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ABSTRACT Periodontitis is a polymicrobial infectious disease that causes break-
down of the periodontal ligament and alveolar bone. We employed a meta-omics
approach that included microbial 16S rRNA amplicon sequencing, shotgun metag-
enomics, and tandem mass spectrometry to analyze sub- and supragingival biofilms
in adults with chronic periodontitis pre- and posttreatment with 0.25% sodium hy-
pochlorite. Microbial samples were collected with periodontal curettes from 3- to 12-
mm-deep periodontal pockets at the baseline and at 2 weeks and 3 months. All
data types showed high interpersonal variability, and there was a significant correla-
tion between phylogenetic diversity and pocket depth at the baseline and a strong
correlation (rho � 0.21; P � 0.008) between metabolite diversity and maximum
pocket depth (MPD). Analysis of subgingival baseline samples (16S rRNA and shot-
gun metagenomics) found positive correlations between abundances of particular
bacterial genera and MPD, including Porphyromonas, Treponema, Tannerella, and De-
sulfovibrio species and unknown taxon SHD-231. At 2 weeks posttreatment, we ob-
served an almost complete turnover in the bacterial genera (16S rRNA) and species
(shotgun metagenomics) correlated with MPD. Among the metabolites detected, the
medians of the 20 most abundant metabolites were significantly correlated with
MPD pre- and posttreatment. Finally, tests of periodontal biofilm community insta-
bility found markedly higher taxonomic instability in patients who did not improve
posttreatment than in patients who did improve (UniFrac distances; t � �3.59; P �

0.002). Interestingly, the opposite pattern occurred in the metabolic profiles (Bray-
Curtis; t � 2.42; P � 0.02). Our results suggested that multi-omics approaches, and
metabolomics analysis in particular, could enhance treatment prediction and reveal
patients most likely to improve posttreatment.

IMPORTANCE Periodontal disease affects the majority of adults worldwide and has
been linked to numerous systemic diseases. Despite decades of research, the rea-
sons for the substantial differences among periodontitis patients in disease inci-
dence, progressivity, and response to treatment remain poorly understood. While
deep sequencing of oral bacterial communities has greatly expanded our compre-
hension of the microbial diversity of periodontal disease and identified associations
with healthy and disease states, predicting treatment outcomes remains elusive. Our
results suggest that combining multiple omics approaches enhances the ability to
differentiate among disease states and determine differential effects of treatment,
particularly with the addition of metabolomic information. Furthermore, multi-omics
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analysis of biofilm community instability indicated that these approaches provide
new tools for investigating the ecological dynamics underlying the progressive peri-
odontal disease process.

KEYWORDS 16S rRNA, diagnostics, metabolome, microbiome, molecular networking,
periodontal disease, periodontitis, shotgun metagenomics

Periodontal disease represents a variety of clinical manifestations of infectious
disorders affecting the tooth-supporting tissues (1). Traditionally, periodontal dis-

ease is divided into gingivitis and periodontitis (2). Gingivitis refers to inflammatory
disease limited to gingiva with no loss of tooth-supporting structures and with peri-
odontal pocket depths typically ranging from 2 to 4 mm. Periodontitis is a polymicro-
bial infection and an extension of gingivitis. The disease appears as a breakdown of the
periodontal ligament and alveolar bone that can lead to loss of teeth (2, 3). Periodon-
titis affects the majority of adults worldwide (4) and may contribute to various systemic
diseases, including atherosclerosis, cardiovascular disease (4, 5), diabetes (6), and
rheumatoid arthritis (7), among others (8). Despite decades of research, the substantial
differences among periodontitis patients in disease incidence, progressivity, and re-
sponse to treatment are poorly understood.

The prevention and resolution of periodontitis depend on the antimicrobial therapy
rendered, the timeliness of disease detection and intervention, the virulence and load
of the pathogenic agents, and the immune status of the host (9–11). Conventional
periodontal therapy includes a stabilization phase and a maintenance phase (11).
Stabilization of the disease is accomplished by periodontal biofilm disruption and
removal of calculus and other biofilm-retentive factors and may involve adjunctive
antimicrobial medication and/or surgery (12). Long-term goals in the maintenance
stage are to have patients exercise proper plaque control and commit to professional
prophylactic treatments to minimize the likelihood of a clinical relapse. While conven-
tional periodontal therapy and follow-up maintenance can be effective in reducing
inflammation and restoring damaged tissue, many patients do not improve signifi-
cantly and may even continue to decline posttreatment (13, 14). The addition of
antibiotic therapy may improve treatment outcomes, but some patients still do not
improve over the long term (15). Hurdles to the successful treatment of periodontitis
include microbial community complexity (16–18) and its pathogenicity (19), as well as
various protective and destructive immune responses to specific microbes or the
microbial consortium (9).

