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A Bayesian Perspective on 
Accumulation in the Magnitude 
System
Benoît Martin1, Martin Wiener2 & Virginie van Wassenhove   1

Several theoretical and empirical work posit the existence of a common magnitude system in the 
brain. Such a proposal implies that manipulating stimuli in one magnitude dimension (e.g. duration 
in time) should interfere with the subjective estimation of another magnitude dimension (e.g. size in 
space). Here, we asked whether a generalized Bayesian magnitude estimation system would sample 
sensory evidence using a common, amodal prior. Two psychophysical experiments separately tested 
participants on their perception of duration, surface, and numerosity when the non-target magnitude 
dimensions and the rate of sensory evidence accumulation were manipulated. First, we found 
that duration estimation was resilient to changes in surface and numerosity, whereas lengthening 
(shortening) the duration yielded under- (over-) estimations of surface and numerosity. Second, 
the perception of surface and numerosity were affected by changes in the rate of sensory evidence 
accumulation, whereas duration was not. Our results suggest that a generalized magnitude system 
based on Bayesian computations would minimally necessitate multiple priors.

The representation of space, time, and number is foundational to the computational brain1–3, yet whether magni-
tudes share a common (conceptual or symbolic) format in the brain is unclear. Walsh’s A Theory Of Magnitude 
(ATOM)3 proposes that analog quantities are mapped in a generalized magnitude system which entails that space, 
time, and number may share a common neural code. One additional implication for the hypothesis of a common 
representational system for magnitudes is that the estimation of magnitude in a target dimension (e.g., size in 
space) should be affected by the manipulation of the magnitude in another non-target dimension (e.g., duration 
in time), such that the larger the magnitude of the non-target, the larger one should perceive the target magnitude 
dimension to be (Fig. 1A). Such predictions can be formalized in Bayesian terms4 so that the magnitude of each 
dimension yields a likelihood estimate subsequently informed by an amodal prior common to all magnitude 
dimensions (Fig. 1B). In line with ATOM and the common magnitude system hypothesis, a growing body of 
behavioral evidence5–29, for review see refs 30–32 suggests the existence of interferences across magnitude dimen-
sions. Several neuroimaging studies also suggest the possibility of a common neural code for quantity estimations 
mostly implicating parietal cortices33–39 but see ref. 28, 40. However, while a variety of interactions between time, 
space and number has been reported, the directionality of these interactions is not always consistent in the litera-
ture13, 14 suggesting the need to moderate the claim for a common magnitude system: for instance, manipulating 
the duration of events has seldom been reported to affect numerical and spatial magnitudes12, 13, 26, 29 whereas 
numerosity6 and size5, 7 typically influence duration. Yet, using a literal interpretation of ATOM3, if time, number 
and space shared a common representational system and amodal prior, all magnitude dimensions should interact 
with each other in a bi-directional manner (Fig. 1A).

Recent discussions in the field suggest that the combination and evaluation of quantities in a common rep-
resentational system would be realized on the basis of Bayesian computations13, 41. Convergent with this proposal, 
recent examinations of Bayesian processing in magnitude estimation have demonstrated a number of distinct 
effects4. One primary example is the so-called central tendency effect, wherein magnitude estimates regress to 
the mean of the stimulus set, such that large (small) magnitudes are under (over) estimated. Crucially, central 
tendency effects have been demonstrated across a number of different magnitude judgments, including dura-
tion (historically known as Vierordt’s law41, 42, numerosity27, distance and angle43. Further, correlations between 
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the degree of central tendency have been found between the magnitude of different dimensions43, suggesting 
the existence of “global” priors for common magnitude estimation4. The notion of global priors is compatible 
with a literal read of Walsh’s ATOM model by suggesting that, though differences in the initial processing of 
different magnitude dimensions may exist, the representation of these magnitudes is amodally stored. Further, 
the existence of global priors would provide an explanation for congruency effects between different magnitude 
dimensions. However, a single global prior for magnitude estimations would not explain why congruency effects 
may be inconsistent between dimensions or why the directionality of interferences may differ across magnitude 
dimensions.

To address this first working hypothesis, we used a paradigm in which stimuli consisted of clouds of dynamic 
dots characterized by the total duration of the trial (D), the total number of dots (N) and the overall surface filled 
by the dots (S) cumulating over the trial. The duration, the number and the cumulative surface of the dots will be 
thereafter used in reference to the magnitude of the time, number and space dimensions. Two experiments were 
conducted (Fig. 2A,B). In a first experiment (Experiment 1), while participants estimated the magnitude of a 
target dimension (e.g. D), we independently manipulated the magnitude of non-target dimensions (e.g. S and N). 
This design allowed us to test all possible combinations and investigate possible interactions between magnitudes 
(Table 1). If the magnitude of different dimensions interact, increasing or decreasing the N or the S should lead to 
an under/overestimation of D (Fig. 2D). These effects should be bidirectional so that when participants estimate 
N or S, increasing or decreasing the magnitude of non-target dimensions D should lead to under- or overestima-
tion of the target magnitude dimension N or S. On the other hand, if dimensions are independent, manipulating 
the number of events in a given trial should not affect duration or surface estimates. Similarly, decreasing or 
increasing the duration should not affect numerical or spatial judgments if magnitudes are independent.

In a second working hypothesis, we manipulated the accumulation regime of sensory evidence for the estima-
tion of N and S (Fig. 2B). The accumulation of sensory evidence in time for space and number has seldom been 
controlled for or manipulated during magnitude estimations. In a prior experiment13, constraining the duration 
of sensory evidence accumulation in the S and N dimensions, the estimation of duration remained resilient to 
changes in the other dimensions, whereas D affected the estimation of S and N: curiously, the longer (shorter) 
durations decreased (increased) the estimation of S and N. These results were discussed in the context of a possi-
ble Bayesian integration of magnitudes across dimensions. Similarly, here, using a dynamic paradigm in which N 
and S accumulate over time raises the question of the implications of varying the speed or rate of sensory evidence 
delivery: for a given N or S, if D increases, the speed of presentation decreases, and vice versa. Hence, while the 
number of dots and the cumulative surface accumulated linearly in time in Experiment 1 (Fig. 1B), in Experiment 
2, we investigated whether changes in the rate of presentation of visual information affected the estimation of D, 
N, and S. Two evidence accumulation regimes were tested: a fast-slow (FastSlow) and a slow-fast distribution 
(SlowFast), see Stimuli part in Material & Methods section.

In a third question, we wished to investigate the extent to which Bayesian models could explain the behav-
ioral results obtained in magnitude estimation, independent of the means by which participants provided their 
estimates. Thus far, studies demonstrating central tendency effects42–44 have all relied on continuous estimation 
procedures, wherein participants estimated a particular magnitude value with a motor response. In particular, 
these studies utilized reproduction tasks, which required participants to demarcate where (when) a particular 
magnitude matched a previously presented standard. In contrast, the majority of studies demonstrating con-
gruency effects in magnitude estimation have all employed two-alternative forced choice (2AFC) designs. This 
difference may be particularly relevant as recent studies have demonstrated that the size-time congruency effect, 
one of the most heavily studied and replicated, depends on the type of decision being made45 (but see ref. 25, 46 
for congruency effects with temporal reproduction). As such, for both Experiment 1 and 2, we provide systematic 
quantifications of the magnitude estimates as categorical estimations together with analysis of continuous reports.

