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Abstract: Congenital heart disease is one of the major diagnoses in pediatric heart transplantation recipients of all age 

groups. Assessment of pulmonary vascular resistance in these patients prior to transplantation is crucial to determine their 

candidacy, however, it is frequently inaccurate because of their abnormal anatomy and physiology. This problem places 

them at significant risk for pulmonary hypertension and right ventricular failure post transplantation. The pathophysiology 

of pulmonary vascular disease in children with congenital heart disease depends on their pulmonary blood flow patterns, 

systemic ventricle function, as well as semilunar valves and atrioventricular valves structure and function. In our review 

we analyze the pathophysiology of pulmonary vascular disease in children with congenital heart disease and end-stage 

heart failure, and outline the state of the art pre-transplantation medical and surgical management to achieve reverse re-

modeling of the pulmonary vasculature by using pulmonary vasodilators and mechanical circulatory support.  
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INTRUDCTION 

Heart transplantation (HT) is increasingly considered a 
treatment option for patients with congenital heart disease 
(CHD) and end-stage heart failure. According to the registry 
of the International Society of Heart and Lung Transplanta-
tion, 63% of infant heart recipients, and 25% of heart recipi-
ents aged 11 to 17 years between January 1996 and June 
2009, carry the underlying diagnosis of CHD [1]. A recent 
analysis of the Pediatric heart Transplant Study registry [2] 
identified 488 children (6 months-18 years of age) with CHD 
at the time of listing for HT transplanted at 35 centers from 
January 1990 through December 2002. Patients<6 months of 
age were excluded from analysis due to differing listing al-
gorithms in United States. The major diagnostic categories 
for the 488 study patients were single ventricle (36%), d-
transposition of the great arteries (12%), right ventricular 
outflow tract lesions (most commonly Tetralogy of Fallot) 
(10%), ventricular/atrial septal defect (8%), l-transposition of 
the great arteries (8%), and complete atrioventricular canal 
defect (8%). 454 of patients had at least 1 operation before 
HT. Staged palliation for single ventricle, including the 
Norwood procedure, or variants of the Glenn procedure, was 
the last operation in approximately 20% of the patients, and 
the Fontan operation was the last surgical procedure in 107 
patients, representing 22% of the CHD population.  

 Congenital diagnosis remains a highly significant risk 
factor for mortality one and five years after HT [1]. Accurate 
listing of patients for HT requires assessment of the pulmo-
nary vascular resistance (PVR) to avoid the potential of  
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donor right heart failure [3, 4] Unfortunately, despite ad-
vances in perioperative management and careful preselec-
tion, pulmonary hypertension related right ventricular failure 
still occurs in pediatric HT recipients [5]. 

 In patients with CHD, given the high post HT mortality 
risk, accurate assessment of PVR has increased importance, 
but paradoxically, these patients are often harder to assess. 
Anomalies within the pulmonary vasculature or dual sup-
plies of pulmonary blood flow may make accurate calcula-
tions of resistance impossible. The sluggish pulmonary and 
hepatic blood flow in the Fontan circuit increases the risk for 
microemboli and arteriovenous malformations that may 
change the distribution of blood flow to the right and left 
lung. The assumption that elevated PVR may contribute to 
late Fontan failure even in patients with “normal” pre-HT 
PVR was studied by Mitchell and colleagues [6]. This group 
conducted a single center retrospective study of patients who 
underwent HT for failing Fontan and Kawashima circula-
tions and compared pre- and post- HT cardiac catheterization 
pulmonary hemodynamics. They found post HT elevation of 
transpulmonary gradient (TPG) and PVR in all patients with 
late Fontan circulation failure (range 10-16 mmHg and 2.8-
5.4 Wood units •

 
m

2
, respectively) and concluded that “the 

increase in TPG and PVR to pathologic levels post HT re-
flects a fixed element of PVR that was unmasked with the 
introduction of normal pulmonary blood flow”.  