The application of culture-independent molecular methods to study periodontal
disease has shed new light on the true complexity of periodontal biofilms and perio-
dontitis. Single-marker gene studies assaying bacterial diversity using small-subunit
rRNA gene sequences (16S rRNA) have revealed highly complex and distinct periodon-
tal disease communities associated with healthy and diseased pockets even within the
same mouth (15–21). Other studies have revealed a pattern of extreme interpersonal
variability in microbiome composition that includes dramatic differences in response to
the same treatment regimen (15, 16). Shotgun metagenomic studies have also been
applied to study periodontitis. Metagenomic methods provide a less biased assessment
of species diversity (though with reduced depth) (22) and can be used to investigate
the gene content of microbial communities in relation to disease status. For instance,
metagenomic studies have suggested that the more diseased (deeper) pockets tend to
be richer in metabolic pathways, have a greater abundance of virulence factors, and are
poorer in biosynthesis pathways than healthy (shallower) pockets (23, 24).

Here, we report the results of a multi-omics time series analysis of periodontitis that
combined high-throughput sequencing of bacterial community 16S rRNA, shotgun
metagenomics, and a metabolomic analysis using tandem mass spectrometry (MS/MS).
Specifically, we used these multi-omics techniques to analyze samples in a follow-up to
a study investigating the use of 0.25% sodium hypochlorite (diluted bleach) on dental
biofilm formation (25). While Gonzales et al. (25) demonstrated a significant clinical
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improvement in periodontal disease during a longitudinal 3-month study, they did not
determine whether or not treatment altered the biofilm communities. Using the
multi-omics approach, we determined microbial composition, functional gene content,
and metabolic profiles at the baseline and how these communities shifted after 2 weeks
and 3 months both within and among individuals. Overall, our study demonstrated
how combining multi-omics data sets provides deeper insight into periodontal disease
and showed the promise of MS/MS in particular for enhancing our understanding of
periodontal biofilm dynamics.

RESULTS

DNA was successfully extracted from a total of 218 subgingival and 73 supragingival
samples from 34 individuals, and 287 of these samples from 33 of the 34 individuals
produced sufficient 16S rRNA amplicon product for next-generation sequencing (NGS;
see Table S1 in the supplemental material). We also selected 24 subgingival samples for
shotgun metagenome library preparation (it was cost prohibitive for us to analyze all
of the samples by shotgun sequencing), 23 of which produced sufficient sequence
information for analysis (Table S1). Illumina sequencing generated a combined total of
8,523,044 sequences (read length, 150 bp) for all of the 16S rRNA amplicon libraries,
with an average of 29,491 per library. Sequencing of metagenomic samples produced
352,668,299 reads (read length, 150 bp) before filtering, and 164,498,456 reads were left
after the removal of human sequences (53% human contamination). MS/MS extractions
were successful with a total of 217 samples from 25 individuals (Table S1 and S2).

Alpha diversity. Analysis of the pretreatment alpha diversity of 16S rRNA amplicon
operational taxonomic units (OTUs) found a significant relationship between the
maximum pocket depth (MPD) and the estimated phylogenetic diversity (PD) of
communities as measured by Faith’s PD. In other words, there was a correlation
between a sample collected from the deepest periodontal pocket of an individual at a
particular time point, which we term the MPD, and a higher overall PD of bacterial 16S
rRNA sequences in the sample (Spearman’s rank correlation; rho � 0.27, P � 0.01).
While the correlation with MPD was strong, there was no significant correlation
between 16S rRNA PD and pocket depth (rho � 0.1, P � 0.32). The per-sample diversity
of MS1 metabolite features was also assessed in relationship to MPD. Since ecological
alpha diversity estimates (e.g., Faith’s PD and Chao1) assume the presence of distinct,
independent species-like units that have the same ancestry, such measures appeared
to be inappropriate for investigating the diversity or complexity of metabolic features
from MS data. Instead, we calculated the mean and median numbers of metabolic
features of the pockets in an individual at a particular time point and determined
whether these were correlated with MPD. Both the mean (Spearman’s rank correlation;
rho � 0.21, P � 0.0001) and median (rho � 0.22, P � 0.007) numbers of metabolites
were strongly correlated with MPD. The correlations of mean and median numbers of
metabolites with pocket depth were also significant, but the correlations were not as
strong (mean, rho � 0.15; P � 0.05; median, rho � 0.21, P � 0.008).

Beta diversity. To analyze beta diversity, intersample distances were calculated
between all pairs of samples by using each of the multi-omics data sets. Weighted
UniFrac and Bray-Curtis distances were calculated for the 16S rRNA sequence data,
while Bray-Curtis distances were calculated for all other data sets, i.e., metagenomic
shotgun species, metagenomic pathway analysis, and metabolite features. Principal-
coordinate analysis (PCoA) of the pairwise distance matrices based on the subgingival
(Fig. 1) or supragingival (data not shown) samples showed no clear separation of
communities on the basis of disease class in any multi-omics data set. There was also
no correlation between greater UniFrac distances (16S rRNA) and the absolute differ-
ence between the MPDs of samples (Mantel test; r � 0.01105; P � 0.356).

Mantel tests. Mantel tests were used to detect correlations between all of the
various distance matrices for the subgingival samples. There was a highly significant
correlation between pathway abundance and species distance matrices (r � 0.299, P �

0.002; Table 1) from the metagenomic data. 16S rRNA genera versus metagenomic
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species and 16S rRNA versus metabolites had the second and third highest correlation
values (r � 0.117, P � 0.067; r � 0.103, P � 0.039), respectively.