Figure 1.  A Bayesian Magnitude System. (A) Proposals for a common magnitude system in the brain suggest 
that estimating one magnitude dimension (e.g. space) should be affected by the manipulation of any other 
magnitude dimensions (e.g. time) (Walsh, 2003). Such interactions should show bidirectional interferences 
so that, in our example, manipulating the spatial dimension of an event should affect the estimation of its 
duration in a comparable manner as manipulating its time dimension would affect the estimation of its spatial 
dimension. (B) To account for bidirectional interferences across magnitudes in a Bayesian framework for 
magnitude estimation, a common global or amodal prior can be posited to constrain the estimations of all 
magnitude dimensions4. Under such model, increasing (decreasing) the value of one magnitude should increase 
(decrease) the estimation of another magnitude. This panel is only for illustration purposes and do not reflect 
the actual distributions of the magnitudes used in the study.
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Materials and Methods
Participants.  A total of 45 participants were tested. 3 participants did not come to the second session and 10 
were disregarded for poor performance: 10 participants either never reach 50% of “+” responses for the largest 
values, or the p-values associated with the goodness-of-fits in the control conditions were >0.05 (see Procedure). 
Hence, a total of 17 healthy volunteers (7 males, 10 females, mean age 24.9 ± 5.8 y.o.) took part in Experiment 
1, and 15 participants (8 males, 7 females, mean age 26.5 ± 7 y.o.) in Experiment 2. All had normal or correct-
ed-to-normal vision. Both experiments took place in two sessions one week apart. Prior to the experiment, partic-
ipants gave a written informed consent. The study was conducted in agreement with the Declaration of Helsinki 
(2008) and was approved by the Ethics Committee on Human Research at Neurospin (Gif-sur-Yvette, France). 
Participants were compensated for their participation.

Figure 2.  Experimental Design. (A) On a given trial, participants were presented with a word (“durée”, 
“nombre” or “surface”) indicating the dimension to estimate. In Experiment 1, one magnitude dimension could 
vary +/− 25%, 10%, and 5% of its mean value, while the second one was set to its minimal or maximal value, 
and the third one to its mean value (Table 1). At the end of the stimulus presentation, participants used a vertical 
scale to estimate the target magnitude. (B) Three distributions were used for evidence accumulation: while D 
linearly accumulates over time (black trace), the rate of dot presentation could be manipulated to control N 
and S. Experiment 1 tested a linear distribution (filled black trace); Experiment 2 tested two distributions: a 
fast-slow (filled grey trace) and a slow-fast (dotted grey trace) distribution. The different stimulus distributions 
can be experienced with the videos Linear, FastSlow and SlowFast in Supp. Material. (C) Equated task difficulty 
across magnitudes. For illustration purposes, the psychometric curve captures the grand average performance 
obtained for the estimation of Duration, Number and Surface when all non-target dimensions were kept 
at their mean value. The task difficulty was equated across magnitude dimensions so that no differences in 
discriminability (PSE and WR) existed between the tested dimensions. Bars are 2 s.e.m. (D) Predictions for the 
effect of non-target manipulations on the estimation of the target magnitude dimension. Left panel: varying the 
target magnitude while keeping the non-target dimensions to their mean values provided the control central 
tendency and intercept. In a common Bayesian magnitude estimation system [4], comparable tendency and 
intercept should be predicted pending controlled matching between magnitudes and task difficulty (panel C). 
Right panel: estimation of D while N is set to its maximal value (in green, Nmax). Maximal value in non-target 
magnitude may affect the central tendency and the intercept if an amodal global prior common to D and N is 
implicated in the estimation of duration. In this example, Nmax would bias the lowest (highest) duration values 
towards larger (smaller) values and lead the intercept to move upwards.
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Stimuli.  The experiment was coded using Matlab 8.4 with Psychtoolbox (v 3.0.12) and built on a published 
experimental design (see ref. 13). Visual stimuli were clouds of grey dots which appeared dynamically on a black 
computer screen (1024 × 768 pixels, 85 Hz refresh rate). Dots appeared within a virtual disk of diameter 12.3 to 
15.2 degrees of visual angle; no dots could appear around the central fixation protected by an invisible inner disk 
of 3.3 degrees. Two dots could not overlap. The duration of each dot varied between 35 ms and 294 ms, and their 
diameter between 0.35 and 1.14 degrees. A cloud of dots was characterized by its duration (D: total duration 
of the trial during which dots were presented), its numerosity (N: cumulative number of dots presented on the 
screen in the entire trial) and its surface (S: cumulative surface covered by the dots during the entire trial). On 
any given trial, D, N and S could each take 6 possible values corresponding to 75, 90, 95, 105, 110 and 125% of the 
mean value. We fixed D to 800 ms (Dmean = 800 ms) and initially picked Nmean = 30 dots and Smean = 432 mm². The 
initial values of Nmean and Smean were then individually calibrated in the calibration session of the experiment (see 
Procedure). To ensure that luminance could not be used as a cue to perform the task, the relative luminance of 
dots varied randomly across all durations among 57, 64, 73, 85, 102 and 128 in the RGB-code.

In Experiment 1, the total number of dots accumulated linearly over time (see Linear video), 2 to 7 dots 
at a time in steps of 9 to 13 iterations (Fig. 2A). In Experiment 2, the total number of dots accumulated in a 
fast-to-slow or in a slow-to-fast progression: in FastSlow, 75% ± 10% of the total number of dots in the trial were 
presented in the first 25% of the duration of the trial, whereas in SlowFast, 25 ± 10% of the total number of dots 
was shown during 75% of the total duration of the trial (Fig. 2B; see FastSlow and SlowFast videos).

Procedure.  Participants were seated in a quiet room ~60 cm away from the computer screen with their head 
maintained on a chinrest. The main task consisted in estimating the magnitude of the trial along one of its three 
possible dimensions (D, N, or S). Each experiment consisted of two sessions: in the first or calibration session, 
stimuli were calibrated to elicit an identical discrimination threshold in all three dimensions on a per individual 
basis (see ref. 13) and the main objective of the first session was to calibrate an individual’s Nmean and Smean with 
the chosen Dmean in order to match task difficulty across dimensions. Dmean was kept constant for all participants. 
The second experimental session consisted in the experiment proper.