 The risk of post HT right ventricular failure and mortality 
in children with heart disease and elevated PVR is well es-
tablished and underlines the need for pre-transplantation 
assessment of TPG and PVR. The same experience in adults 
led to recommendations that HT should not be performed if 
the PVR index exceeds 6 Wood units •

 
m

2 
or if the TPG is 

greater than 15 mmHg. However, these recommendations do 
not take into account possible reversibility of elevated PVR. 
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In fact, partial or complete reversibility of elevated PVR and 
TPG were observed acutely in response to short acting sys-
temic and pulmonary vasodilators such as nitroprusside [7], 
prostaglandin E1 [8], and inhaled nitric oxide [9, 10], and in 
response to prolonged administration of a phosphodiesterase-
5 inhibitor such as sildenafil [11-13], endothelin antagonist 
such as bosentan [14], and inotropic agents such as milrinone 
[15] dopamine and dobutamine [16]. Based on available re-
ports, children who demonstrate PVR reversibility can suc-
cessfully undergo orthotopic HT even if their PVR index 
exceeds 6 Wood units •

 
m

2
 or if the TPG exceeds 15 mmHg 

(see discussion below: Hemodynamic unloading and regres-
sion of fixed pulmonary vascular resistance). 

PATHOPHYSIOLOGY AND NATURAL HISTORY 

(1) Effects of shear stress on the vascular endothelium 

 As blood flows through a vessel it exerts a physical force 
on the vessel wall. This force generates stress that can be 
resolved into two principal vectors. [1] The stress parallel to 
the vessel wall is defined as shear stress. This represents the 
frictional force that blood flow exerts on the endothelial sur-
face of the vessel wall. [2] The stress perpendicular to the 
vessel wall is defined as tensile stress. This represents the 
dilating force of blood pressure on the vessel wall.  

 The absolute shear stress varies throughout the cardiac 
cycle because of its pulsatile nature. In regions where stable 
flow is unidirectional with no recirculation, the time-
averaged fluctuations in shear stress are positive (forward 
flow). Such laminar flow is known as mean positive shear 
stress. Temporal shear-stress gradients are defined as the 
increase or decrease of shear stress over a small period of 
time at the same location. Spatial shear-stress gradients are 
defined as the difference of shear stress between two close 
points of an endothelial cell at the same point in time. Mean 
positive shear stress greater than 6 dyne/cm

2
 predominates 

throughout much of the major systemic arterial vasculature. 
Recirculating flow occurs mainly around branch points and 
distal to areas of stenosis. The interaction between the 
hemodynamic forces generated by this flow and the systemic 
vascular endothelium may cause local formation of athero-
sclerotic lesions. It is important to note that the flow profiles 
within recirculation zones should not be confused with tur-
bulent flow, since turbulence implies random movement of 
elements in the flow field. Turbulent flow accounts for a 
very small fraction of the total systemic flow.  

 The morphology of endothelial cells within regions of 
recirculating flow is significantly different from cells located 
within regions of mean positive shear stress [17, 18]. Cells in 
these regions are not aligned and are characterized by a 
rounded shape, an increased proliferation rate and increased 
permeability [19-22]. Endothelial cells located within re-
gions of mean positive shear stress are aligned with their 
longitudinal axis parallel to the direction of blood flow [17, 
18]. This orientation effectively decreases drag resistance 
[23]. Based on these physiological observations it appears 
that mean positive shear stress acts as an endothelial cell 
survival factor rather than a growth factor [24].  

 Based on studies characterizing the force-transduction 
pathways [25-41]. White and Frangos [42] hypothesize that 

“hydrodynamic shear destabilizes the plasma membrane, 
leading to…… an increase in membrane free volume. 
Changes in membrane microviscosity directly activate vari-
ous secondary signal cascades linked to heterotrimeric G 
protein. Tension generated across the cell membrane by fluid 
shear stress is transmitted to the cell-cell junction where 
known shear-sensitive proteins are localized. Furthermore, 
endothelial cell differentiation between mean positive shear 
stress and temporal gradients in shear stress takes place pri-
marily in the cell-cell junction and is dictated by the rate of 
tension generated between the two flow profiles.” 

(2) Pulmonary vascular remodeling: effects of pathologi-
cal pulmonary blood flow on pulmonary vascular struc-

ture. 