Supervised classification. Supervised classification with the R package “random-
Forest” was performed for all of the multi-omics data types (26) to determine whether
any of the data sets were able to classify the data by either disease class or MPD. The
ratio of estimated generalization error to baseline error of the classifier for the subgin-
gival samples is presented for each data set in Table 2. Random forests classified
samples by disease class marginally better than random guessing with all multi-omics
data sets but no better than random guessing based on MPD except when the
classification was based on MS1 features (Table 2). Classification based on the MS/MS
data was the most consistent among the data types in terms of classification, with the
highest ratio when classifying by MPD (1.7) and the second highest ratio when
classifying by disease class (1.6; Table 2). Supervised classification based on random
forests with the same two categories was also performed for the supragingival samples,
but the ratio of generalization error to baseline error did not exceed 1 (no better than
random guessing) with any of the data sets (data not shown).

Feature correlations. Spearman rank correlation with false discovery rate (FDR)
correction for multiple comparisons was used to determine which, if any, of the most
abundant taxa (16S rRNA, metagenomics), functional pathways (metagenomics), or
metabolic features (MS1) correlated with MPD in subgingival and supragingival sam-
ples. To minimize the total number of comparisons evaluated, we performed correla-
tions of only the 20 most abundant taxa, pathways, or features in each data set. Table 3
summarized the results; for the full set of results for all of the data sets, see Table S4.
The majority of the 16S rRNA OTU clusters were identifiable to the genus level, with a
few exceptions that were only classified at the family or order level. Most of the
metagenomic taxa were classifiable to the species level with MetaPhlAn2, but several
were only classifiable to the family or order level. In contrast, we were unable to classify
any of the metabolic features with the network pattern matching when using the
Global Natural Products Social (GNPS) reference database. Thus, for the metabolomic
features, we have included the precursor mass and retention time for each feature (see
Table S4).

Analysis of 16S rRNA amplicon sequences and shotgun metagenomic reads de-
tected a significant shift in the distribution of most abundant taxa pre- and posttreat-
ment in the subgingival samples (Table 3). At the baseline, the 16S rRNA data analysis
found significant positive correlations with genera containing known periodontal
pathogens, such as Porphyromonas, Treponema, Desulfovibrio, and Mycoplasma (Ta-
ble S4). The shotgun metagenomic analysis identified positive correlations with Por-
phyromonas and Tannerella species, but also a number of Treponema species and other
members of the class Spirochaetes, though the correlations were not significant after
multiple-comparison correction. A number of other, more unusual genera, such as

TABLE 1 Mantel test results for Pearson’s correlations between pairwise distance matrices for subgingival samples onlya

Matrix 16S rRNA genera (subgingival) Shotgun species Pathway abundance Metabolites (subgingival)

16S rRNA genera (subgingival) —b 0.117, 0.067, 0.145 0.095, 0.473, 0.628 0.103, 0.039, 0.101
Shotgun species — — 0.299, 0.002, 0.009 0.016, 0.838, 0.838
Pathway abundance 17 17 — �0.048, 0.677, 0.8
Metabolites (subgingival) 124 17 17 —
aThe values above the blank diagonal are Mantel r statistics, P values, and q values (FDR-adjusted P values), in that order. The values below the diagonal are the
numbers of entries.

b—, not applicable.

FIG 1 PCoA plots of subgingival samples with disease classification overlaid. Disease classifications: red,
up to 6 mm; blue, �6 to 8 mm; orange, �8 mm. (A) 16S rRNA OTU-based weighted UniFrac distances
(analysis of similarity, R � 0.015; P � 0.27); (B) Shotgun metagenomic species abundance-based
Bray-Curtis distances (R � 0.006; P � 0.43); (C) Shotgun metagenomic pathway abundance-based
Bray-Curtis distances (R � 0.204; P � 0.051).
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Acholeplasma, Mogibacterium, Desulfobulbus, and Scardovia, and bacteria known only
through sequence analysis (no cultured representatives), such as SHD-231, TG5, and
ML615J-28, were also significantly positively correlated with MPD (Table 3). Members of
the bacterial genera Eikenella, Methylobacterium, and Scardovia were also abundant but
negatively correlated with MPD.

After 2 weeks, both 16S rRNA data and shotgun metagenomics revealed dramatic
shifts in the most abundant taxa (Table 3). Analysis of 16S rRNA sequences found that
only the genus Desulfovibrio remained among the 20 most abundant taxa. In addition
to a number of uncultivated genera, Butyrivibrio, Methanobrevibacter, Pedobacter, Pep-
tococcus, and Filifactor were significantly positively correlated with MPD, while Strep-
tococcus, Aerococcus, and Slackia became more abundant and were negatively corre-
lated with MPD (Table S4). The posttreatment metagenomic data set was dominated by

TABLE 2 Results of supervised classification of subgingival samples by using random
forestsa

16S rRNA genus or ratio Metabolites or ratiob Shotgun species or ratio

Disease class
Mycoplasma 228.231–228.234_555–569 Capnocytophaga granulosa
Order ML615J-28c 697.907–697.909_220–226 TM7
Desulfovibrio 872.632–872.634_222–227 Porphyromonas gingivalis
Filifactor 453.356–453.359_701–706 TM7
Porphyromonas 705.697–705.703_220–226 Porphyromonas gingivalis
Eubacterium 689.111–689.113_218–222 Capnocytophaga granulosa
Family Leptotrichiaceaec 284.294–284.296_672–675 Streptococcus cristatus
Desulfomicrobium 257.246–257.249_225–227 TM7
Family Tissierellaceaec 185.113–185.115_217–222 Leptotrichia buccalis
SHD-231 698.306–698.308_221–227 Order Neisserialesc

