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Abstract

Cancer is a disease in which normal physiological processes are imbalanced, leading to tumour

formation, metastasis and eventually death. Recent biological advances have led to the advent of

targeted therapies to complement traditional chemotherapy and radiotherapy. However, a major

problem still facing modern medicine is resistance to therapies, whether targeted or traditional.

Therefore, to increase the survival rates of cancer patients, it is critical that we continue to identify

molecular targets for therapeutic intervention. The Inhibitor of Apoptosis (IAP) proteins act

downstream of a broad range of stimuli, such as cytokines and extracellular matrix interactions, to

regulate cell survival, proliferation and migration. These processes are dysregulated during

tumourigenesis and are critical to the metastatic spread of the disease. IAPs are commonly

upregulated in cancer and have therefore become the focus of much research as both biomarkers

and therapeutic targets. Here we discuss the roles that IAPs may play in cancer, and the potential

benefits and pitfalls that targeting IAPs could have in the clinic.
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Introduction

Since their discovery almost 20 years ago, the Inhibitor of Apoptosis (IAP) family of

proteins have gathered growing interest as possible drug targets in a wide range of

malignancies. IAPs are commonly upregulated in cancer, and although initially thought to

only regulate cell death, they are now known to be involved in many aspects of both normal

tissue function and tumour development. In this review we will focus on summarising how
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IAPs affect the signalling pathways dysregulated in cancer and the current IAP-based

therapies that are in development.

The IAPs were first discovered in baculoviruses, where they were found to encode for

proteins (cpIAP, OpIAP) able to inhibit apoptosis in the host cell [1,2]. IAPs are

evolutionarily conserved and defined by the presence of at least 1 Baculovirus IAP Repeat

(BIR) domain. In humans there are 8 IAPs (genes birc1–8), NAIP, cIAP1, cIAP2, XIAP,

Survivin, BRUCE/Apollon, Livin and Ts-IAP (Figure 1). In addition to the BIR domains,

IAPs possess a number of other distinct functional domains that impart broader functionality

on mammalian IAPs than their viral counterparts [3–5].

Core Functions of IAPs

From early over-expression studies, it was proposed that IAPs prolong cell survival by

inhibiting the activity of initiator (caspase-9) and effector (caspases-3&−7) caspases by

binding to the active caspases [6]. However, XIAP is now known to be the only mammalian

IAP that is a bona fide caspase inhibitor [7]. XIAP also ubiquitinates caspases via its E3

ubiquitin ligase domain, resulting in caspase degradation or inactivation [8–10].

Survivin, in the presence of HBXIP co-factor, binds to and inhibits pro-caspase 9,

preventing its recruitment to Apaf1 [11]. In addition Survivin interacts with XIAP, resulting

in stabilisation and synergistic inhibition of caspase 9 [12]. The cIAPs, while being able to

bind to caspases, do not directly inhibit caspase activity and instead they mediate caspase

ubiquitination and degradation [13,14] (Figure 2A).

It is now known that caspase regulation represents only a small proportion of the

mechanisms by which IAPs impact cell longevity. IAPs also regulate cytokine signals and

have a role in linking cell-ECM interactions to survival. Moreover, IAPs are signalling

effectors in a range of additional cellular processes, including cell cycle and migration

(Figure 2B–G).

The role of IAPs in survival signalling

Tumour necrosis factor α (TNFα) is a pleiotropic cytokine, associated with the generation of

an inflammatory response. Following TNFα binding to TNF-R1, both TRADD and RIP1 are

rapidly recruited to the receptor complex. TRADD then recruits TRAF2, which associates

with cIAP1 and 2 to form the survival-inducing “Complex-I”. Polyubiquitination of RIP1 in

a non-degradative Lys63 manner by cIAP1 and cIAP2 allows the recruitment of proteins

that activate canonical NF-κB signalling, leading to upregulation of survival proteins, such

as c-FLIP [15]. In the absence of cIAPs, NF-κB is not activated and the failure to upregulate

c-FLIP leads to TNF-induced activation of caspase-8 and apoptosis via formation of a death-

inducing “Complex-II” [16,17] (Figure 2B).

As well as influencing the canonical NF-κB pathway, cIAPs affect the non-canonical NF-κB

pathway through regulation of NIK [18]. In unstimulated cells, ubiquitin-mediated

degradation of NIK by cIAPs prevents non-canonical NF-κB activation. Following

activation of receptors belonging to the TNFR superfamily, such as CD40, cIAPs are
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recruited to the receptor complex, freeing NIK to accumulate and activate non-canonical

NF-κB signalling [19] (Figure 2C). Therefore, cIAPs have significant roles in multiple NF-

κB pathways.

