ka)

− μq(t)
k

J′n(μq(t)a)
H′

n(ka)

)
F+

0,q(t)

+
(

Jn(μq(t)a)
Hn(ka)

− μq(t) cos t
2k

(Jn−1(μq(t)a)eit − Jn+1(μq(t)a)e−it)
H′

n(ka)

)
F−

0,q(t)

}
(3.23)

whilst for m = 1, 2, . . .,

Mq,n,m(t) = e−int
{(

Jn(μq(t)a)
Kn(kma)

− μq(t)
km

J′n(μq(t)a)
K′

n(kma)

)
F+

m,q(t)

+
(

Jn(μq(t)a)
Kn(kma)

− μq(t) cos t
2km

(Jn−1(μq(t)a)eit − Jn+1(μq(t)a)e−it)
K′

n(kma)

)
F−

m,q(t)

}
. (3.24)

(a) Numerical approximation
We have to solve (3.21) for the functions Bq(t), −π ≤ t<π for q = 0, 1, . . .. Since Mq,n,m(t + 2π ) =
Mq,n,m(t) is a continuous smooth function we assume we can write

Mq,n,m(t) = 1
2π

∞∑
p=−∞

Mp,q,n,me−ipte−iμq(t)a, (3.25)

from which it follows that

Mp,q,n,m =
∫π
−π

Mq,n,m(t)eipteiμq(t)a dt. (3.26)

The exponential factor involving the argument μq(t)a is introduced to suppress the exponential
behaviour of the functions Jn(μq(t)a) for q ≥ 1 when μq(t) is imaginary, essential in avoiding
numerical solutions becoming dominated by rounding errors. In particular, the NAG libraries,
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used in our computations, helpfully include the option of computing exponentially scaled Bessel
functions. Using (3.25) in (3.21) gives

∞∑
p=−∞

∞∑
q=0

bp,qMp,q,n,m = Gn,m, −∞< n<∞, m = 0, 1, 2, . . . (3.27)

where

bp,q = 1
2π

∫π
−π

Bq(t)e−ipte−iμq(t)a dt, (3.28)

which implies

Bq(t) =
∞∑

p=−∞
bp,qeipteiμq(t)a. (3.29)

In the above, the assumed expansion of Mq,n,m(t) in (3.25) has implied the expansion of Bq(t),
although an alternative approach would have been to expand Bq(t) in terms of any basis whose
elements are periodic in t with period 2π and determine a discrete system of equations that
result. One final computational issue is that the equations nested within (3.18) can be multiplied
by Kn(kma) for m �= 0 (and Hn(ka) when m = 0) and this suppresses a second potential source of
exponential behaviour of O(ekma) from the elements Mp,q,n,m.

(b) The far field diffraction coefficient
As kr → ∞ we have from (3.2) and introducing the large argument asymptotics of the Hankel
function, that

φ(r, θ , z) − φinc ∼
(

2
πkr

)1/2
A(θ )eikr−iπ/4ψ0(z), (3.30)

where

A(θ ) =
∞∑

n=−∞
an,0einθ . (3.31)

The scattering cross section, representing the total energy in circular waves diffracted by the
cylinder, is defined as

σ = 1
2π

∫π
−π

|A(θ )|2 dθ = −Re{A(β)}, (3.32)

where Re denotes the real part of a complex number, and the last equality follows by the ‘optical
theorem’ (Maruo [12] or see Mei [13], eqn (6.33)). Using (3.31) in (3.32) we have

σ =
∞∑

n=−∞
|an,0|2 = −Re

{ ∞∑
n=−∞

an,0einβ

}
. (3.33)

This latter relation is particularly useful for assessing the accuracy of solutions as it provides two
independent calculations, σ1 and σ2, say, of the same quantity.