In the calibration session of Experiment 1 and 2, the task difficulty across magnitudes was individually cali-
brated by computing the participant’s Point of Subjective Equality (PSE: 50% discrimination threshold) and the 
Weber Ratio (WR) for each dimension D, N, and S. The PSE traditionally provides an estimate of an individual’s 
perceptual threshold: here, the PSE specifically corresponded to the magnitude value in the target dimension 
at which participants responded at chance level. The WR provided the estimate of the steepness of the fitted 
psychometric curve, and thus of an individual’s perceptual sensitivity in discriminating magnitudes of the target 
dimension. A smaller (larger) WR indicates a steeper (flatter) curve and a better (worst) sensitivity. Participants 
were passively presented with exemplars of the minimum and maximum value for each dimension and were then 
required to classify 10 of these extremes as minimum ‘−’ or maximum ‘+’ by pressing ‘h’ or ‘j’ on an AZERTY 
keyboard, respectively. Participants then received feedback indicating the actual number of good answers they 
provided. Subsequently, the PSE and the WR were independently assessed for each magnitude dimension by 
varying the magnitude in one dimension and keeping the magnitude in the other two dimensions at their mean 
values (e.g. if D varied among its 6 possible values, S was Smean and N was Nmean). 5 trials per magnitude value of 
the target dimension were collected yielding a total of 30 trials (5 trials × 6 values) per dimension from which the 
individual’s PSE and WR could be computed and compared. This process (~15 min) was iterated until the individ-
ual’s PSE for the target dimension was stable and the WR similar across dimensions. The PSE were considered as 
matching across dimensions when all of them were between 95 and 105% of the mean magnitude value. For each 
participant, the mean of the three WR was also calculated, and the WR were considered as matching when: (1) 

DURATION 
[0.75; 0.9; 
0.95; 1.05; 1.1; 
1.25] × Dmean

SURFACE 
[0.75; 0.9; 
0.95; 1.05; 1.1; 
1.25] × Smean

NUMEROSITY 
[0.75; 0.9; 
0.95; 1.05; 1.1; 
1.25] × Nmean

CONTROL Smean, Nmean Dmean, Nmean Smean, Dmean

MIN
Smin, Nmean Dmin, Nmean Smin, Dmean

Smean, Nmin Dmean, Nmin Smean, Dmin

MAX
Smax, Nmean Dmax, Nmean Smax, Dmean

Smean, Nmax Dmean, Nmax Smean, Dmax

Table 1.  Full design of Experiment 1 testing the interactions across magnitudes with a linear sensory evidence 
accumulation regime. The tested magnitude dimension could take 6 possible values corresponding to 75, 90, 
95, 105, 110 and 125% of its mean value. In CONTROL trials (first row) of the duration condition (D, second 
column), participants estimated the duration of the trial when D varied between the 6 possible values while 
the surface and number dimensions were kept to their mean values (Smean and Nmean, respectively). In MIN 
trials (second row), participants estimated the magnitude of a given dimension (e.g. D) varying between 
the 6 possible values while one of the two non-target magnitude dimensions was kept at its mean value (e.g. 
Nmean) and the other was set to its minimal value (e.g. Smin). In MAX trials (third row), participants estimated 
the magnitude of a given dimension varying between the 6 possible values while one of the two non-target 
dimensions was kept at its mean value and the other was set to its maximal value. In total, 72 trials per 
experimental condition were collected (i.e. 12 trials per tested magnitude value in all possible combinations). D: 
duration; S: surface; N: number; min = minimal; max = maximal.
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the three WR were in the mean (SD = 2), (2) when the ratio between the larger and the smaller WR was <3 and 
(3) each WR value was smaller than 0.25. The final mean magnitude values for each dimension were Nmean = 32 
(SD = 3 dots) and Smean = 476 (SD = 58 mm²) for Experiment 1 and Nmean = 32 (SD = 2 dots) and Smean = 490 
(SD = 41 mm²) in Experiment 2.

In the experimental session of both Experiment 1 and 2, participants were first tested again with 30 trials cal-
ibrated to their individual Nmean and Smean calculated in the calibration session to ensure that their PSE and WR 
remained identical so that task difficulty was balanced across magnitude dimension. Only two participants in 
Experiment 1 required the recalibration procedure to be performed again. Subsequently, participants performed 
the magnitude estimation task proper in which participants were asked to provide a continuous magnitude esti-
mation of the target dimension by moving a cursor on a vertical axis whose extremes were the minimal and max-
imal magnitude values of the target dimension. In a given trial, participants were provided with the written word 
‘Durée’ (Duration), ‘Nombre’ (Number) or ‘Surface’ (Surface) which indicated which target magnitude dimension 
they had to estimate (Fig. 2A). At the end of a trial, the vertical axis appeared on the screen with the relative posi-
tion of ‘+’ and ‘−’ pseudo-randomly assigned to the extreme bottom or the top of the axis. The cursor was always 
initially set in the middle position on the axis. Participants used the mouse to vertically move the slider along the 
axis and made a click to validate their response. They were asked to emphasize accuracy over speed. Trials were 
pseudo-randomized across dimensions and conditions.

In Experiment 1, five experimental conditions were tested per dimension: in the control condition, the two 
non-target dimensions were kept to their mean magnitude values; in the four remaining conditions, one of the 
other non-target dimension was set to its minimal or maximal value, while the other was kept to its mean value 
(Table 1). A total of 1080 trials were tested in Experiment 1 (3 dimensions × 5 conditions × 6 magnitude val-
ues × 12 repetitions).

In Experiment 2, two main sensory accumulation regimes were tested (FastSlow, and SlowFast) and the 
emphasis was on the effect of D on S and N. The main control condition consisted in assessing the estimation of 
duration with Smean and Nmean, and in testing whether the rate of sensory evidence delivery affected the estimation 
of duration. Two control conditions investigated the effect of the rate of stimulus presentation on the estimation 
of S and N without varying non-target dimensions. In light of the results obtained in Experiment 1, Experiment 2 
did not investigate the interactions of N or S on D, nor the interactions between N and S. Ten experimental blocks 
alternated between FastSlow and SlowFast presentations counterbalanced across participants. 12 repetitions of 
each possible combination were tested yielding a total of 144 trials for D (2 distributions × 6 durations × 12 rep-
etitions), 432 trials for N (2 distributions × 3 conditions × 6 numerosities × 12 repetitions) and 432 trials for 
S (2 distributions × 3 conditions × 6 surfaces × 12 repetitions) for a grand total of 1008 trials in Experiment 2 
(Table 2).