Downstream of TGFβ receptor activation, NF-κB is activated by 2 main pathways. In the

first pathway, XIAP induces transcription of NF-κB responsive genes in a Smad4 dependent

manner [20]. In the second pathway XIAP forms a complex with TGFβ-activated kinase 1

(TAK1) and its binding partners TAB1 and TAB2, resulting in TAK1 activation. TAK1

phosphorylates the NF-κB inhibitor, IκB, resulting in its proteasomal degradation and the

activation of NF-κB. TGFβ mediated TAK1 activation results in the upregulation of the pro-

apoptotic p38 and JNK signalling pathways [21]. However, NF-κB activation induces

transcriptional upregulation of XIAP, which then mediates ubiquitination and proteasomal

degradation of TAK1 to suppress pro-apoptotic JNK signalling in a pro-survival feedback

loop [5,22] (Figure 2D).

IAPs also regulate other pro-survival signalling cascades via their E3 ligase domain. For

example, XIAP ubiquitinates PTEN leading to Akt phosphorylation and activation [23].

cIAP1 ubiquitinates the c-myc regulatory protein, MAD1, thereby activating c-myc. In this

context, cIAP1 acts synergistically with c-Myc to enhance tumour formation [24]. cIAPs can

also promote MAPK-dependent cell proliferation and survival in TNF-stimulated cells. The

cIAPs ubiquitinate TRAF3 (TNFR associated factor 3), thereby allowing TRAF2/6:MAPK

translocation to the cytosol and activation [25].

The role of IAPs in ECM-mediated survival

Interactions between cells and their surrounding Extracellular Matrix (ECM) mediate the

spatial control of cell fate, and are crucial in determining the survival of normal cells

[26,27]. Perturbation of ECM-adhesion signals induces apoptosis by activating Bax-driven

mitochondrial permeabilisation [28]. Survivin and XIAP cooperate to upregulate several

ECM proteins, particularly fibronectin [29]. The resulting fibronectin-activated signalling

via FAK and Src kinases promotes survival in response to altered adhesion of cells to ECM

[29]. Interestingly, as an early response to altered cell-ECM interactions, XIAP can

translocate to mitochondria where it forms a 400 kDa complex and contributes to

mitochondrial permeabilisation [30]. Therefore, depending on temporal context, IAPs can

both protect cells or promote ECM-regulated apoptosis (Figure 2E).

The role of IAPs in cell cycle

Although cytoplasmic Survivin has a role in promoting cell survival, its primary function is

in the nucleus, where it is required along with Aurora B kinase and INCENP to form the

chromosomal passenger complex during mitosis. Survivin knockout embryos die at E4.5 due

to failed cytokinesis while cells lacking Survivin display a multiploidy phenotype [31,32].

Interestingly, the survival and proliferative functions of Survivin are spatially distinct.

Survivin contains a nuclear export sequence and can be found in both the nucleus and the

cytosol: while nuclear Survivin regulates proliferation, the cytoplasmic protein acts to

suppress apoptosis [33,34]. Moreover, Survivin, along with its family member Bruce, are

also implicated, in cytokinesis [35] (Figure 2F).
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The role of IAPs in migration

IAPs have a number of roles in cell migration. XIAP is recruited via caveolin-1, to α5-

integrin adhesion complexes, where it interacts with focal adhesion kinase (FAK). This α5-

integrin:caveolin:FAK complex is required for activation of ERK-dependent shear stress–

induced endothelial cell migration [36–38]. Furthermore, XIAP can promote migration and

invasion via interactions with RhoGDI and subsequent regulation of actin polymerisation

[39].

In contrast to promoting migration, IAPs can also inhibit cellular motion. XIAP and the

cIAPs bind to c-Raf, resulting in ubiquitination of c-Raf, in a manner dependent upon the

Hsp90-mediated quality control system, but independent of their E3-ligase activity.

Knockdown of XIAP resulted in stabilisation of c-Raf and increased c-Raf-dependent cell

migration [40]. Additionally, XIAP and cIAP1 can reduce migration by mediating the

proteasomal degradation of Rac1 [41]. Therefore, IAPs influence cell migration in a context-

dependent manner (Figure 2G).

IAPs contribute to cancer progression

The above discussion reveals that IAPs have a broad portfolio of roles in regulating cell

survival, proliferation and migration. Moreover, IAPs are regulated during normal

developmental programmes that become subverted in cancer [42]. It is therefore not

surprising that there is an ever-expanding body of evidence connecting changes in IAP

expression with tumourigenesis [43–46].