(c) Forces
The net force acting on the structured cylinder is sum over all of the vertical barriers of the
differential pressure acting over each barrier. It is straightforward to determine the effective
medium limit of this discrete description which results in the expression

Fy = −iωρ
∫−d

−h

∫ 2π

0

∫ a

0
φy(x, y, z) r dr dθ dz, (3.34)

for the hydrodynamic force in the y-direction (there is no component of the force in the x-
direction). Using (3.11) combined with an application of y-derivative in the manner suggested
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by (3.17) gives us

Fy =ωρ(h − d)
∞∑

q=0

∫π
−π

{
Bq(t)μq(t) sin tZq(t)

∫ 2π

0

∫ a

0
reiμq(t)r cos(θ−t) dr dθ

}
dt, (3.35)

where

Zq(t) = 1
h − d

∫−d

−h
Zq(z, t) dz = coshμq(t)d − (K/μq(t)) sinhμq(t)d

μq(t)(h − d) cos t
tanh[μq(t)(h − d) cos t]

= K coshμq(t)d − μq(t) sinhμq(t)d

μ2
q(t)(h − d) cos2 t

, (3.36)

after using (3.6)–(3.8); we note that Zq(t) is bounded as t → π/2. Now (3.35) simplifies to

Fy = 2ωρπa(h − d)
∞∑

q=0

∫π
−π

{Bq(t)J1(μq(t)a)Zq(t) sin t} dt, (3.37)

after using a standard recurrence relation for derivatives of Bessel functions expressed in the form
(xJ1(x))′ = xJ0(x). Upon using the expansion (3.29) we have

Fy = 2ωρπa(h − d)
∞∑

q=0

∞∑
p=−∞

bp,q

∫π
−π

{eipteiμq(t)aJ1(μq(t)a)Zq(t) sin t} dt. (3.38)

For the purposes of presentation, we plot the dimensionless quantity F̂y = Fy/Fcyl where Fcyl is
the force in the y-direction on a solid circular cylinder of radius a extending through the depth
(e.g. [14]) subject to waves incident at an angle β to the positive x-axis and given by

Fcyl = 4iωρh sinβ
kH′

1(ka)

[
N−1/2

0 sinh kh

kh

]
. (3.39)

4. Shallow water theory
The truncated structured cylinder protrudes from the bed and acts as a bathymetric metamaterial
which can be considered on the assumption that incident waves are long compared to the fluid
depth using the shallow water approximation of Marangos & Porter [4]. The approximation is
therefore designed to work under the assumptions kh � 1 and a/h � 1 and, consequently, the
field variable φ0(r, θ ) ≈ φ(r, θ , 0), proportional to the surface elevation, is written in r> a

φ0(r, θ ) =
∞∑

n=−∞
in(Jn(ka)e−inβ + anHn(ka)) einθ , (4.1)

where k2h = K defines the wavenumber as the long wave limit of the dispersion relation (2.3).
Inside r< a the governing shallow water equation for the metamaterial depth is, according to

Marangos & Porter [4],
∇xy · hxy∇xyφ̃0 + Kφ̃0 = 0, (4.2)

where φ̃0(x, y) ≡ φ0(r, θ ), ∇xy = (∂x, ∂y) is the two-dimensional gradient and the ∇xy· is the
Cartesian divergence operator. In (4.2)

hxy =
(

D 0
0 d

)
, (4.3)

is a Cartesian tensor. The full depth of the fluid in r< a is denoted by D and this need not now be
the same as h, the depth in r> a.

While the Cartesian description of the field equation is sufficient to generate a general solution
within r< a, the boundary conditions on r = a require us to make a transformation into polar
coordinates.



10

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210824

..........................................................

(a) Transformation of the governing equation into polar coordinates
Converting (4.2) into polar coordinates gives us

∇rθ · hrθ∇rθφ0 + Kφ0 = 0, (4.4)

where ∇rθ ≡ (∂r, r−1∂θ ) is the gradient and ∇rθ · ≡ (r−1∂rr, r−1∂θ ) the divergence in polars while

hrθ =
(

cos θ sin θ
− sin θ cos θ

)
hxy

(
cos θ − sin θ
sin θ cos θ

)
(4.5)

is the transformation of the Cartesian depth tensor into polars. Thus we have

hrθ =
(

D cos2 θ + d sin2 θ (d − D) sin θ cos θ
(d − D) sin θ cos θ D sin2 θ + d cos2 θ

)
. (4.6)

The matching conditions at r = a are: (i) that φ is continuous; and (ii) that the depth-averaged flux
is continuous. The latter condition is equivalent to

h
∂φ0

∂r

∣∣∣∣
r=a+

= (D cos2 θ + d sin2 θ )
∂φ0

∂r

∣∣∣∣
r=a−

+ (d − D)
a

sin θ cos θ
∂φ0

∂θ

∣∣∣∣
r=a−

, (4.7)

(since the flux vector with components in the radial and angular directions respectively is hrθ∇rθφ0
in transformed coordinates).