Statistical Analyses.  To analyze the point-of-subjective equality (PSE) and the Weber Ratio (WR), partic-
ipants’ continuous estimates were first transformed into categorical values: a click between the center of the axis 
and the extreme demarcating ‘+’ (‘−’) was considered as a ‘+’ (‘−’) response. Proportions of ‘+’ were computed 
on a per individual basis and separately for each target dimension and each experimental condition. Proportions 
of ‘+’ responses were fitted using the logit function (Matlab 8.4) on a per individual basis. Goodness-of-fits were 
individually assessed and participants for whom the associated p-values in the control conditions were >0.05 
were excluded from the analysis. On a per condition basis, PSE and WR that were 2 standard deviations away 
from the mean were disregarded and replaced by the mean of the group. This procedure affected a maximum of 2 
values per condition across all individuals. Statistics were run using R (Version 3.2.2). PSE and WR were defined 
as:

= .−fPSE (0 5) (1)1

= . × . − . ×− −f fWR 0 5 ( (0 75) (0 25)) 1
PSE (2)

1 1

DURATION 
[0.75; 0.9; 
0.95; 1.05; 1.1; 
1.25] × Dmean

SURFACE 
[0.75; 0.9; 
0.95; 1.05; 1.1; 
1.25] × Smean

NUMEROSITY 
[0.75; 0.9; 
0.95; 1.05; 1.1; 
1.25] × Nmean

CONTROL Smean, Nmean Dmean, Nmean Smean, Dmean

MIN Dmin, Nmean Smean, Dmin

MAX Dmax, Nmean Smean, Dmax

Table 2.  Full design of Experiment 2 testing the effects of duration and FastSlow and SlowFast sensory evidence 
accumulation regime on magnitude estimation. In CONTROL trials, as in Experiment 1, participants estimated 
the value of each target magnitude dimension when non-target dimensions were kept to their mean values. 
In MIN and MAX trials, participants estimated S or N when D was the shortest (Dmin) or the longest (Dmax) 
and the other dimension was kept to its mean value (Nmean and Smean, respectively). Importantly in Experiment 
2, the clouds of dots could accumulate over time according to two accumulation regimes (FS:FastSlow, and 
SF:SlowFast). A total of 144 trials per experimental condition was collected (i.e. 12 trials for a given magnitude 
value in a specific condition × 2 distributions).



www.nature.com/scientificreports/

6Scientific Reports | 7: 630  | DOI:10.1038/s41598-017-00680-0

where f is the logit function used to fit individuals’ responses, and PSE is the magnitude value of the target dimen-
sion when the proportion of ‘+’ responses is equal to 0.5. Using the inverse of the f function, the WR was cal-
culated as the mean difference between the just-noticeable-differences (aka magnitude values at 25% and 75% 
performance) normalized by the individual’s PSE. Additionally, to specifically address central tendency effects, 
continuous estimates were analyzed. For each magnitude dimension, continuous estimates were expressed as the 
relative position on the slider that participants selected on each given trial, with higher percentages indicating 
closer proximity to ‘+’. To measure the central tendency effects, continuous estimates were plotted against the 
corresponding magnitude dimension for each condition, also expressed as a percentage – where 0 indicated the 
smallest magnitude and 100 indicated the largest – and fits with a linear regression, and the slope and y-intercept 
of the best fitting line were extracted47, 48. Slope values closer to 1 indicated veridical responding (participants 
responded with perfect accuracy), whereas values closer to 0 indicated a complete regression to the mean (partic-
ipants provided the same estimate for every magnitude). In contrast, intercept values of these regressions could 
indicate an overall relative bias for over- or under-estimation so that higher (lower) intercept values would indi-
cate that participants overestimated (underestimated) the magnitude in the target dimension49. To compare cen-
tral tendency effects between magnitude dimensions, correlation matrices between slope values for D, N, and S 
were constructed. Bonferroni corrections were applied to control for multiple comparisons.

Results
To examine Bayesian effects in the magnitude system, we evaluated both categorical and continuous judgments 
in two magnitude estimation experiments using variations of the same paradigm (Fig. 2A). To evaluate choice 
responses, continuous estimates were binned according to which end of the scale they were closer to. Previous 
work has demonstrated that bisection tasks and continuous estimations are compatible and provide similar esti-
mates of duration44, 50. Our intention was thus to first replicate the effects of Lambrechts and colleagues13 with a 
modified design, and second, to measure central tendency effects in our sample to examine whether these effects 
correlated between magnitude dimensions, which would suggest the existence of global priors (see ref. 4, Fig. 2D).

Control conditions: matching task difficulty across magnitude dimensions.  Two independ-
ent repeated-measures ANOVAs with the PSE or WR as dependent variables using magnitude dimensions (3: 
D, N, S), control conditions (3: Linear (Experiment 1), SlowFast and FastSlow (Experiment 2) distributions as 
within-subject factors did not reveal any significant differences (all p > 0.05). This suggested that participants’ 
ability to discriminate the different values presented in the tested magnitudes was well matched across magnitude 
dimensions (Fig. 2C).

Experiment 1: Duration affects the estimation of Number and Surface.  We first analyzed the data 
of Experiment 1 as categorical choices. Figure 3A illustrates the grand average estimations of duration, numeros-
ity, and surface for all experimental manipulations (colored traces) along with changes of PSE (insets).

Separate 2 × 2 repeated-measures ANOVAs were run on the PSE obtained during the magnitude evalua-
tion of each target dimension using the non-target dimensions (2) and their magnitude values (2: min, max) as 
within-subject factors. No main effects of non-target dimension (F[1,16] = 0.078, p = 0.780), magnitude value 
of the non-target dimension (F[1,16] = 0.025, p = 0.875) or their interaction (F[1,16] = 0.003, p = 0.957) were 
found on duration (D) indicating that manipulating N or S did not change participants’ estimation of duration 
(Fig. 3A, left panel). In the estimation of N, main effects of non-target dimensions (F[1,16] = 7.931, p = 0.0124), 
their magnitudes (F[1,16] = 25.53, p = 0.000118) and their interactions (F[1,16] = 23.38, p = 0.000183) were 
found. Specifically, when the magnitude of the non-target dimensions were at their minimal value, the PSE 
obtained in the estimation of N was lower than when the magnitude of the non-target dimensions were at their 
maximal value. Additionally, in the estimation of N, Dmin lowered the PSE more than Smin, and Dmax raised the 
PSE more than Smax. Paired t-tests were run contrasting the PSE obtained in the estimation of N during the 
control (Dmean Smean) and other experimental conditions: Dmin significantly increased [PSE(Dmin) < PSE(Dmean): 
p = 4.1e−5] whereas Dmax significantly decreased [PSE(Dmax) > PSE(Dmean): p = 0.0032] the perceived number of 
dots (Fig. 3A, middle panel, inset). There were no significant effects of S on the estimation of N. Altogether, these 
results suggest that the main effect of changing the magnitude in the non-target dimension on numerosity esti-
mation was driven by the duration of the stimuli.

In the estimation of S, we found no main effect of the non-target dimension (F[1,16] = 1.571, p = 0.228) but 
a significant main effect of the magnitude values in non-target dimensions (F[1,16] = 22.63, p = 0.000215). The 
interaction was on the edge of significance (F[1,16] = 3.773, p = 0.0699) suggesting that, as for N, only the magni-
tude of one non-target dimension may be the main driver of the significant results observed in the effect. Paired 
t-tests contrasting the PSE obtained in the estimation of S during the control (Dmean Nmean) and other condi-
tions showed that Dmin significantly increased (PSE(Dmin) < PSE(Dmean): p = 8.7e−4), whereas Dmax significantly 
decreased (PSE(Dmax) > PSE(Dmean): p = 0.035) the perceived surface (Fig. 3A, right panel). No significant effects 
of N on S were found. As observed for the estimation of N, these results suggest that the main effect of non-target 
magnitude on the estimation of S was entirely driven by the time dimension.