1.5b 1.61404b 1.71429b

MPD
Desulfovibrio 480.546–480.554_525–581 Shuttleworthia satelles
Family Leptotrichiaceaec 285.279–285.280_134–136 Tannerella forsythia
Order: ML615J-28c 272.294–272.297_370–376 Riemerellac

Family Tissierellaceaec 477.355–477.366_104–116 Selenomonas artemidis
Butyrivibrio 497.357–497.366_765–803 Treponema denticola
Pedobacter 382.156–382.159_330–362 Shuttleworthiac

Megasphaera 611.354–611.358_462–473 Leptotrichia wadei
Desulfomicrobium 285.277–285.280_149–177 Rothiac

Porphyromonas 497.083–497.091_349–367 Actinomyces oris
Paludibacter 475.096–475.105_713–757 Family Aerococcaceaec

1.25581b 1.70175b 0.89674b

aShown are the top 10 features, as indicated by importance scores, predicting disease class (top) and MPD
(bottom) from supervised classification analyses of subgingival samples.

bRatio of estimated generalization error to baseline error of the classifier for subgingival samples.
cNot classifiable at a lower taxonomic level.

TABLE 3 Summary of Spearman rank correlations for subgingival features correlated with
MPD pre- and posttreatmenta

Data set

No. of features correlated

Positively Negatively Significantly (P < 0.05)a

Pretreatment
16S rRNA genera 14 6 12
Metagenomes (taxa) 18 2 0
Metagenomes (pathways) 9 11 0
Metabolites 4 16 20

Posttreatment
16S rRNA genera 12 8 11
Metagenomes (taxa) 6 14 0
Metagenomes (pathways) 7 13 0
Metabolites 17 4 20

aThe top 20 results for each feature are shown. Full results are shown in Table S4.
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unclassified Selenomonas spp. and Prevotella and Dialister spp., which were all nega-
tively correlated with MPD, while Mogibacterium and Eggerthia spp. were positively
correlated with MPD.

Analysis of functional pathways in the metagenomic shotgun data and MS1 metab-
olite features also uncovered complete turnover in both pathways and metabolites
abundant before and after treatment (Table 3). While none of the pathway correlations
were significantly correlated with MPD either positively or negatively, all 20 of the more
common feature types were correlated with MPD both before and after treatment. Also,
while 16 of the 20 pretreatment features were negatively correlated with MPD, 18 of
the 20 posttreatment features were positively correlated with pocket depth.

MS2 analysis. Figures 2 and S1 illustrate the MS2 network results in relation to
treatment and pocket depth, respectively. The MS2 of a molecule can be considered a
type of molecular “fingerprint” that can be used to search an existing MS2 database of
known molecules (the GNPS database) to find a match, much like the FBI matches
human fingerprints. Approximately 42.9% of the total of 2,153 features determined by
MS2 were found only in samples before or after treatment, while 57.1% of the rest were
shared.

CIS analysis. In the final analysis, which we termed a community instability (CIS)
analysis, we use the weighted UniFrac or Bray-Curtis distances calculated between all
pairs of samples to determine how “stable” particular periodontal microbial commu-
nities were over time. Under our definition of stability, greater UniFrac or Bray-Curtis
distances between two samples of the same periodontal pocket at different time points
indicated greater instability of the microbial community in the pocket. Using this
measure, we compared the average community stability of periodontal pockets that

FIG 2 Molecular network analysis of UPLC-Q-TOF MS2 data. The networks were based on subgingival
samples collected from the same periodontal pockets of 12 individuals before and after treatment.
Individual MS2 features are highlighted on the basis of whether they were detected in samples collected
before treatment, after treatment, or both. The Venn diagram indicates the numbers of features unique
to before-treatment (blue) or after-treatment (purple) samples or common to both sets (orange).
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improved after treatment with those that did not improve. A periodontal pocket was
considered “improved” if the pocket depth measurement became smaller after treat-
ment (shallower) and “not improved” if it stayed the same or increased (deeper pocket).
Our analysis of instability based on the 16S rRNA data found significantly greater CIS in
periodontal pockets that did not improve than in pockets that improved, while analysis
of the Bray-Curtis distances calculated on the basis of the MS/MS metabolite features
found the exact opposite (Fig. 3).

DISCUSSION

The etiology of periodontal disease has proven to be especially difficult to disen-
tangle because of both the complexity of the periodontal biofilm community and the
high level of individual variability among patients in both bacterial composition and
treatment outcomes. Our multi-omics analysis of patients with severe periodontal
disease provided deep and nuanced insights into the complex dynamics of this
polymicrobial infection. The combination of 16S rRNA marker gene sequencing and
shotgun metagenomics complemented each other in the analysis of taxonomic diver-
sity. The different data sets concurred on a number of key taxa previously implicated
in periodontal disease but also highlighted other microbes that were “missed” in some
data sets. Most surprisingly, however, was the strength of the patterns in the untar-
geted metabolomic data set. Of the three different data sets, MS diversity and abun-
dance had the strongest associations with disease and pocket depth. Moreover, our
time series analysis of the metabolomic features showed that diversity moved in the
opposite direction with respect to taxonomic diversity, suggesting that the addition of
MS information could add an important new dimension to our understanding of
periodontal disease dynamics.