(b) Solution
This is the analogue of the method used for the full depth-dependent model without the
complication of the depth variation. The general solution of (4.2) in r< a can be written

φ0(r, θ ) =
∫π
−π

B(t)eiμ(t)r cos(θ−t) dt, (4.8)

as a superposition over plane waves travelling in all directions where, in order that the governing
equation (4.2) be satisfied,

μ(t) = kh

(D cos2 t + d sin2 t)1/2
= kh

(D + (d − D) sin2 t)1/2
. (4.9)

It can be confirmed that (4.8) satisfies (4.6) also. Expanding the complex exponential as a series
over Bessel functions (3.10) gives us

φ0(r, θ ) =
∫π
−π

B(t)
∞∑

n=−∞
inJn(μ(t)r)einθe−int dt. (4.10)

We can apply the matching conditions relatively easily now. The matching of φ0(a, θ ) for 0 ≤ θ <
2π results in

Jn(ka)e−inβ + anHn(ka) =
∫π
−π

B(t)Jn(μ(t)a)e−int dt. (4.11)

The flux condition derived in polars in (4.7) must be used to generate a second relation between
the coefficients an and bn and is clearly more complicated than the first condition. We find, after
some algebra that

kh(J′n(ka)e−inβ + anH′
n(ka)) =

∫π
−π

B(t)e−int
{ [

D + 1
2 (d − D)

]
μ(t)J′n(μ(t)a)

+ (d − D)μ(t)
4

(J′n−2(μ(t)a)e2it + J′n+2(μ(t)a)e−2it)

− (d − D)
4a

((n − 2)Jn−2(μ(t)a)e2it − (n + 2)Jn+2(μ(t)a)e−2it)
}

dt.

(4.12)
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Bessel function recurrence relations (Jn−1(x) − Jn+1(x) = 2J′n(x), and Jn−1(x) + Jn+1(x) = 2nJn(x)/x)
provide simplification to

kh(J′n(ka)e−inβ + anH′
n(ka))

=
∫π
−π

B(t)μ(t)e−int
{

DJ′n(μ(t)a) − i(d − D) sin t
2

(Jn−1(μ(t)a)eit + Jn+1(μ(t)a)e−it)
}

dt. (4.13)

We eliminate an from between (4.12) and (4.13) to get
∫π
−π

B(t)Mn(t) dt = Gn,0, (4.14)

where Gn,0 is defined by (3.22) and where

Mn(t) = e−int
{

Jn(μ(t)a)
Hn(ka)

− μ(t)
khH′

n(ka)

(
DJ′n(μ(t)a) − i(d − D) sin t

2
(Jn−1(μ(t)a)eit + Jn+1(μ(t)a)e−it)

)}
.

(4.15)

Since Mn(t) = Mn(t + 2π ) is a smooth function, we can choose to write

Mn(t) = 1
2π

∞∑
p=−∞

Mn,pe−ipt, (4.16)

which implies

Mn,p =
∫π
−π

Mn(t)eipt dt. (4.17)

Using (4.16) in (4.14) gives

∞∑
p=−∞

bpMn,p = Gn,0, −∞< n<∞, (4.18)

where

bp = 1
2π

∫π
−π

B(t)e−ipt dt. (4.19)

This approach follows the one we used for the fully depth-dependent formulation in which we
have not sought to approximate B(t) directly. The choice of expanding Mn(t) in a Fourier basis
implies that the solution of (4.18) encodes the Fourier coefficients of B(t) since it follows from
(4.19) that

B(t) =
∞∑

p=−∞
bp eipt. (4.20)

The two expressions presented in (3.33) can be used as approximations σ1 and σ2 to the
scattering cross section, σ , with an,0 replaced by an.