 Studies in animals and humans performed in the current 
era support the causal relationship between pathological 
pulmonary blood flow and the development of pulmonary 
hypertension [43-45]. The main mechanisms that may in-
crease PVR in children with heart disease are left atrial hy-
pertension due to systemic ventricular dysfunction, anatomic 
obstruction to pulmonary venous return, pulmonary veno-
occlusive disease, pulmonary arteriolar constriction, anat-
omic obstruction of the large pulmonary arteries, increased 
pulmonary blood flow in CHD with left to right shunting, 
accessory sources of pulmonary blood flow from aortopul-
monary collaterals, and sluggish pulmonary blood flow in 
children with single ventricle physiology following the Fon-
tan procedure. 

 In animals, both increased [46], and decreased flow [47] 
may induce adverse responses in the pulmonary vasculature. 
The effects of both pathologically high and low shear, com-
pared to physiological shear, on pulmonary endothelial pro-
duction of vasodilating and vasoconstricting factors were 
investigated by Li and colleagues [48] using monolayers of 
bovine pulmonary arterial endothelial cells and pulmonary 
arterial smooth muscle cells exposed to varying shear condi-
tions. They found that pathologically high and low flow at-
tenuated endothelial release of nitric oxide and prostaglandin 
F1a, and enhanced release of endothelin-1. A mediator pro-
duction profile that favors vasoconstriction.  

 In patients with congestive heart failure (CHF), persistent 
elevation of left-ventricular end-diastolic pressure causes 
passive pulmonary venous congestion and reactive pulmo-
nary vasoconstriction. At this preliminary stage, PVR is 
readily reversible with pulmonary vasodilators. However, 
persistent pulmonary venous congestion causes remodeling 
of the pulmonary arterial wall due to abnormalities of the 
elastic fibers, intimal fibrosis and medial hypertrophy. Pul-
monary hypertension secondary to structural remodeling is 
referred as fixed because it is resistant to pharmacological 
treatments. Delgado and colleagues [49] studied the pulmo-
nary vascular morphology of 17 adult HT recipients with 
preoperative CHF associated with ischemic heart disease, 
idiopathic dilated cardiomyopathy, valvular heart disease and 
constrictive pericarditis who died shortly after transplanta-
tion. Their main pathologic finding was medial hypertrophy 
of muscular pulmonary arteries.  

 In an older era, Rabinovitch and colleagues [50] per-
formed analysis of lung tissues obtained intra-operatively 
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from 50 patients, mostly under 2 years of age (range 2 days-
30 years) who underwent repair of ventricular septal defect, 
d-transposition of the great arteries, and atrioventricular ca-
nal. The findings were correlated with hemodynamic data 
obtained both pre and postoperatively. Three structural 
changes were observed and graded A, B, and C based on 
their severity (Table 1). A similar study performed by the 
same group at the Children’s Medical Center, Boston (July 
1976 to January 1981) [51] included performance of a lung 
biopsy at the time of the surgical repair on 74 patients with 
CHD who either had pulmonary hypertension or in whom it 
would be likely to develop if the lesion was not corrected. 
Structural changes were assessed based on the grading sys-
tem described above and also according to the classification 
of Heath and Edwards [52] (Table 1). Patients whose preop-
erative PVR was markedly elevated underwent biopsy first. 
If their pulmonary Heath-Edwards grade was IV to VI they 
were excluded from definitive repair. For the other patients, 
morphometric findings and Heath-Edwards grading were 
correlated with hemodynamic data from a cardiac catheteri-
zation performed immediately after surgery and about 1 year 
after surgery. Normal mean pulmonary pressure was taken as 
18 mmHg or less and normal PVR index as less than 3.5 
Wood units •

 
m

2
. The Heath-Edwards grading system was 

predictive of pulmonary hypertension in the early but not 
late post-operative period. The study findings suggested, at 
least for patients undergoing an operation in the first 2 years 
of life, that even severe intimal change (Heath-Edwards 