Similar to previous NGS studies of periodontal disease (16, 21), analysis of the 16S
rRNA data set found a positive relationship between the within-sample PD (Faith’s PD)

FIG 3 CIS analysis. Bar graph illustrating changes in the microbiome composition of individuals who improved in
measurable pocket depth (�x mm) between time points with treatment and individuals who did not improve or
got worse with treatment. The bars indicate the average UniFrac and Bray-Curtis distances between samples of the
same periodontal pocket pretreatment and 2 weeks after treatment. Sample numbers are presented above the
bars. t tests corrected for multiple comparisons were used to compare distances between categories for each data
set: 16S rRNA OTU-based distances (weighted UniFrac), 16S rRNA genus-based distances (Bray-Curtis), and MS1

metabolite feature-based distances (Bray-Curtis).
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of subgingival samples and periodontal pocket depth (MPD) pretreatment (Spearman’s
rank correlation; rho � 0.27, P � 0.01). In other words, the evolutionary biodiversity of
the biofilm bacterial communities was generally higher in deeper periodontal pockets,
which coincides with the progressive nature of the disease. The mean per-sample
abundance of metabolic features (MS1 data) was also strongly correlated with MPD with
a much lower P value than with the 16S rRNA data (rho � 0.21, P � 0.0001), suggesting
that metabolite abundance may be a more sensitive indicator of community status in
regard to changes in periodontal disease status.

Beta diversity analyses (between-sample comparisons of biodiversity), on the other
hand, found no clear relationship between disease class and subgingival or supragin-
gival diversity within the 16S rRNA, shotgun metagenomic, or metabolomic data sets
either pre- or posttreatment (Fig. 1; data not shown). These findings run somewhat
counter to those of previous studies using 16S rRNA data, which found that “healthy”
sites could be distinguished from “diseased” sites on the bases of beta diversity
comparisons. One explanation for this discrepancy could be the difference in classifi-
cation between our study and previous studies. Many of the patients in our study had
extremely deep periodontal pockets, and the healthiest category in our study included
patients with periodontal pockets that would have been classified as diseased in those
other studies. What was a consistent theme across the studies, however, was the high
level of individual variability among patients with the same disease classification or
pocket depth in all of the data sets. While having proven useful in other deep-
sequencing studies to classify environments, supervised learning methods were not
effective at classifying samples on the basis of disease class or MPD (Table 2).

A detailed look at the abundances of specific bacterial taxa and MS1 features found
that numerous specific lineages correlated with MPD and also that the taxa and
features correlated with MPD changed almost completely posttreatment. On the basis
of the analysis of the 16S rRNA data, a number of genera containing known oral
pathogens were positively correlated with MPD pretreatment (i.e., the abundances
tended to be higher as MPD increased), including Porphyromonas, Treponema, and
Mycoplasma, while other genera previously associated with a healthier periodontium
were negatively correlated, including Haemophilus and Eikenella (Table 3). These results
were supported by the shotgun metagenomic data, which found similar positive
correlations with multiple Porphyromonas and Treponema species/strains, as well as a
number of Tannerella species and several unknown members of the class Spirochaetes
(Table 3). Also notable in the analysis of the 16S rRNA data was the high number of
relatively rare, poorly studied, or completely unknown bacterial taxa (e.g., SHD-231,
TG5, and ML615J-28) that correlated with MPD. Genera such as Desulfovibrio, Achole-
plasma, Mogibacterium, and Scardovia have all been identified in the oral cavities of
humans or animals and can be found in the HOMID database (27), but their specific
roles in periodontal disease are unknown.

Genus- and species-level analyses of posttreatment samples showed an almost
complete turnover in the 20 most abundant taxa for both the 16S rRNA and shotgun
metagenomic data. In the 16S rRNA data, only Desulfovibrio and the unknown taxon
ML615J-28 remained among the 20 most abundant genera, and many other genera,
including Streptococcus, a genus strongly associated with greater health, became more
abundant. This same pattern held with the shotgun metagenomic data, where the 20
more abundant species and strains were completely different, with many more nega-
tively correlated with MPD posttreatment (Table 3). The low P values after multiple-
comparison corrections for the taxonomic and pathway correlations of the shotgun
metagenomic data (Table 3) are likely a result of the relatively small number of samples
studied (i.e., 19).

The most surprising result of the correlation analysis was the number of significant
correlations found in the 20 most abundant MS1 features both pre- and posttreatment.
All of the top features were significantly correlated with MPD both pre- and posttreat-
ment, and none of the features were the same in the two categories (Table 3).
Furthermore, the majority of the most abundant pretreatment MS1 features (16 of 20)
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were negatively correlated with MPD, but after treatment, the majority (18 of 20) were
positively correlated with MPD. These data suggest that the metabolite abundance
information may provide a particularly sensitive indicator of periodontal pocket status
and biofilm dynamics over time or after disturbance. Furthermore, the switch from
negatively correlated to positively correlated associations in the MS1 data was partic-
ularly striking and may indicate a fundamental shift in the whole community’s meta-
bolic function.