The horizontal force on the truncated structured cylinder under the shallow water
assumptions is

F0y = −iωρ(D − d)
∫ 2π

0

∫ a

0
∂yφ̃0(x, y) r dr dθ , (4.21)

in which the depth integral is trivial and the remaining integrals can be addressed in a similar
fashion to in §3.3 from which we find

F0y = 2πωρa(D − d)
∞∑

n=−∞
bn

∫π
−π

eint sin tJ1(μ(t)a) dt. (4.22)

This should be normalized by the shallow water limit of (3.39) in which the value of the square
brackets is set to unity.
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5. Results
In both the full depth-dependent treatment of the problem and the much simpler shallow water
approximation, there are a number of numerical parameters whose influence on the accuracy of
computations needs to be considered. Thus, range of values of n and p representing the angular
variation are reduced to −N ≤ n, p ≤ N and the range of values of m and q, representing the vertical
variation (or the number of evanescent modes retained), are reduced to 0 ≤ m, q ≤ M. Apart from
these parameters, integrals require numerical approximation. The integrals defined over −π ≤ t<
π are first arranged as integrals over 0 ≤ t<π/2 and then treated using a non-adaptive Gaussian
quadrature which is refined to ensure that results are free from quadrature errors up to the sixth
decimal place.

It has been confirmed that in the special cases of β = 0,π there is no scattering for any a/h,
d/h (in addition to D/h = 1 in the case of shallow water) and this trivial result is insensitive to
truncation parameters N, M. There is no value in presenting numerical results relating to such
cases.

Table 1 presents tabulated results that are designed to illustrate the convergence of the
numerical scheme with N and M in a non-trivial case. The results are typical of those found
for other values of parameters a/h, d/h and β provided either d/h is not too small or a/h is
not excessively large. The task is made difficult by the sensitivity in computational stability to
increasing values of N and M and neither can become too large without the accuracy of the
computations becoming compromised by numerical rounding errors. In particular, increasing
N beyond the value of 12 can easily result in numerical errors. Identifying the source of these
numerical errors has been difficult. The numerical solution requires the computation of Bessel
functions (NAG libraries) of both large argument and large order, the numerical integration of
functions which oscillate with increasing frequency with N and have increasingly abrupt changes
in μq(t) as q increases and the inversion of the complex matrix of increasingly large dimension
(2N + 1) × (M + 1). On the other hand, we can see from table 1 that numerical results converge
sufficiently well for presented curves and surfaces to be graphically accurate (i.e. two or three
decimal place accuracy) with relatively small values of N and M. The graphical results produced
in the paper have used values of N and M within the range of values presented in table 1.
Generally, for larger values of ka we require larger N to represent higher frequency diffracted
wave effects but generally smaller M. Conversely, when ka is small, N can take small values but
M should be larger as the structure influences the fluid motion at larger depths when subject to
longer waves.

Figure 2 shows the variation of σ , the scattering cross section, and |̂Fy|, the magnitude of the
dimensionless force, computed using full depth-dependent theory and shallow water theory. In
the upper two subplots a/h = 4, d/h = 0.5 and the height of the cylinder one-sixteenth its diameter
and in the lower two subplots a/h = 0.5, d/h = 0.1 and the height is 90% of the cylinder diameter.
We see that the shallow water approximation is in good agreement with the full linear theory for
smaller values of kh as expected. The shallow water approximation is not designed to work with
large and abrupt changes in depth and will therefore tend to work better for short wide cylinders
a/h � 1 rather than tall narrow cylinders. The oscillatory behaviour of the force as a function of kh
in figure 2b is attributed to multiple interference effects of the waves over the top of the cylinder.
We note that the force on the structure is of the same order of magnitude as that on an equivalent
solid cylinder of the same size.

Further comparisons are made between full depth-dependent theory and shallow water
theory in figure 3 for kh = 1, beyond the wavenumber regime, kh � 1, where shallow water
approximation is designed to work. Nevertheless, there is a good qualitative agreement although
there are observable differences in the wave elevation particularly in the large amplitudes across
the top of the cylinder in the case of d/h = 0.1. These large amplitudes are not simply a shoaling
effect due to the reduced depth of water; in both plots, we see the signature of the resonance
which exists when plates extend fully throughout the depth, as reported by Zheng et al. [7].
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Figure 2. Variation of (a,c) scattering cross section and (b,d) dimensionless force with wavenumber kh forβ = 90◦, showing
full depth-dependent theory (solid, purple) and shallow water theory (dashed, green). In (a,b) a/d = 4, d/h= 0.5 and in
(c,d) a/d = 0.5, d/h= 0.1. (Online version in colour.)