Overall, the analysis of PSE indicated that participants significantly overestimated N and S when dots were 
presented over the shortest duration, and underestimated N and S when dots accumulated over the longest 
duration. Additionally, manipulating N or S did not significantly alter the estimation of duration. No significant 
interactions between N and S were found. To ensure that these results could not be accounted for by changes 
in participants’ perceptual discriminability in the course of the experiment, repeated-measures ANOVA were 
conducted independently for each target dimension (3: D, N, S) with the WR as dependent variable and the 
experimental conditions (5) as main within-subject factors. No significant differences (all p > 0.05) were found 
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suggesting that the WRs were stable over time, and that task difficulty remained well matched across dimensions 
in the course of the experiment.

For the analysis of continuous estimates (Fig. 3B), we first examined the effect of central tendency for each 
target dimension, collapsing the data across the non-target dimensions (Fig. 4A). A repeated measures ANOVA 
of slope values with magnitude as a within-subjects factor revealed a main effect of the magnitude of the target 
dimension [F(2,32) = 13.284, p = 0.000063]. Post-hoc paired t-tests identified this effect as driven by a lower slope, 
indicating a greater regression to the mean for S as compared to D [t(16) = 3.495, p = 0.003] and N [t(16) = 5.773, 
p = 0.000029], with no differences in slope values between D and N [t(16) = 0.133, p = 0.896] (Fig. 4B).

Further analyses revealed comparable findings as in the categorical analysis: separate 2 × 3 repeated measures 
ANOVAs were run for each magnitude dimension, with the non-target dimension and its magnitude value as 
within-subject factors. Analysis of slope values revealed no significant main effects or interactions for any of the 
tested magnitudes (all p > 0.05), indicating no change in central tendency, as a function of the non-target mag-
nitudes. However, an analysis of intercept values demonstrated a significant main effect of the non-target dimen-
sion for S [F(2,32) = 24.571, p < 0.00001] and N [F(2,32) = 39.901, p < 0.00001], but not for D [F(2,32) = 0.010, 
p = 0.99]. Specifically, intercept values were shifted higher (lower) when Dmin (Dmax)was the non-target dimension 

Figure 3.  Duration affects the estimation of S and N (Experiment 1). (A) Categorical quantifications and PSE. 
The percentage of 〈〈+〉〉 responses as a function of the target magnitude dimension (D: left panel, N: middle 
panel, S: right panel) were fitted on a per individual basis. The inset in the top left of each figure depicts the shift 
in PSE for each experimental condition compared to the control condition represented by the black vertical 
line. No effects of N or S on D were found; no effects of S on N or of N on S were found; both N and S were 
significantly overestimated when presented during the shortest duration (Dmin, red) and underestimated when 
presented with the longest duration (Dmax, orange). (B) Continuous judgments. Individual performances 
(transparent dots) and mean performances (filled dots) for the estimation of D (left panels) with changing 
N (green) and S (blue); of N (middle panels) with changing D (red) and S (blue); and of S (left panels) with 
changing D (red) and N (green). The continuous scale was mapped from 0 to 100. The dotted line is the ideal 
observer’s performance. All experimental conditions showed a central tendency. No effects (intercept or central 
tendency) of N or S on D were found (left top and bottom graphs, respectively); no effects of S on N (middle 
bottom graph) or of N on S (left bottom graph) were found. Significant main effects of D were found on the 
central tendency and the intercept of N (middle top) and S (left top). Nmin: miminal numerosity value; Nmax: 
maximal numerosity value; Smin: minimal surface value; Smax: maximal surface value; Dmin: minimal duration 
value; Dmax: maximal duration value. ***p < 0.001; **p < 0.01; *p < 0.05; bars are 2 s.e.m.
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in both the S and N tasks (Fig. 3B, red hues), but not when the non-target dimension was N for S, S for N, or for 
either S or N when D was the target magnitude dimension.

To examine the central tendency effects across magnitude dimensions, we correlated the slope values between 
target magnitude dimensions (Fig. 4C). Collapsing across the non-target dimensions, we found that all three 
slope values significantly correlated with one another [D to S: Pearson r = 0.594; D to N: r = 0.896; S to N: 
r = 0.662]. Given that S exhibited a greater central tendency than D or N, we compared the Pearson correlation 
coefficients with Fisher’s z-test for the differences of correlations; this analysis revealed that the D to N correlation 
was significantly higher than the D to S correlation [Z = 2.03, p = 0.04], and marginally higher than the S to N 
correlation [Z = 1.73, p = 0.083], suggesting that D and N dimensions, which had similar slope values, were also 
more strongly correlated with each other than with S. To further explore this possibility, we conducted partial 
Pearson correlations of slope values; here, the only correlation to remain significant was D to N, when controlling 
for S [r = 0.8352], whereas D to S, controlling for N, and N to S, when controlling for D were no longer significant 
[r = 0.0018 and 0.3627, respectively].

The results of the correlation analysis revealed that D and N tasks were highly correlated in slope, indicat-
ing that individual subjects exhibited a similar degree of central tendency for these two magnitude dimensions 
(Fig. 4A). From a Bayesian perspective, these results suggest that the priors for D and N may be more correlated 
than the priors for D and S, or for N and S; thus D, N and S do not share one single prior, but may rather rely on 
different priors which would be more or less correlated between each other. To explore this at a more granular 
level, we expanded our correlation analysis to include all non-target dimensions (Fig. 4C). The result of this anal-
ysis, with a conservative Bonferroni correction (r > 0.8) for multiple comparisons confirmed the above results, 
demonstrating that D and N dimensions were correlated across most non-target dimensions, but that D and N 
dimensions were weakly and not significantly correlated with S. This finding suggests that D and N estimation 
may rely on a shared prior, that is separate from S; however, a shared (D, N) prior would not explain why D esti-
mates were unaffected by changes in N, nor would it explain why S estimates are affected by changes in D.