While analysis of the MS1 feature abundances allowed for a high degree of discrim-
inatory power, analysis of the MS2 data was unable to identify these discriminatory
features. Most studies that have generated MS2 data for complex microbial communi-
ties have also reported a very low number of matches (28, 29). For example, a recent
study using multi-omics, including MS/MS data, to study the human microbiome in
relation to fermented food consumption reported a 1.3% match rate of the MS/MS
results (29). A 1.8% match rate is the mean rate of matching for all metabolomic data
sets in the GNPS database (28). Of these, a majority were food related (e.g., gingerol
from ginger root) or indicative of animal cells (e.g., cholesterol and other lipids) and
none were clearly bacterial in origin.

Therefore, it is not surprising that we determined the identities of so few metabo-
lites in our complex microbiological samples. Nevertheless, we did find some surprising
patterns in the number of features that were unique to samples before treatment as
opposed to after treatment (Fig. 2). Around 42.9% of the total of 2,153 features
determined by MS2 were found only in samples before or after treatment, with 57.1%
of the rest shared. Interestingly, the same pattern was not true of pocket depth (Fig. S1).
In a previous study of human skin that combined MS/MS and 16S rRNA amplicon
sequencing, Bouslimani et al. (30) found no correlation between bacterial diversity and
metabolic features, indicating that many or most of the features detected were not
bacterial in origin. In the present study, on the other hand, Mantel tests assessing the
correspondence between distance matrices determined a correlation coefficient (r) of
0.103 (P � 0.039; corrected P � 0.101; Table 1). This correlation was nearly as strong as
the one between the 16S rRNA genera and shotgun metagenomic taxon distance
matrices (Table 1). However, since MPD is also correlated with bacterial alpha diversity,
this make it difficult to conclude that the metabolites were of bacterial origin, especially
since host-derived metabolites might also be expected to increase in deep infected
pockets.

The final hypothesis we tested was whether the dynamism of the microbial com-
munities was indicative of treatment outcome, perhaps more so than shifts in species
composition. To test this hypothesis, we performed a CIS analysis that used the UniFrac,
Bray-Curtis, or other community distance metrics to determine how much a community
changes over time. For example, a large 16S rRNA UniFrac distance between two
samples of the same periodontal pocket community indicates a greater change in the
overall community composition (more “instability”) than a small UniFrac distance. Using
this test, we found a striking difference in the stability of periodontal pockets that
showed improvement versus those did not change or worsened: average CIS values
based on the 16S rRNA data were higher for periodontal pocket communities that did
not improve than for those that did improve (Fig. 3). Interestingly, a CIS analysis of the
metabolomic data showed the exact opposite trend; i.e., average CIS (16S rRNA) values
were lower for pockets that did not improve than for those that did improve (Fig. 3).

The correspondence between high levels of taxonomic instability and disease
suggests an important role for the immune system in determining the outcome of
treatment. A review by Darveau (31) posited that periodontal disease is a general
disruption of immune system homeostasis by key pathogens such as Porphyromonas
gingivalis. Thus, the higher instability of individuals who did not improve could be a
reflection of a more easily disrupted homeostasis. Since periodontal disease is a
complex polymicrobial infection with many pathogens and individual immune re-
sponses to specific pathogens can vary significantly, this may help explain why it has
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been so difficult to correlate the presence of specific pathogens or even community
structures with treatment success in periodontal studies.

So, how to explain the opposite trend occurring with the metabolites? One possible
explanation is that the bacterial communities of healthier pockets have a greater
community function and are more responsive to disturbance over time. Ecological
studies of macroscopic communities (e.g., grasslands, coral reefs, etc.) show a general
relationship between diverse ecosystem function and community health and resilience.
Alternatively, the greater average metabolic instability in periodontal pockets that
showed improvement may be attributable to the host rather than the bacterial
communities. For metabolites, the unhealthy pockets are probably inflamed and mi-
crobes are suppressed by the immune system. Host metabolites might dominate in this
scenario, which would probably lead to higher stability. On the other hand, if the
microbial community is active, it is probably producing a diverse array of metabolites
that change constantly, resulting in lower stability.

In summary, the multi-omics approach showed that this combination of data types
(marker gene analysis, metagenomics, and metabolomics) provided rich and comple-
mentary insights into the analysis of chronic periodontal disease. Particularly exciting
were the high sensitivity of the MS/MS data to temporal changes in the microbial
community and the fact that the shifts in MS features appeared to reflect different
processes than the taxonomy-based analyses. This indicates that the MS/MS approach
could be a powerful additional tool for studying periodontal disease. To better under-
stand the progression and treatment of periodontal disease, future studies should also
include a more direct analysis of the host immune system over time (e.g., blood serum
and gingival cytokine analysis), include bacterial transcriptome analysis, and focus more
on the origins of the metabolic features. In addition, future studies should also follow
a more rigorous time series sampling protocol by sampling the same subgingival
pocket from the same tooth regardless of changes in health status. Switching pockets
disrupts the ability to follow changes in the biofilm over time and determine the effects
of treatment by culture-independent methods. It is also important to note that using
a nonconventional treatment may cause less of a disturbance of the biofilm than
conventional periodontal treatment. Finally, future studies should attempt to analyze a
larger number of individuals, especially by shotgun metagenomic analysis, which has
become ever more feasible as the price of sequencing continues to decrease.