Table 1. Comparison of the two independent calculations of scattering cross section, σ , given in (3.33), against truncation
parametersN andM, dictating the number of angular anddepthmodes, respectively, for two values of kh in the case of a/h= 1,
d/h= 0.5,β = 45◦.

kh= 1 kh= 4

N M σ1 σ2 σ1 σ2

4 8 0.029682 0.029680 0.006948 0.006924
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 16 0.029678 0.029678 0.006961 0.006932
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 32 0.029694 0.029693 0.006963 0.006935
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 8 0.029724 0.029722 0.006486 0.006471
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 16 0.029645 0.029651 0.006427 0.006441
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 32 0.030404 0.030352 0.006625 0.006861
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12 8 0.029704 0.029704 0.006476 0.006469
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12 16 0.029662 0.029662 0.006462 0.006456
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 3. The instantaneous free surface computed using full depth-dependent theory (a,c) and shallowwater theory (b,d) for
a/h= 2, d/h= 0.1β = 90◦, kh= 1 in (a,b) and a/h= 4, d/h= 0.2,β = 45◦ kh= 1 in (c,d). (Online version in colour.)

This near-resonant behaviour is amplified as d/h decreases and is therefore more prominent
in figure 3a.

The accuracy of the effective medium model developed in this paper is tested in figure 4 in
a comparison with a computation using the boundary element method of Liang et al. [15] for
an arrangement of discrete thin vertical plates. Boundary element method computations were
performed at different wavenumbers and for arrangements of 10, 20 and 40 plates and showed
convergence to the effective medium model with increasing numbers of plates. Just one example
has been used here for illustration in figure 4 for 20 plates and for a cylinder extending through
80% of the depth. It can be seen that there is visibly almost perfect agreement between the surface
plots both inside and away from the cylinder, with the effective medium results predicting slightly
more amplification than the discrete computation.

The lensing effect of the plate array cylinder is highlighted by the plots in figure 5 showing the
magnitude of the diffraction coefficient |A(θ )|, which measures the wave amplitude of circular
waves propagating outwards in the direction θ against the incident wave direction β. In figure 5,
we adopt the geometry a/h = 1, d/h = 0.2 used in figure 4 at three wavenumbers, kh = 1, 2, 4.
Geometric symmetry implies that only incident wave angles of β ∈ [0◦, 90◦] need be considered.
The figures confirm that A = 0 when β = 0 and also that A(0) = A(π ) = 0 for all β, which is a
consequence of a reciprocity relation (see, e.g. Mei ([13], eqn. (6.34))). As kh decreases below
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the lowest value of kh = 1 shown there is an overall reduction in wave scattering but with
increased back-scattering into θ ∈ (−180◦, 0◦), the diffracted becoming increasingly symmetric
about θ = 0. The diffraction in the long wavelength limit tends to a dipole and this is confirmed
by computations which show that the size of the coefficients, an,0, contributing to outgoing wave
propagation, are increasingly dominated by a±1,0 as kh → 0.

Returning to figure 5 for kh ≈ 1 − 2 see diffracted amplitudes distributed mainly about a
maximum close to θ = 90◦ across a wide range of values of β with decreasing amounts of back-
scatter into θ ∈ (−180◦, 0◦) as kh increases. As kh increases there is a tendency for incident waves
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Figure 6. The instantaneous free surface elevation computed under shallowwater theory for a/h= 4, d/h= 1 and D/h= 2
withβ = 0◦ and kh= 1. (Online version in colour.)

to be scattered forwards in the same direction as the incident wave. In all cases, as β approaches
90◦ we find the forward scattering at θ = 90◦ reaches a maximum and the magnitude of this
scattering increases with kh. The features described above are largely in common with the plate
array cylinder extending through the depth described by Zheng et al. [7]. Thus, we have shown
that the submerged truncated plate array cylinder can be used as a local resonator with the
capacity to accumulate wave energy which is transmitted away from the cylinder in a direction
perpendicular to the plate array.