Survivin

The survivin gene is among the top 5 cancer-associated genes. It is upregulated in the vast

majority of cancers and is associated with resistance to both chemo and radio-therapy, as

well as a poor prognosis [47]. The divergent functions of nuclear and cytoplasmic Survivin

are highlighted in studies on breast cancer where elevated levels of cytoplasmic Survivin

correlate with a poorer patient outcome owing to its anti-apoptotic function, while increased

nuclear Survivin is correlated with a better outcome [31,33,48–51].

As a chromosomal passenger protein, Survivin acts to stabilise microtubules, which results

in resistance to chemotherapeutics, such as Vinca alkaloids [52]. Survivin, via its interaction

with Aurora B kinase, may also function to promote the indefinite proliferation potential of

cancer cells by upregulating human telomerase reverse transcriptase [53].

Perhaps surprisingly, Survivin also regulates cancer cell autophagy by interacting with the

key autophagy regulator, Beclin [54]. In glioma cells, knockdown of Beclin resulted in

decreased Survivin levels, and increased apoptotic sensitivity to TRAIL. In prostate cancer

cells, chemokine-mediated protection from autophagic cell death is mediated by

upregulation of Survivin [55].

XIAP

XIAP expression is upregulated in a variety of cancers, including breast, lung, renal and

bladder carcinoma [56–59]. XIAP may mediate anoikis resistance to contribute to tumour
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metastasis [60,61]. However, the correlation of XIAP expression and prognosis is unclear.

Increased XIAP levels correlate with disease severity in acute myeloid leukaemia and

prostate cancer, but not non-small cell lung carcinoma [58,62,63]. In a recent study in which

XIAP was stably over-expressed at levels 2–5 times higher than normal, which is similar to

levels seen in cancer samples, XIAP only provided chemoresistance when combined with

the loss of the XIAP antagonist, Smac/DIABLO. Therefore, elevated levels of XIAP alone

may not be a prognostic indicator [64].

cIAPs

Genomic changes in cIAPs are associated with some tumour types. For example

chromosomal amplification of 11q21–q23, which encodes both cIAP1 and cIAP2, has been

observed in oesophageal squamous cell carcinomas [65,66]. In MALT (mucosal associated

lymphoid tissue) B cell lymphomas, cIAP2 gene translocation results in expression of a

cIAP2-MALT fusion protein. This drives constitutive NF-κB activation, via a UBA domain

dependent binding of NEMO [67]. Similarly, the UBA domain of cIAP1 has also been

shown to be essential for cIAP1-mediated oncogenesis [67]. cIAP1 and cIAP2 are often

over-expressed in cancers along with YAP, as they are all located within the same genetic

locus. In fact, in hepatoma, cIAP and YAP cooperate to induce tumourigenesis [68,69].

IAPs are potential therapeutic targets in the clinical setting

The overwhelming data that IAPs suppress apoptosis, enhance survival signalling and are

upregulated in many cancer types argues that they may be excellent therapeutic targets.

Particularly appealing is the possibility that IAP antagonists might specifically target cancer

cells over normal cells.

Numerous pre-clinical studies have shown that targeting IAPs, with either siRNAs or

mimetics of the naturally occurring IAP antagonist Smac/DIABLO, increases sensitivity of

cancer cells to therapies that are widely used in the clinic (Table 1). As a consequence IAP

drug development has progressed at a rapid pace, such that multiple IAP inhibitors have

been developed and some of these have progressed to in- patient clinical trials (Table 2).

Discussed below is a selection of the therapeutics and different approaches used to target

IAPs in cancer.

Antisense based therapies

An antisense oligonucleotide directed against XIAP (AEG35156) is in phase I/II clinical

trials for patients with pancreatic, breast, non-small cell lung cancer, AML, lymphoma and

solid tumours in which docetaxel is the drug of choice. Although AEG35156 in its ‘first-in-

man’ study was well tolerated, it had little significant effect on patient outcome in pancreatic

ductal adenocarcinoma or acute myeloid leukaemia [70,71]. Studies involving patients with

non-small cell lung carcinoma were terminated due to unacceptable neurotoxicity in two of

the patients.
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Smac mimetics

Another method of targeting IAP function is using “Smac mimetics”, which are molecules

developed based on the IAP-Binding Motif (IBM) of the potent IAP-antagonist, Smac (also

known as DIABLO). Several Smac mimetics are currently in pre-clinical or phase I trials

(Table 2). These inhibitors were initially developed as a means of inhibiting XIAP, but it has

since been shown that the Smac mimetics also induce the degradation of cIAPs [72]. The

loss of cIAPs means that following ligand engagement of the TNF-receptor, Complex I

matures into Complex II, leading to caspase-dependent apoptosis [16,17]. Ligand-

independent Smac mimetic-induced cIAP degradation causes Ripoptosome (a FADD-

caspase 8, RIP1 complex) formation, leading to death via apoptosis or necroptosis [15,73].