MATERIALS AND METHODS
Study participants. The participants enrolled in this study included a total of 19 males and 15

females with a mean age of 41 years, all of whom were patients at the graduate periodontology clinic
at the Ostrow School of Dentistry of the University of Southern California (USC). Patients had an average
of 27 teeth. Each patient exhibited at least four separate teeth with a pocket depth of �6 mm. The
patients were divided into a test group of 17 who received a sodium hypochlorite rinse, and a control
group of 17 who received a water rinse (Tx_Ctl column, Table S1). This treatment has been described
elsewhere in detail (25, 32). All study patients received a comprehensive clinical examination at the
baseline (visit 1), at day 14 (visit 2), and at month 3 (visit 3). No scaling was performed before or during
the study, and the patients did not use a chlorhexidine rinse. Microbiological samples from 3- to
12-mm-deep periodontal pockets and from supragingival sites were obtained of each study patient at all
three study visits (Table S1). For deep periodontal pocket sampling, three teeth were sampled per patient
per time point with a sterile Gracey curette per sampled tooth. Samples from individual teeth were
analyzed separately. In a few patients, where the previous diseased sample sites became minimally
diseased or healthy after therapy (25), other deep pockets in the same dentition were then sampled. For
the supragingival sampling, one sample pooled from three teeth with the heaviest plaque accumulation
was collected per patient per time point with a sterile periodontal curette. After sampling, the paper
points were stored in 200 �l of 1� phosphate-buffered saline solution and frozen immediately at �80ºC
at USC. Samples were shipped on dry ice to San Diego State University and stored at �80ºC until they
could be processed. Clorox regular bleach (The Clorox Company, Oakland, CA) diluted with tap water
served as the source of 0.25% sodium hypochlorite. Participants were asked to rinse their mouths twice
weekly for 30 s with either 15 ml of a fresh solution of 0.25% sodium hypochlorite or 15 ml of water.
Participants were also instructed in conventional oral hygiene, but they received no subgingival or
supragingival scaling prior to the study. This study was approved by the USC Health Sciences Campus
Institutional Review Board (no. HS-10-00509). All patients understood and signed informed-consent
forms and Health Insurance Portability and Accountability Act documents before enrolling in this study.
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DNA extraction, PCR amplification, and NGS. DNA extraction and amplification of 16S rRNA gene
sequences in accordance with the protocols set forth by the Earth Microbiome Project (EMP) (33).
Extractions were performed at a biosafety level 2 facility at San Diego State University. Samples were
thawed on ice and vortexed briefly for 3 to 5 s, and 50 �l of the thawed sample was extracted with the
Mo Bio PowerSoil Extraction kit (Mo Bio Laboratories, Carlsbad, CA) into a final volume of 50 �l, which
was stored at �80°C until further processing. Amplicon sequencing was performed with primers
designed to be massively multiplexed and cover the V4-V5 hypervariable region of the 16S rRNA gene
by the standard methods outlined by the EMP (http://www.earthmicrobiome.org/emp-standard
-protocols/16S/). To minimize contamination, reaction mixtures were prepared in small batches (12 to 14
samples at a time) that were discarded and tests were repeated if the reactions failed or there was
evidence of contamination in the negative control. Samples were gel purified, diluted to equimolar
concentrations, pooled, and then sequenced on the Illumina MiSeq platform at The Scripps Research
Institute (TSRI) core sequencing facility (La Jolla, CA). Metagenomic libraries were prepared with 1 ng of
genomic DNA and the Nextera XT protocol in accordance with the manufacturer’s instructions (Illumina),
and the libraries were sequenced on an Illumina HiSeq platform at TSRI.

16S rRNA data analysis. Sequence data were analyzed with QIIME version 1.9 by using default
parameters unless otherwise noted (34). Sequences were clustered into OTUs at 97% by open-reference
OTU picking with UCLUST against the Greengenes database version gg_13_8 preclustered to 97%
identity (35, 36) and classified with the RDP classifier (release 11) (37) retrained on the Greengenes
database preclustered at 97% identity. Representative sequences were then aligned with PyNAST (38),
and a phylogenetic tree was constructed with FastTree 2 (39) for PD calculations. We also evaluated
bacterial diversity within and between samples (alpha and beta diversity, respectively) with QIIME v. 1.9
by using Chao1, observed species, PD, and weighted and unweighted UniFrac (40). For the commands
used, see Text S1.