Finally, in figure 6 we showcase the ability of the the shallow water approximation to deal with
the case of a cylindrical hollow which extends in r< a to a level D = 2h below the depth h in r> a.
The hollow is filled with a plate array up to the level d = h. When β = 90◦ waves of any frequency
are transparent to this plate array ‘pit’. In figure 6 where β = 0◦ there is scattering creating a quiet
zone in the lee of the ‘pit’, which is more a function of the lower depth in the pit than due to the
presence of the plate array within the pit.

6. Conclusion
In this paper, we have considered wave scattering by a porous vertical bottom-mounted cylinder
extending part of the way through the depth. The internal structure of the cylinder comprised
closely spaced thin vertical barriers whose effect is to confine the motion of the fluid flow in the
narrow gaps between the barriers. This allows us to consider that the field inside the truncated
cylinder is governed by an effective medium equation with effective matching conditions holding
on its boundary. The main focus of the paper has been to develop a solution to the full depth-
dependent potential flow problem which exploits this effective medium description of the
cylinder. Results have been tested against the shallow water approximation of Marangos & Porter
[4] and good agreement is reached for sufficiently long wavelengths as expected. Results are also
compared to a boundary element computation of an exact geometrical description involving a
finite number of discrete barriers based on the work of Liang et al. [15], again showing excellent
agreement. Near-resonant wave trapping is promoted within and above the truncated cylinders
for sufficiently large wavenumbers. The truncation is important since it implies our solutions
do not suffer from undamped resonances reported by Zheng et al. [7] for plate array cylinders
extending fully throughout the depth. Like the work of Zheng et al. [7], we have shown that a
by-product of this near-resonant trapping is directional scattering, or lensing, of wave energy
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perpendicular to the alignment of the plate arrays. New results show that there is no scattering of
wave energy in directions parallel to the plate array and that, for long wavelengths (compared
to the cylinder radius), the dominant scattering pattern is dipolar. This latter result, which
contrasts with the monopolar scattering for small solid cylinders, highlights that small plate array
cylinders could be used as a physically realizable element for dipolar scattering in, for example,
metamaterial design.

The topic of the current paper and the development of the mathematical methods herein has
been considered with a particular, more practical, extension in mind. Work now being considered
by the authors involves developing a cylindrical wave energy converter involving a truncated
plate array cylinder which intersects the free surface.
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Appendix A. Roots of the dispersion relation
This appendix concerns the roots of (3.8) for −π ≤ t<π . First, we note that the roots are symmetric
about t = 0 and t = π/2 and therefore need only be found for 0 ≤ t ≤ π/2. For t = π/2 the roots of
(3.8) coincide with those of K =μ tanhμd, while for t = 0 the roots coincide with those of K =
μ tanhμh, the dispersion relation for waves propagating in fluid of depth d and h, respectively.
Thus, in these two cases, the locations of roots are well understood (e.g. [16]): there are two real
roots and an infinite sequence of imaginary roots, symmetric about real and imaginary axes in the
complex plane; there are no complex roots.

The remainder of this appendix concerns the roots of (3.8) for values of t ∈ (0,π/2) away from
these special cases. This is important in developing numerical schemes to ensure all possible roots
are captured and can be computed efficiently. We approach this with care since, for example, the
dispersion relation corresponding to waves in the presence of a thin floating elastic plate on water
of finite depth gives rise to roots which, under certain conditions, move away from the imaginary
axes into the complex plane as physical parameters vary. In the elastic plate case, this behaviour
is associated with the coalescing of pairs of roots on the imaginary axis [17]. However, in the
analysis below we will show that the roots of (3.8) are located on either the real or imaginary axes
for all t ∈ (0,π/2).

This result provides us with our first (and simplest) numerical method for determining roots.
Since we are required to compute integrals over 0 ≤ t<π/2 we determine the roots of the water
wave dispersion relation for t = 0 and then track the roots as t is varied across the integration
range, ensuring at t = π/2 the expected roots are accounted for and none have been ‘lost’.