grade III) is not prognostic of persistent elevation in PVR if 
growth and development of the pulmonary arteries has been 
relatively normal (morphometric grade A or B (mild)). Pa-
tients who underwent surgical correction in the first 8 
months of life had normal pulmonary hemodynamics 1 year 
after repair despite marked structural abnormalities at the 
time of repair. Some of the patients operated on at 9 months 
of age that had pulmonary structural abnormalities as severe 
as in those operated on earlier had persistent elevation of 
PVR. Possible mechanisms are less complete regression of 
the abnormal findings, limited potential for growth of new 
normal vessels, or both. In patients with left to right shunt 
pulmonary vascular muscularization is accelerated, possibly 
because of mechanical or humoral growth stimulation gener-
ated by supra-physiological shear stress (see discussion of 
this term below) [53]. One possible cause of intimal hyper-
plasia in patients with CHD is endothelial over-regeneration 
in response to partial denudation of the endothelium of the 
more proximal intra-acinar arteries [54-56] . 

TREATMENT OPTIONS FOR PATIENTS WITH 
END-STAGE HEART FAILURE AND FIXED PVR 

Special Transplantation Techniques 

 Pulmonary hypertension is a risk factor for early and late 
mortality after heart transplantation. Gajarski and colleagues 
[57] studied the perioperative and intermediate outcomes in 
pediatric cardiac transplant recipients who had elevated PVR 
indexes preoperatively. They found that the vascular reactiv-

Table 1. Grading of Pulmonary Vascular Pathology in Patients with CHD and Excessive Pulmonary Blood Flow. 

Morphometric 

Grade 

Heath-

Edwards 

Grade 

Morphometric Findings Heath-Edwards Histopa-

thological Findings 

Pulmonary Hemo-

dynamic Profile 

A N Extension of muscle into peripheral arteries normally 

nonmuscular, either as a solitary finding or associated with 

a mild increase in the medial wall thickness of the nor-

mally muscular arteries ( 1.5 normal). 

no striking evidence of medial 

hypertrophy, same as in the 

morphometric grade A  

B  Grade A findings with greater medial hypertrophy   

B (mild) N medial wall thickness is greater than 1.5 but less than 2 

times normal 

no striking evidence of medial 

hypertrophy, same as in the 

morphometric grade B(mild) 

Increased pulmonary 

blood flow without 

evidence of increased 

pulmonary artery 

pressure. 

B (severe) I wall thickness is 2 times normal. medial hypertrophy can be 

appreciated subjectively as in 

morphometric grade B (severe) 

associated with pul-

monary arterial hy-

pertension. 

C  Grade B (severe) findings with a reduced number of pe-

ripheral arteries relative to alveoli and usually decreased 

arterial size 

 

C (mild)  more than half the normal number of arteries is present  

C (severe)  when half the normal number of arteries or less is present.  

 II  presence of eccentric or con-

centric intimal hyperplasia 

 III  occlusive intimal hyperplasia 

with hyalinization of the media 

Moderate-to-severe 

elevation in pulmo-

nary vascular resis-

tance 
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ity to pulmonary vasodilators and not the absolute PVR de-
termined orthotopic HT suitability, and that post-transplant 
donor right heart failure is unlikely if pre-transplant recipient 
PVR index was  4 Wood units •

 
m

2
 with vasodilator ther-

apy. Studies in adults revealed that mortality after HT is in-
creased if pharmacologic interventions are not able to reduce 
PVR below 2.5-3.5 Wood units •

 
m

2
 [58, 59] . A PVR that 

cannot be reduced below this threshold with pulmonary 
vasodilators is usually termed fixed PVR. Possible treatment 
options for patients with end-stage heart failure and fixed 
PVR are as follows:  

 [1] Heterotopic (“piggy back”) HT that allows preserva-
tion of the entire native heart. The latter provides assistance 
to the vulnerable transplanted right ventricle, however, the 
failing recipient left ventricle places the recipient at risk for 
lethal arrhythmias, systemic emboli, and compression of the 
left lung [60, 61]. 

 [2] Heart-lung transplantation. This procedure eliminates 
the diseased pulmonary vasculature, however, donors for 
heart-lung transplantation are rare, and the procedure has 
inherent long-term sequelae mainly related to its pulmonary 
component. 

 [3] Right ventricle-sparing heart transplant was attempted 
in a canine model [62, 63]. The aim of this procedure is to 
preserve the recipient's right ventricle, which is already con-
ditioned to pulmonary hypertension. 