Metagenomic data analysis. Metagenomes were obtained by shotgun sequencing of a subset of 24
samples, 23 of which produced high-quality data. These data were filtered for human contamination with
KneadData (https://bitbucket.org/biobakery/kneaddata/wiki/Home). In choosing the samples for shot-
gun metagenomic sequencing, we attempted to sequence as many samples as possible from the same
subgingival pocket of the same patient at three different time points. This was not always possible
because the same teeth and pockets were not always sampled at different time points because of the
protocol. There were 352,668,299 reads before filtering, and 164,498,456 reads were left after human
sequences were removed (53% human contamination). The remaining bacterial reads were analyzed
with the HUMAnN2 pipeline (41) to investigate microbial pathways. The metagenomes were also run
through MetaPhlAn2 (42) to identify species-level taxonomic assignment in the samples. MetaPhlAn2
uses Bowtie2 (43) to align reads. HUMAnN2 aligns reads with ChocoPhlAn (a database maintained by the
Segata lab at the University of Trento) with Bowtie2, as well as Diamond (44) and UniRef50 (45) for reads
that were not mapped successfully with Bowtie2. The PWY codes were identified with MetaCyc (46). The
three output biom files from HUMAnN2 (gene families, pathway abundance, and pathway coverage) and
the output from MetaPhlAn2 were run through QIIME’s core_diversity_analyses.py for alpha and beta
diversity calculations. For the commands used, see Text S2.

Metabolite extraction. Supragingival tooth scrapings and saliva were extracted with 1 ml of 2:1:1
methanol-acetonitrile-water. The extracts containing organic solvent were vortexed briefly, sonicated for
10 min, and incubated at room temperature for 1 h. Following incubation, the extracts were centrifuged
at maximum speed for 5 min. The solvent was transferred to a fresh vial and evaporated. The dried
extract was stored at �80°C.

UPLC-MS/MS analysis. The extracted metabolites were dissolved in 80% methanol in water and
analyzed with the UltiMate 3000 ultraperformance liquid chromatography (UPLC) system (Thermo
Scientific) with a Kinetex 1.7-�m C18 reversed-phase UHPLC column (50 by 2.1 mm) and a MaXis Q-TOF
(quadrupole time of flight) mass spectrometer (Bruker Daltonics) equipped with an electrospray ioniza-
tion (ESI) source. The gradient employed for chromatographic separation was 2% solvent B (98%
acetonitrile and 0.1% formic acid in liquid chromatography-MS grade water with solvent A as 0.1% formic
acid in water) for 2 min, a ramp of 2% B to 50% B in 2.5 min, holding at 50% B for 1.5 min, a second step
of 50% B to 100% B in 5 min, holding at 100% B for 1 min, 100% to 2% B in 0.5 min, and holding at 2%
B for 1.5 min at a flow rate of 0.5 ml/min throughout the run. MS results were acquired in positive-ion
mode in an m/z range of 50 to 2,000. An external calibration with ESI-L Low Concentration Tuning Mix
(Agilent Technologies, Santa Clara, CA) was performed prior to data collection, and the internal calibrant
Hexakis(1H,1H,3H-tertrafluoropropoxy)phosphazene was used throughout the runs. A capillary voltage
of 4,500 V, a nebulizer gas (nitrogen) pressure of 2 � 105 Pa, an ion source temperature of 200 C, a dry
gas flow rate of 9 liters/min, a source temperature of 200ºC, and spectral rates of 3 Hz for MS1 and 10 Hz
for MS2 were used. To acquire MS/MS fragmentation, the 10 most intense ions per MS1 were selected and
the collision-induced dissociation (CID) energy shown in Table S3 was used. Basic stepping function was
used to fragment ions at 50 and 125% of the CID calculated for each m/z from Table S3 with a timing
of 50% for each step. Similarly, basic stepping of collision peak-to-peak radio frequency voltages of 550
and 800 V with a timing of 50% for each step and transfer time stepping of 57 and 90 �s was employed.
The MS/MS active-exclusion parameter was set to 3 to exclude the fragmentation of precursor ions once
three spectra per precursor ion were collected. This exclusion parameter was released after 30 s. The
mass of the internal calibrant was excluded from the MS2 list.

MS/MS feature analyses. Calculations of the diversity and abundance of sample metabolomic
features were based on the precursor MS1 scan (the MS1 data), which records the mass/charge ratio of
all of the ions detected in that scan (30). From that value, the MS1 abundance of each molecule was
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extracted (feature detection shown by parent mass and retention time), and these data were used for all
of the statistical analyses in this study (e.g., correlation analyses, supervised learning, and Mantel tests).
The MS2 results generated during data-dependent acquisition were used to create molecular networks
and Venn diagrams. Molecular networks were created by using the GNPS database online workflow at
http://gnps.ucsd.edu, and the data set was used to search various MS/MS libraries available in the GNPS
database by using the same workflow. The data set is publically available at the online MassIVE
repository of the GNPS database under MassIVE ID number MSV000078894. The molecular network
color coded by pre- or posttreatment is available at http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task
�a38df2291f814d2fb3d2d8779f191047. The molecular networking color coded by various pocket depths is
available at http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task�99735d22369942d5a85832ee9e99d12d.

Nucleotide sequence(s). The 16S rRNA sequences determined in this study have been deposited in
the European Nucleotide Archive under project PRJEB19122 (http://www.ebi.ac.uk/ena/data/view/
PRJEB19122). The shotgun metagenomic sequence data are available to the public at MG-RAST under
accession numbers mgm4730562.3 to mgm4730585.3 (http://metagenomics.anl.gov/mgmain.html
?mgpage�project&project�mgp21311).
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