At high doses, Smac mimetics induce death in a subset of cancer cell lines in a caspase 8,

and TNFα dependent mechanism, but do not induce apoptosis in non-malignant cells [74–

77]. Perhaps more importantly, Smac mimetics can work synergistically with other

treatments. They sensitise pancreatic cancer cells and glioblastoma cells to γ-irradiation, and

breast cancer cells to etoposide, Herceptin, and TRAIL [59,78].

Other small molecule inhibitors

Several small molecule inhibitors directed against Survivin have been developed. YM155,

an inhibitor designed to suppress Survivin promoter activity, showed promise in phase I

trials, induced stable disease in 9 / 33 patients in one study and significant tumour shrinkage

and remission in another phase I study [79,80]. Phase II trials with YM155 showed

favourable results in refractory non small cell lung carcinoma and B cell lymphoma but not

in melanoma [81–83]. YM155 is also effective in pancreatic cancer cell culture and

xenograft models [84].

Hsp90 stabilises Survivin, and targeting Hsp90 can result in proteasomal degradation of

Survivin followed by mitochondrial-mediated apoptosis. Therefore drugs that target Hsp90

may also influence Survivin levels and patient outcome. Such drugs include Shepherdin, and

AICAR, which are respectively in pre-clinical and phase II clinical trials.

Immune-based therapies

Sera from breast, lung and GI cancer patients contain antibodies to Survivin, suggesting that

anti-cancer vaccines may be generated [85]. Recently, a phase I trial in which 9 patients with

urothelial cancer were vaccinated against Survivin showed no adverse side effects. Five of

the 9 patients had an increase in Survivin peptide specific cytotoxic T cells and one patient

showed decreased tumour volume [86]. In a second study, a Survivin minigene DNA

vaccine induced a 48 – 52% reduction in tumour volume, weight and metastasis in a

syngeneic neuroblastoma mouse model. Therapeutic vaccination of the syngeneic

neuroblastoma mice led to eradication of neuroblastoma in 50% of the mice and decreased

tumour growth by 80% in the remaining mice [87].

Overall, from the available data on pre-clinical trials and initial ‘in-man’ trials, IAP based

therapies may indeed be beneficial in the fight against cancer. Significantly though,

targeting IAPs may also help to overcome resistance of cancer to existing therapeutics.
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IAPs contribute to the acquired resistance of cancer therapies

IAP levels can increase following the onset of drug treatment. This may provide a

mechanism for therapeutic resistance. For example, cisplatin treatment of prostate cancer

cells resulted in upregulation of Survivin, XIAP and cIAP2; adriamycin-resistant MCF7

breast cancer cells showed upregulation of XIAP and Survivin; and Lapatinib-resistant

BT474 breast cancer cells had elevated Survivin levels. Moreover, survival of adriamycin

resistant HL-60 cells were dependent on upregulation of XIAP and MRP (multidrug

resistant protein) [88–91]. Importantly, these increases in IAP levels might contribute to

acquired drug resistance, one of the major hurdles facing clinicians today. Cancer cells using

IAPs as a method to escape chemotherapy highlights another reason why targeting IAPs

may be useful to combating the disease.

Notes of caution to targeting IAPs

The majority of current research supports the idea that IAPs are promising therapeutic

targets in cancer, but a few notes of caution remain. Therapies targeting Survivin reduce

clonogenic survival of cancer cells and increase rates of apoptosis, usually downstream of

mitotic catastrophe. However, loss of Survivin can result in the generation of polyploidy

cells, which are more susceptible to the accumulation of mutations and genetic instability.

Therefore, cancer cells that escape anti-Survivin based therapies may form a more

aggressive transformed phenotype than observed in the original cancer [92]. Moreover,

although Survivin is not expressed in differentiated adult human cells it is still expressed in

adult proliferating cells, such as the cells of the immune system [93]. Thus, as with other

chemotherapies, the effect of Survivin antagonists on the immune system would need to be

carefully monitored, especially in the megakaryocyte and haempoietic populations.

Therapies aimed at inhibiting XIAP may result in increased rates of apoptosis in sensitised

type II cells, such as hepatocytes. In response to death receptor activation, type II cells

require the activation of Bid to amplify the apoptosis signal and commit cells to death.