 [4] Transplantation using hearts from donors with idio-
pathic pulmonary hypertension for recipients with high PVR 
(domino procedure). This is a viable but rare option in trans-
plant centers where patients undergo heart and lung trans-
plantation for idiopathic pulmonary hypertension [64].  

HEMODYNAMIC UNLOADING 

 A recent laboratory study performed by O’Blenes and 
colleagues [65], tested the hypothesis that hemodynamic 
unloading leads to regression of the structural changes asso-
ciated with obstructive pulmonary vascular disease. To do 
that they developed a model in which hypertensive rat lungs 
with experimental pulmonary vascular disease were hemo-
dynamically unloaded by transplantation into syngeneic, 
normotensive recipient rats. The initial stage of the experi-
ment included right middle and lower lobectomy and subse-
quent systemic injection of the toxin monocrotaline. With 
these interventions the investigators caused pulmonary vas-
cular disease to the remaining right upper lobe and left lung 
by increased blood flow combined with monocrotaline toxic 
endothelial injury. The second stage was performed 28 days 
following these interventions and included left lung harvest 
and transplantation. That procedure caused hemodynamic 
unloading of the transplanted lung since pulmonary blood 
flow was probably directed preferentially to the normal na-
tive lung (low resistance circuit). The findings were as fol-
lows: [1] Pulmonary artery pressures were normal 14 days 
after transplantation and only mildly elevated by day 28. [2] 
Right ventricle hypertrophy did not develop in the recipient 
animals. [3] Medial hypertrophy and peripheral musculariza-
tion improved. [4] Pulmonary artery density, although 
somewhat improved, remained markedly below baseline 
levels. 

 Following that experiment, hemodynamic unloading of 
patients with fixed pulmonary hypertension with pulsatile 
and nonpulsatile ventricular assist devices led to reduction of 
PVR and allowed listing for orthotopic HT after a relatively 
short period of support (3-6 months), Furthermore, survival 
of these patients after transplantation was comparable with 
that of patients without prior pulmonary hypertension [66-
77]. Based on our own experience [78], hemodynamic un-
loading with biventricular assist device combined with 
medical pulmonary vasodilator therapy leads to reversal of 
fixed pulmonary hypertension related to CHD. We have im-
planted Berlin Heart biventricular assist device (Berlin Heart 
AG, Berlin, Germany) in 13 patients from April 2005 to 
August 2008 [79] . The median age of the patients was 2 
years (12 days to 17 years). The etiology of heart failure was 
cardiomyopathy in 11 children and CHD in 2. In those 2 
patients with CHD, PVR index was greater than 10 Wood 
units •

 
m

2
 unresponsive to pulmonary vasodilator therapy. 

PVR index decreased to 1.4 and 4.6 Wood units •
 
m

2
 after 33 

and 41 days of support, respectively. Both patients under-
went orthotopic HT. Their PVR index remained normal 
without pulmonary vasodilator therapy within 3 months after 
transplantation. 

AT THE BEDSIDE: PRACTICAL CLINICAL AP-
PROACH 

Two-ventricle Physiology 

 A child with end-stage HF adequately treated with oral 
anti CHF medications who presents with acute decompen-
sated HF (ADHF) is admitted to the cardiac intensive care 
unit (CICU) for close non-invasive and invasive hemody-
namic monitoring. The initial treatment line for these pa-
tients is inotropic support. A recent review of the pharma-
ceutical management of decompensated heart failure syn-
drome in children discusses in detail the indications, mecha-
nism of actions, and dosages of the various available 
inotropes [80]. At St. Louis Children’s Hospital, the hemo-
dynamically unstable child is started on dopamine, dobu-
tamine or epinephrine as first line of inotropic treatment. If 
the child is stable hemodynamically, milrinone or dobu-
tamine are initiated. Following an initial stabilization period, 
a right heart cardiac catheterization is performed to delineate 
the TPG and PVR and determine the child’s candidacy for 
HT. Assessment of the hemodynamic profile with a pulmo-
nary artery (PA) catheter is an acceptable alternative in older 
children and allows titration of inotropic support to increase 
CO.  