Lastly, we sought to compare the quantifications based on continuous data with those from the categorical 
analysis. Previous work has demonstrated that the WR on a temporal bisection task correlates with the central 
tendency effect from temporal reproduction44. To confirm this, we measured the correlations between the slope 
values of continuous magnitude estimates with the WR from the categorical analysis. As predicted, we found a 
significant negative correlation between slope and WR for D (r = −0.69) and N (r = −0.57); however, the corre-
lation for S failed to reach significance (r = −0.41, p = 0.1), indicating that greater central tendency (lower slope 

Figure 4.  Central Tendency Effects in Magnitude Estimation (Experiment 1). (A) Average continuous 
estimates for all three magnitude dimensions as target, collapsed across all non-target magnitude dimensions. 
Magnitudes were normalized as a percentage of the maximum presented magnitude value, with zero 
representing the smallest and 100 representing the largest magnitude presented. Continuous estimates were 
similarly normalized as a percentage of the sliding scale, with zero representing a minimal estimate of “−” and 
100 representing a maximal estimate of “+”. The dashed identity line indicates where estimates should lie for 
veridical performance. Deviations from this identity line (arrows) exhibited central tendency, wherein smaller 
and larger magnitudes were over- and under-estimated, respectively. (B) Slope values extracted from a best 
fitting linear regression in A quantify the degree of central tendency, with smaller values indicating greater 
regression to the mean. Similar slope values were observed for duration and number, but significantly lower 
estimates were found for surface estimates than either duration or number. (C) Correlation matrix of slope 
values for every target and non-target magnitude trial type. Each target magnitude dimension was tested in the 
presence of three possible values (min, mean, max) of a non-target dimension. Outlined pixels represent those 
Pearson correlation coefficients that survived a multiple comparison correction. Slope values across non-target 
dimensions were correlated within each target dimension (sections along the diagonal); crucially, slope values 
for duration and number were correlated with each other when each one was the target magnitude (lower left 
and upper right sections). Further, no correlation between surface and either duration or number as target 
dimensions were observed (middle top and bottom sections). *Indicates p < 0.05; bars are 2 s.e.m.
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values) were associated with increased variability (larger WR). This finding is notable, as the analysis of WR 
values did not reveal any difference between magnitude dimensions. This suggests that the slope of continuous 
estimate judgments may be a better measure of perceptual uncertainty than the coefficient of variation derived 
from categorical responses.

Experiment 2: Duration is robust to accumulation rate, not N and S.  In Experiment 2, partic-
ipants estimated D, N or S while the accumulation regime was manipulated as either FastSlow or SlowFast 
(Fig. 2B, Table 2). As previously, we systematically analyzed the categorical and the continuous reports. First, 
we tested the effect of the accumulation regime on the estimation of each magnitude dimension by using a 2 × 3 
repeated-measures ANOVA with PSE measured in control conditions (Table 2, 1st row) as independent variable 
and distribution (2: FastSlow, SlowFast) and magnitude dimension (3: N, D, S) as within-subject factors. Marginal 
main effects of accumulation regime (F[1,28] = 2.872, p = 0.0734) and magnitude dimensions (F[1,14] = 4.574, 
p = 0.0506) were observed. Their interaction was significant (F[2,28] = 10.54, p = 0.0004). A post-hoc t-test 
revealed no significant effects of accumulation regime on the estimation of D (p = 0.23), but significant effects of 
accumulation regime in the estimation of N (p = 0.016) and S (p = 0.0045) (Fig. 5A).

Second, we tested the effect of D and accumulation regime on the estimation of N and S (Fig. 5A, top insets). 
We conducted a 2 × 2 × 2 repeated-measures ANOVA with PSE as an independent variable and magnitude 
dimension (2: N, S), accumulation regime (2: FastSlow, SlowFast), and duration (2: Dmin, Dmax) as within-subject 
factors. Main effects of accumulation regime (F[1,14] = 22.12, p = 0.000339) and duration (F[1,14] = 27.65, 
p = 0.000121) were found, suggesting that both N and S were affected by the distribution of sensory evidence over 
time, and by the duration of the sensory evidence accumulation. No other main effects or interactions were sig-
nificant although two interactions trended towards significance, namely the two-way interaction between accu-
mulation regime and duration (F[1,14] = 3.482, p = 0.0831) and the three-way interaction between dimension, 
accumulation regime, and duration (F[1,14] = 3.66, p = 0.0764). These trends were likely driven by the SlowFast 
condition as can be seen in Fig. 5A.

For the analysis of continuous data (Fig. 5B), we first examined any overall differences in slope values for 
different accumulation regimes (FastSlow vs. SlowFast) across all three target magnitude dimensions (D, N, S). A 
(3 × 2) repeated measures ANOVA with the above as within-subjects factors revealed a main effect of magnitude 
dimension [F(2,32) = 7.878, p = 0.002], with S once again demonstrating the largest slope value, but no effect of 
accumulation regime or interaction (both p > 0.05), suggesting that the rate of accumulation did not influence 
the central tendency effect. However, on the basis of our a priori hypothesis, post-hoc tests revealed a significantly 
lower slope value for N in SlowFast compared to FastSlow [t(17) = 3.067, p = 0.007], suggesting that participants 
exhibited more central tendency for numerosity when the accumulation rate was slow in the first half of the trial 
(Fig. 5B). The analysis of intercept values did not reveal any effects of accumulation regime or magnitude dimen-
sion (all p > 0.05). However, on the basis of our a priori hypothesis, post-hoc tests demonstrated that S exhibited 
a significantly lower intercept for SlowFast compared to FastSlow [t(17) = 3.609, p = 0.002], with no changes for 
either D or N (both p > 0.05), indicating that participants underestimated surface when the rate of evidence accu-
mulated slowly in the first half of the trial.

For S and N, further examination of slope values for the three possible durations using a 2 × 2 × 3 repeated 
measures ANOVA with magnitude dimension (2: S, N), accumulation regime (2: FastSlow, SlowFast), and dura-
tion (3: Dmin, Dmean, Dmax) as within-subjects factors, revealed a significant main effect of magnitude dimen-
sion [F(2,32) = 7.717, p = 0.013] and of accumulation regime [F(2,32) = 11.345, p = 0.004], but not of duration 
[F(2,32) = 1.403, p = 0.261]. Using the same analysis for intercept values, we found no main effects of magni-
tude dimension [F(2,32) = 1.296, p = 0.272], but a significant effect of accumulation regime [F(2,32) = 5.540, 
p = 0.032] and of duration [F(2,32) = 21.103, p = 0.000001]. More specifically, we found that intercept values 
were lower for longer durations, indicating greater underestimation when the interval tested was longer. No other 
effects reached significance (all p > 0.05).

Overall, these findings indicate that duration estimations were immune to changes in the rate of accumulation 
of non-target magnitudes, similar to the findings of Experiment 1. Also similar, we found that estimates of S and 
N were affected by duration as non-target magnitude dimension, with longer durations associated with greater 
underestimation of S and N (Fig. 6). In addition, our results demonstrate a difference between accumulation 
regimes for S and N, with SlowFast regimes associated with greater underestimation than FastSlow, regardless of 
duration. Lastly, we observed that SlowFast accumulation regimes led to an increase in the central tendency effect, 
suggesting that slower rates of accumulation may increase reliance on the magnitude priors.