(a) Real roots
Consider first that μ is real in

L(μ) = R(μ), (A 1)

with

L(μ) = cos t tanh[μ(h − d) cos t] and R(μ) = K − μ tanhμd
μ− K tanhμd

. (A 2)

https://people.maths.bris.ac.uk/~marp/abstracts/metatrunccyl.html
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Figure 7. A graphical illustration of location of real roots (circles) for representative examples of h/d = 2, t = π/4 and
(a) Kd = 0.5, (b) Kd = 2. (Online version in colour.)

Both L and R are odd functions, L(0) = 0 and L(μ) → cos t asμ→ ∞ and L is monotonic increasing.
Next, R(μ) → K/(μ(1 − Kd)) as μ→ 0 and R(μ) = −1 as μ→ ∞. If Kd ≤ 1 then the denominator of
R, μ− K tanhμd, vanishes only at μ= 0 and R(μ) is monotonic decreasing for μ> 0 implying
there is one positive root μ=μ0(t) (and by extension, one at μ= −μ0(t)). If Kd> 1 then there is
a singularity in R(μ) at μ=μ∗ for some μ∗ > 0. But it is easy to show that the only zero of R
is at a value of μ>μ∗ and since R(μ) → −∞ as μ→ 0+ in this case, it follows that R(μ)< 0 for
0<μ<μ∗ and is monotonically decreasing for μ>μ∗. This implies, as before, that there is just
one positive real root at μ=μ0(t)>μ∗, with a symmetric root at −μ0(t). Both cases are illustrated
in figure 7.

(b) Imaginary roots
To consider roots of (3.8) lying on the imaginary μ axis let μ= iμ̃ where μ̃ is real such that (3.8)
which can be written

L̃(μ̃) = R̃(μ̃), (A 3)

with

L̃(μ̃) = cos t tan[μ̃(h − d) cos t], R̃(μ̃) = μ̃ sin μ̃d + K cos μ̃d
K sin μ̃d − μ̃ cos μ̃d

. (A 4)

We note that L̃ and R̃ are odd functions and so if μ̃ > 0 is a root then so is −μ̃.
The function L̃ is an increasing function between asymptotes located at μ̃d = (n − 1

2 )π/[(h/
d − 1) cos t], n = 1, 2, . . . and L̃ has zeros at μ̃d = nπ/[(h/d − 1) cos t], n = 1, 2, . . ..

The function R̃(μ̃) ∼ K/(μ̃(Kd − 1)) as μ̃→ 0 and either tends to plus infinity (if Kd> 1) or to
minus infinity (if Kd< 1). R̃ has zeros at roots of μ̃ tan μ̃d = −K (coinciding with the water wave
dispersion relation for fluid of depth d) and positive values of these occur once in (n − 1

2 )π <
μ̃d< nπ for n = 1, 2, . . . along the real μ̃-axis. Finally, R̃ has asymptotes whenever tan μ̃d = μ̃/K
and these occur on the positive μ̃ axis for nπ < μ̃d< (n + 1

2 )π for n = 1, 2, . . .. If Kd< 1 there is
an additional zero of the denominator at μ̃= μ̃∗ for 0< μ̃∗d<π/2. However, since R̃(μ̃) → −∞
as μ̃→ 0 in this case and there are no zeros of R̃(μ̃) in 0< μ̃d<π/2 it follows that R̃< 0 for 0<
μ̃< μ̃∗. Apart from this exception, R̃ decreases monotonically from plus infinity to minus infinity
continuously through zero as μ̃ increases from one asymptote to the next.

These features are illustrated in figure 8 whence it can be concluded that there are roots of (3.8)
between each asymptote of L̃ and R̃ counting μ̃= 0 as the first asymptote when Kd ≥ 1, or the first
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Figure 8. A graphical illustration of location of imaginary roots (circles) for representative examples of h/d = 2, t = π/4 and
Kd = 0.5. The vertical dashed lines represent the asymptotes of the functions L̃ and R̃. There is one root between consecutive
pairs of asymptotes. When Kd ≥ 1 the first asymptote of R̃ is at μ̃= 0. (Online version in colour.)
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Figure9. The variation of themodulus of the first 10 imaginary roots, μ̃d, as a function of t ∈ [0,π/2] forh/d = 4, Kd = 0.5.
At t = 0, t = π/2 the roots coincide with the roots of dispersion relation for a fluid depth h, d (respectively). (Online version
in colour.)

asymptote of either R̃ or L̃ when Kd< 1. Thus discrete roots exist within intervals that are known
explicitly and this allows us to solve for roots using, for example, bisection. This provides us
with an alternative numerical scheme to the one outlined previously. We have checked that both
methods give the same results. An example of how the roots vary as a function of t is provided in
figure 9.