Treatment Options Based on Different Possible Hemody-
namic Profiles 

1 Elevated but reactive PVR in the context of elevated LA 
pressure. First line of treatment is inotropic support 
combined with IV diuretics. The second treatment line is 
intubation and positive ventilation. The latter is a potent 
afterload reducing method by way of decreasing the left 
ventricular (LV) transmural pressure and hence wall 
tension. Intubation of a child with ADHF may cause 
acute hemodynamic collapse and cardiac arrest because 
of acute reduction of sympathetic tone with the preintu-
bation induction. The only indication to proceed is evi-
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dence of end-organ dysfunction and anaerobic metabo-
lism. The third line of treatment, if systemic perfusion 
remains inadequate is mechanical circulatory support. 
Treatment with pulmonary vasodilators in this subset of 
patients prior to initiation of MCS may be risky since it 
may worsen pulmonary edema. The decompression of 
the LV by a VAD in these patients is usually sufficient 
to decrease PVR, again with no need to treat with pul-
monary vasodilators. 

2 Fixed PVR in the context of LA hypertension. Treat-
ment of these patients is determined by their hemody-
namic status and systemic perfusion. Treatment is tar-
geted at optimization of CO. The combination of pul-
monary hypertension and LV failure usually results in 
inadequate systemic perfusion and shock because of 
ventricular interdependence and underlying LV systolic 
and diastolic dysfunction. These patients usually require 
aggressive cardiopulmonary support comprised of posi-
tive pressure ventilation, inotropic support, sedation and 
neuromuscular blockade. It is our opinion that pulmo-
nary vasodilators in this subset of patients are not bene-
ficial. Reverse remodeling of the pulmonary vasculature 
requires lowering the LVEDP. Achieving that with 
inotropic support and mechanical ventilation is ques-
tionable and may not be sustainable. Other considera-
tions are the debilitation and muscle degeneration that 
develops during prolonged mechanical ventilation and 
prolonged use of neuromuscular blockade. Based on our 
experience reverse remodeling of the pulmonary vascu-
lature using mechanical circulatory support can be 
achieved in children with CHD, and therefore, in this 
particular group of patients, we recommend early VAD 
implantation. 

SINGLE-VENTRICLE PHYSIOLOGY 

 Children with single ventricle physiology may develop 
ADHF following each one of the palliation stages. The initial 
management of these patients is similar in principal to the 
management of children with two-ventricle physiology with 
ADHF, and includes inotropic support and IV diuretics. Me-
chanical ventilation in children with ADHF following the 
Glenn and Fontan procedures may be problematic since it 
may increase their PVR, however, this consideration is offset 
by the need to minimize work of breathing and oxygen con-
sumption. Their TPG and PVR are assessed in the cardiac 
catheterization laboratory following a period of stabilization. 
While severe, fixed elevation of pulmonary vascular resis-
tance that would preclude heart transplantation are unlikely 
in patients with cavopulmonary connections, nonpulsatile 
pulmonary flow can be associated with mild to moderate 
elevations of pulmonary vascular resistance that can result in 
primary right heart graft failure after transplant. [81] Inhaled 
nitric oxide and other pulmonary vasodilators may be bene-
ficial in single ventricle patients with reactive pulmonary 
vascular bed [82, 83]. We have observed an association with 
aortopulmonary collaterals and elevation of pulmonary resis-
tance in single ventricle heart transplant candidates [81] and 
an aggressive strategy to identify and embolize these collat-
erals prior to transplant may be beneficial.  

 Experience with MCS in these patients other than ECMO 
is very limited. The literature reveals only sporadic case re-
ports describing long-term MCS in the context of single-
ventricle physiology [84-86]. With the current availability of 
the Berlin Heart, it is likely experience with support of single 
ventricle physiology in infancy, after the bidirectional Glenn 
shunt, and in the failing Fontan patient will accumulate rap-
idly to allow for an evaluation the efficacy of VAD therapy 
to decrease elevated pulmonary resistance in this unique pa-
tient population. 