Discussion
In this study, we report that when sensory evidence steadily accumulates over time, and when task difficulty is 
equated across magnitude dimensions (space, time, number), duration estimates are resilient to manipulations of 
number and surface, whereas number and surface estimates are biased by the temporal properties of sensory evi-
dence accumulation. Specifically, we replicated the findings of Lambrechts and colleagues13 by demonstrating that 
number and surface estimates are under- and overestimated when presented for long and short durations, respec-
tively. These results complement the findings that duration can be resilient to numerosity interference27, and that 
the direction of the interference between space and time may go in opposite direction when using dynamic dis-
plays13, 28. Although prior findings have reported asymmetrical effects in magnitude estimation, our findings dif-
fer in several ways. First, participants provided a quantified estimation of a given magnitude dimension, allowing 
a direct assessment of performance within a Bayesian framework in mind (specifically characterizing properties 
of the central tendency effects as a function of magnitude interferences). In previous reports of interference of 
number on duration5, 6, behavioral effects were concluded on the basis of increased reaction times and error rates 
during incongruent condition presentation (e.g., small number presented with a long duration) which prevented 
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the direct evaluation of participants’ magnitude perception per se. As such, no clear direction of interference 
effects could be concluded from the studies beyond the existence of an interference. Our experimental design also 
prevented participants to explicitly enumerate the dots in a given trial unlike in previous experiments, in which 
the speed of dot presentation enabled counting which yielded an influence of N on D6.

In a study7 using dynamic display which addressed a question close to the ones we address with this experi-
mental approach, participants judged the spatial length or the duration of a growing line. As previously discussed 
elsewhere (see ref. 13), the spatial task could have been performed using the coordinates of the line on the screen 
irrespective of the duration it took the line to grow, possibly explaining why duration was irrelevant for the spa-
tial estimate. In other words, the duration in this task was likely the noisiest cue which in turn was affected by 
the least noisy cue (i.e. the spatial dimension). Consistent with our current results, a recent study28 showed that 
a longer duration yielded an underestimation of length. In this experiment, the environment was dark (fMRI 
study) and participants had no access to visual cues to constrain their spatial estimate of the moving dot. In this 
context, the results showed that the shorter duration increased the distance of the moving dot, consistent with 
the present findings. Hence, and consistent with previous literature, the lack of robust bidirectional interactions 

Figure 5.  The Accumulation Regime affects Numerosity and Surface but not Duration (Experiment 2). (A) 
Psychometric curves illustrate the grand average proportion of “+” as a function of duration (left panel), 
number (middle panel) or surface (right panel) when the sensory evidence accumulation was manipulated. 
The SlowFast (SF) results are reported in light gray, the FastSlow (FS) results are reported in black. Left panel: 
top inset reports the mean PSE of duration estimation observed for each distribution as compared to the ideal 
observer (vertical black line). Middle panel: top inset reports the mean PSE of number estimation observed 
for each distribution (SF, FS) and manipulation of D (Dmean: black, Dmin: red, Dmax: pink). Right panel: top inset 
reports the mean PSE of surface estimation observed for each distribution (SF, FS) and manipulation of D 
(Dmean: black, Dmin: red, Dmax: pink). The estimation of D was not affected by the accumulation regime of sensory 
evidence whereas N and S were overestimated in the FastSlow as compared to the SlowFast distribution. N and 
S were also affectd by manipulating of the non-target duration. (B) Individual (transparent dots) and mean 
(filled dots) continuous judgments for the estimation of D (left panel), N (middle panel) and S (right panel) with 
SlowFast (top row) and FastSlow (bottom row) regimes of sensory evidence accumulation. The dotted line is 
the ideal observer’s performance. Dmin: minimal duration value; Dmax: maximal duration value. ***p < 0.001; 
**p < 0.01; *p < 0.05; bars are 2 s.e.m.
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between magnitude dimensions does not support a literal interpretation of ATOM; however, we do not argue that 
time, number and space do not interact under certain constraints, and rather consider our results to favor a more 
liberal interpretation of ATOM. Specifically, by considering a Bayesian model relying on multiple priors (one for 
each dimension), magnitudes may interact in the context of conflicting sensory cues. Recent hypotheses suggest 
that a Bayesian framework can provide a general explanation for the variety of behavioral features observed 
in magnitude estimations independently applied to distance, loudness, numerical or temporal judgments4. The 
proposed Bayesian framework combines an estimate of the likelihood (sensory input) with a prior representation 
(memory). One major goal of our study was thus to determine the degree to which different magnitude dimen-
sions might rely on an amodal global prior representation of magnitude as would be expected using a literal 
interpretation of a generalized magnitude system such as ATOM3. To accomplish this, participants took part in 
two experiments independently manipulating the congruence across magnitude dimensions (Experiment 1) and 
the rate of sensory evidence provided to participants (Experiment 2).

A first prediction was that if different magnitude dimensions rely on a single amodal prior, then magnitude 
estimates should exhibit similar levels of central tendency across magnitude dimensions (duration, surface, num-
ber; Fig. 2D). Instead, in Experiment 1, our results demonstrated that surface estimates exhibited greater central 
tendency than either duration or number, and surface estimates were not correlated with the degree of central 
tendency for either dimension. However, duration and number did exhibit correlated central tendency effects. 
This finding suggests that estimates of surface are distinct from estimates of duration and number, but that dura-
tion and number may be more similar to one another. Indeed, neural recording studies in the prefrontal and 
parietal cortex of non-human primates have revealed overlapping, yet largely separate, representations of dura-
tion and size51, 52, and number and size53, 54. Further, while number, size, and time exhibit common activations of 
the right parietal cortex, they each engage larger networks of regions beyond this area28, 55, 56. For size estimates, 
recent work suggests that comparisons of object size draw on expectations from prior experience in other brain 
regions57. Yet, as no strong bidirectional effects were observed between duration and number, it is unlikely that 
duration and number share neuronal populations with similar tuning features.

Another possible interpretation of the results obtained in Experiment 1 is to consider multiple priors in mag-
nitude estimations. When participants make temporal judgements, the combination of prior knowledge P(π) and 
noisy sensory inputs P(D|π) (duration of the given trial) enables participants to make an accurate posterior esti-
mate, represented by P(π|D) ∞ P(D|π) • P(π) (see ref. 4, Box 3 for more details), which explains the regression to 
the mean. Neither numerosity nor surface priors are present in this equation, which could explain why duration 
estimates are robust to numerosity or surface manipulations. Because numerosity and surface accumulate over 
time, one possible strategy for the participants was to estimate numerosity and surface based on both the speed of 
presentation of stimuli, and on the duration of the trial. Specifically, a high (low) speed over a long (short) dura-
tion of presentation corresponded to a large (small) value of numerosity or surface. In other words, these results 
seemed to indicate that, using dynamic displays, the speed of events influences the estimation of magnitudes 
and yield opposite directionality in the interference across magnitudes. If participants used the speed of event 
presentation and overestimated (underestimated) D, they also overestimated (underestimated) N or S. As the 
computation of speed also relies on the duration, both speed and duration become important cues in the estima-
tion process but may have distinct impacts. In Experiment 1, the central tendency effect showed that the shortest 
duration was overestimated, which could explain why participants overestimated N and S for Dmin; conversely, 
the longest duration was underestimated, which may explain why participants underestimated N and S. Under 
this hypothesis, the uncertainty related to the temporal dimension may add noise in the decision or the accumu-
lation process, so that the perceived duration of the trial can bias numerosity and surface estimates (Fig. 6). When 
numerosity and surface accumulate over a given duration, if that duration is short (long) it will affect the accuracy 
of participants’ estimations. This explanation would be compatible with the hypothesized effect of duration as 
introducing noise on sensory accumulation, and Experiment 2 was specifically designed to tease out the effect of 
speed changes in the accumulation rate on the estimation of the target magnitude.