(c) The absence of complex roots
We consider the possibility that there are values μ ∈ C satisfying (4.18) which do not lie on either
real or imaginary axes. We now write (3.8) in the form

F(μ) = F1(μ) + F2(μ) = 0, (A 5)
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where
F1(μ) = R1(μ)L2(μ), F2(μ) = R2(μ)L1(μ) (A 6)

and
L1(μ) = cos t sinh[μ(h − d) cos t] and L2(μ) = cosh[μ(h − d) cos t], (A 7)

with
R1(μ) =μ sinh(μd) − K coshμd and R2(μ) =μ cosh(μd) − K sinhμd. (A 8)

Then F1 and F2 are meromorphic functions. We will use Rouché’s Theorem which states that the
number of zeros of F = F1 + F2 inside a closed contour, C, in the complex plane is equal to the
number of zeros of F1 inside C provided |F1|> |F2| for all points on C.

We consider the rectangular contour C = Cm(ρ), for m = 1, 2, . . ., comprised of four straight
line segments μ= ±imπ/[(h − d)| cos t|] + v, −ρ < v < ρ and μ= ±ρ + iu, |u|<mπ/[(h − d) cos t].
Thus ρ and m control the size of the rectangular contour. In order to complete the result, we
consider ρ→ ∞ for each m in Rouché’s Theorem and subsequently allow m → ∞.

The choice of the specific distance at which Cm(ρ) cuts the imaginary axis is key to the result.
Thus it can be confirmed, again most easily by graphical considerations, that between −imπ/[(h −
d) cos t] and +imπ/[(h − d) cos t] on the imaginary axis there are as many zeros of F = F1 + F2 as
there are zeros of F1 = R1L2. For example, referring to figure 8, we choose m = 2 in which Cm(ρ)
cuts the imaginary axis at the second positive zero of R̃(μ̃) or μ̃d ≈ 8.9. We can see there are four
roots of F, denoted by circles, lying on the positive imaginary axis in the interval 0 ≤ μ̃d � 8.9. In
the same interval, there are two zeros of R̃, coinciding with the zeros of R1, and two asymptotes
of L̃, which coincide with the zeros of L2, and thus four zeros of F1. Also, there are exactly two
roots of F symmetric placed on the real axis, the same as the number of roots of F1 on the real axis
(L2 has no zeros but R1 has two zeros symmetrically placed about the origin; see figure 7).

It can also be shown easily that |L2|> |L1| on Cm(ρ) and (less easily analytically, but also
confirmed numerically) that |R1|> |R2| on Cm(ρ) as ρ→ ∞ for each m. Thus, |F1|> |F2| on Cm(ρ)
as ρ→ ∞ as required by Rouché’s Theorem. Finally, since we know that the zeros of R1 only lie
on the imaginary axis and the zeros of L2 only lie on the real and imaginary axes (being roots of
the water wave dispersion equation for water depth d), it must follow that the zeros of F also only
lie on the real and imaginary axes.

Appendix B. Calculation of depth integrals
The explicit expressions for the terms defined by (3.15) are calculated to be

F+
m,q(t) = −1

μq(t)h
√

Nm(k2
m + μ2

q(t))

{
km sin km(h − d)(μq(t) coshμq(t)d − K sinhμq(t)d)

+ μq(t) cos km(h − d)(K coshμq(t)d − μq(t) sinhμq(t)d)
}

, (B 1)

with k0 = −ik and is simplified by using (2.3) and

F−
m,q(t) = 1

μq(t)h
√

Nm(k2
m + μ2

q(t) cos2 t)

{
km sin km(h − d)(μq(t) coshμq(t)d − K sinhμq(t)d)

+ μq(t) cos km(h − d)(K coshμq(t)d − μq(t) sinhμq(t)d)
}

(B 2)

again, where k0 = −ik and is derived using the dispersion relation (3.8).
Note that, in both expressions, μq(t) are pure imaginary when q ≥ 1.
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