SPECIAL CONSIDERATIONS 

 Patients with CHD associated with unequal distribution 
of pulmonary blood flow may develop pulmonary vascular 
remodeling in one lung whereas the second lung may have 
normal pulmonary vasculature or only minimal structural 
changes leading to PVR elevation amenable to medical 
treatment. Unequal pulmonary blood flow distribution can be 
found in patients with Tetralogy of Fallot and pulmonary 
atresia with major aortopulmonary collaterals. Another pos-
sible cause for pulmonary blood flow maldistribution is par-
tial pulmonary venous obstruction involving pulmonary ve-
nous egress of one lung. Heart transplantation has been suc-
cessfully performed in such patients [87]. Pre-transplantation 
embolization of aortopulmonary collaterals, or ligation of 
these collaterals during transplantation may decrease the risk 
of primary graft failure due to volume overload [88, 89]. 
Another subset of patients that deserve special attention is 
that of patients with hypoplastic left heart syndrome and 
intact atrial septum. In spite of minimal pulmonary blood 
flow in utero, this combination is associated with nonim-
mune fetal hydrops [90] and congenital pulmonary cystic 
lymphangiectasis [91] and may result in prenatal mortality. 
Of those surviving to term, an immediate atrial septostomy is 
required after delivery because of severe hypoxemia. Even if 
no significant end organ damage develops in the immediate 
postnatal period, the outcome of these infants is still guarded 
due to maldevelopment of the pulmonary vasculature. 
Rychik and colleagues [92] identified three types of intact 
atrial septum by echocardiography: 1) type A is consistent of 
large left atrium, thick prominent septum secundum with 
thin septum primum adherent to each other; 2) type B is con-
sistent of a small left atrium with thick, muscular atrial sep-
tum, and 3) type C that consists of a giant left atrium, thin 
atrial septum with severe mitral regurgitation. Lung tissue 
specimens were obtained from six patients. Most striking 
findings were in the type B patients. The lymphatics were 
severely dilated and the pulmonary veins were thick, dilated 
and “arterialized” with multiple elastic laminae noted. The 
pulmonary vascular pathology, especially in type B patients 
may preclude these patients from the single ventricle pallia-
tion pathway. The question is if orthotopic heart transplanta-
tion alone is sufficient or whether heart-lung transplantation 
is required. There is no clear-cut answer since outcome data 
are minimal. Preliminary investigations should include: 1) a 
cardiac catheterization to assess the degree of pulmonary 
venous obstruction and PVR as well as the reactivity of the 
pulmonary vascular bed to pulmonary vasodilators; 2) an 
open lung biopsy. Early listing for either heart transplanta-
tion or heart-lung transplantation in patients that are not 
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amenable for the Norwood procedure may be helpful in ac-
cruing time on the list since waiting time may be very long.  

CONCLUSION 

 In patients with CHD and end-stage heart failure, pulmo-
nary remodeling caused by abnormal pulmonary blood flow 
profiles may result in severe pulmonary hypertension refrac-
tory to pulmonary vasodilators, also known as fixed pulmo-
nary hypertension. This entity is considered a contraindica-
tion to orthotopic heart transplantation [93]. This entity is 
encountered more frequently in transplant candidates with 
congenital heart disease. Even in congenital heart disease 
patients who show reversibility of pulmonary resistance and 
evidence of “acceptable” hemodynamics, the uncertainties 
often involved in the measurement of pulmonary resistance 
in congenital heart disease candidates may often lead to pri-
mary graft failure from right heart failure after transplant. 
Careful planning of heart transplant procedures in this sub-
group of patients in preparation for this complication is war-
ranted as are ongoing efforts to minimize pulmonary resis-
tance in these patients prior to transplant. 

 Until recently, the treatment of patients with heart failure 
and fixed PVR was limited almost exclusively to combined 
heart-lung transplantation. However, over the course of the 
last decade, the concept of reverse remodeling of the pulmo-
nary vasculature with hemodynamic unloading of the heart 
has been confirmed both in adults and children supported 
with ventricular assist devices. This option opens new treat-
ment options for these patients. The definition of “fixed” 
pulmonary hypertension refractory to pulmonary vasodilator 
treatment that would preclude heart transplant in the current 
era of pediatric VAD availability is evolving as these new 
technologies are applied to congenital heart disease patients.  
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