Indeed, one noteworthy aspect unique to the time dimension is that the objective rate of presentation is 
fixed58. That is, objective time by conventional measurements proceeds at a single mean rate. In contrast, we can 
experimentally manipulate the rate at which we present information for number and surface. In Experiment 1, 

Figure 6.  Accumulation regime influences Bayesian estimates. Our results suggest that the speed or rate 
of sensory evidence accumulation early in the trial (shaded region) and the duration of the trial affect the 
estimation of surface and numerosity. Additionally, slower rates of sensory evidence are associated with greater 
uncertainty; greater uncertainty results in increased reliance on the priors. To accommodate these findings, we 
suggest that the rate of sensory evidence is effectively estimated independently of the total duration although the 
duration may regulate the noise level in sensory evidence accumulation of quantities.
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in order to keep the values of surface and number fixed when duration was manipulated, we necessarily had to 
change the rate of accumulation for these values. For example, between short and long durations with the same 
value of number, we had to change the rate of accumulation for number so that the same total value was reached 
at the end of the duration. This may explain the incongruent effects of duration on surface and number; shorter 
(longer) durations may engender larger (smaller) estimates of surface and number because the rate of accumu-
lation is faster (slower). In this sense, surface and number are not being influenced by the duration magnitude of 
the time dimension per se, but rather the time dimension is interfering with the rate of accumulation, and so the 
effect of duration may be an epiphenomenon of the experimental design. To test this hypothesis, we modulated 
the accumulation rate of the presentation of numerosity and surface in Experiment 2.

In Experiment 2, where the rate of accumulation for number and surface experienced a rate-change a little less 
(more) than halfway through the presentation time from fast-to-slow (slow-to-fast), we replicated and extended 
our findings of Experiment 1. Specifically, we again found that shorter (longer) durations led to longer (shorter) 
estimates of surface and number, regardless of the rate-change in accumulation regime. However, we also found 
a difference in accumulation regimes: when the rate of accumulation was slower in the beginning of the session, 
estimates of surface and number were smaller than when the rate of accumulation was faster. It is important to 
remember that the ultimate value of the presented surface and number was the same, regardless of the accumu-
lation regime. As such, participants were biased in their estimates by the rate of evidence accumulation in the 
first-half of the given trial, regardless of how long that trial lasted. This strongly suggests that human observers are 
biased by the rate of accumulation at the start of a trial, and are resistant to changes in rate throughout the trial.

This observation is important in the context of ongoing discussions on drift-diffusion processes in which 
the accumulation of evidence following the first end-point depends on terminated processes, guess probability 
(see ref. 59 case study 1 and Fig. 1; see ref. 60 Figs 2 and 4A) and on the importance of change points during the 
accumulation process61, 62. Changes in the accumulation rate performed in Experiment 2 imposed a nonlinearity 
in the accumulation process: the observation that an earlier rate change has a larger impact on magnitude esti-
mation than a later rate change is reminiscent of the ‘primacy effect’ reported in evidence accumulation models, 
possibly indicative of suppression of newer information by old information63. Additionally, this finding strength-
ens the hypothesis that the effect of duration on surface and numerosity may occur as a result of the impact on 
the implicit timing or accumulation rate, and not as a function of the explicitly perceived duration. This would 
be consistent with recent findings suggesting that noise memory - known to scale with duration - was not the 
primary factor of errors in decision-making but that noise in sensory evidence was instead a major contributor64. 
Our results suggest that speeding up the rate of evidence and lengthening the duration of a trial may be equivalent 
to increasing noise in sensory accumulation of other magnitude dimensions (Fig. 6).

In Experiment 2, we also investigated the effect of accumulation regime on central tendency as participants 
again provided continuous magnitude estimates on a vertical sliding scale. Previous magnitude studies using 
continuous estimates have demonstrated a central tendency effect, with over(under)-estimations for small (large) 
magnitudes4, the degree to which depends on the uncertainty inherent in judging the magnitude in question44, 65.  
The result of this analysis revealed that, when the rate of accumulation was slow (fast) in the beginning of the 
trial, the degree of central tendency was greater (lesser); further, the objective duration of the trial did not impact 
central tendency. This finding suggests that slower accumulation regimes engender greater uncertainty in magni-
tude estimates, and that this uncertainty may be present before the ultimate decisional value is reached. Previous 
work in decision-making with evidence accumulation has suggested that the objective duration of a trial leads 
to greater reliance on prior estimates, as longer presentation times are associated with greater uncertainty66. 
Specifically, Hanks and colleagues66 found that a drift-diffusion model that incorporated a bias signal to rely on 
prior evidence that grows throughout the trial could explain reaction time differences in a dots-motion discrim-
ination task. Notably, the bias signal is incorporated into the drift-diffusion process, such that longer trials push 
the accumulation rate towards a particular value, depending on the prior. A critical manipulation in this study 
was the emphasis on speed or accuracy for subjects; increased emphasis for accuracy led to longer decision times 
and greater reliance on the prior, as explained by the model. Our results suggest otherwise – the duration of the 
trial alone cannot determine reliance on the prior. If the effect of duration solely led to greater reliance on the 
prior, then we should have seen central tendency effects increase with longer durations, which did not occur in 
either Experiments 1 or 2. Instead, the rate of evidence accumulation determined reliance on the prior(s), regard-
less of duration, with slower rates leading to greater reliance.

Additional studies using neuroimaging techniques such as M/EEG need to investigate the neural correlates 
underpinning accumulation processes in the brain when estimating magnitudes (Centro-Parietal Positivity, for 
example, see ref. 67, 68), to fully explain the behavioral results obtained in these two experiments. Further, fMRI 
studies must be conducted to elucidate the neural circuits for memory representations of different magnitudes48. 
Bayesian approaches may provide interesting perspectives on magnitudes estimations, and additional studies 
need to be performed to understand to which extent these models can be applied to explain the variety of results 
observed in the literature. One intriguing observation is the finding that duration estimates were not only resilient 
to changes in numerosity or surface, but also to the rate of sensory evidence. This finding is unexpected and runs 
counter-intuitive to various findings in time perception. In this task, these robust findings suggest that unlike 
surface and numerical estimates, duration may not rely on the accumulation of discretized sensory evidence.
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