Removal of XIAP from this system also removes the requirement for Bid and results in

greater rates of apoptosis. Therefore, combining XIAP antagonism with therapies that

activate death receptors may result in high liver toxicity in patients [94]. As XIAP can

promote the ubiquitination and degradation of c-RAF, XIAP-targeted therapies could also

increase cell migration via c-RAF stabilisation and activation of the MAPK signalling

cascade [40].

In contrast to many cancers where IAP upregulation occurs, the biallelic deletion of cIAP1

and cIAP2 is associated with a poorer prognosis in multiple myeloma [95,96]. Despite the

expectation that cells lacking the cIAPs would be more sensitive to TNFα, this is not the

case in multiple myeloma. It is therefore possible that using Smac mimetics in certain

specific situations may enhance carcinogenesis. The ability of Smac mimetics to activate

NF-κB signalling will also require careful attention. Treatment of mice with the Smac

mimetics stimulated osteoclastogenesis and induced osteoporosis by inducing NIK-

dependent activation of NF-κB [97]. Bone loss caused by Smac mimetics may be

counteracted by administration of bisphosphonates, such as zoledronic acid [97].
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Conclusion

IAPs are much more than just “inhibitors of apoptosis”. An involvement with signal

transduction cascades regulating apoptosis, proliferation, cell survival and migration

strongly implicates IAPs with cancer progression and a growing body of work supports the

concept of targeting IAPs to treat cancer. Combining anti-IAP therapies with traditional drug

approaches has tremendous promise for the future care of cancer patients.

Acknowledgments

This work is supported by the Wellcome Trust Centre for Cell-Matrix Research (Manchester, UK), which is
supported by core funding from the Wellcome Trust (no. 088785/Z/09/Z).

Abbreviations

BIR Baculovirus IAP Repeat

BRUCE BIR Containing Ubiquitin-Conjugating Enzyme

c-FLIP Cellular FLICE Inhibitory Protein

CARD Caspase Recruitment Domain

cIAP Cellular IAP

ECM Extracellular Matrix

HBXIP Hepatitis B X-Interacting Protein

Hsp90 Heat Shock Protein 90

IAP Inhibitor of Apoptosis

IκB Inhibitor of Kappa B

INCENP Inner Centromere Protein

JNK cJun N-Terminal Kinase

MAD1 MAX Dimerisation Protein 1

MAPK Mitogen Activated Protein Kinase

MAX Myc Associated Factor X

NAIP Neuronal Apoptosis Inhibitory Protein

NEMO NF-κB Essential Modulator

NF-κB Nuclear Factor Kappa B

NIK NF-κB-Inducing Kinase

PTEN Phosphatase and Tensin Homolog

RIP Receptor-Interacting Protein

Smac/DIABLO Second Mitochondrial Activator of Caspases/Direct IAP-Binding

Protein With Low pI
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TAB1 TAK1 Binding Protein

TAK1 TGF Beta-Activated Kinase 1

TGFβ Transforming Growth Factor Beta

TNF Tumour Necrosis Factor

TNF-R TNF Receptor

TRADD Tumor Necrosis Factor Receptor Type 1-Associated DEATH Domain

TRAF TNF Receptor Associated Factor

TRAIL TNF-Related Apoptosis-Inducing Ligand

Ts-IAP Testis Specific IAP

UBA Ubiquitin-Associated

UBC Ubiquitin-Binding Domain

XIAP X-Linked IAP
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Figure 1. Schematic representation of human IAPs
IAPs contain between one and three Baculovirus IAP repeat (BIR) domains, a 70–80 amino

acid Zinc-binding motif. Five of the 8 IAPs possess a carboxy-terminal RING (really

interesting new gene) domain that functions as an E3 ligase, capable of self-ubiquitination

and ubiquitination of associated proteins. BRUCE lacks a RING domain but possesses an

Ubiquitin-Conjugating Domain (UBC) that can induce ubiquitination. XIAP and cIAPs have

an Ubiquitin-Associated (UBA) ubiquitin-binding domain that is important for their

signalling function [67,98]. In addition cIAP1 and cIAP2 contain a Caspase Recruitment

Domain (CARD) that can mediate homotypic interactions [99]. NAIP possesses a LRR

(Leucine-Rich Repeat) and a NOD (nucleotide-binding oligomerisation domain), which

have been implicated in microbial pathogen recognition. Survivin contains a COIL (coil-

coiled) domain, which is involved in binding to chromosomal paasenger proteins INCENP

and borealin.
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Figure 2. Summary of IAP functions
A selection of the pathways in which IAPs function to regulate apoptosis, survival, cell

cycle and migration: A –Regulation of caspases, B – TNFα signalling, C – Non-canonical

NF-κBD – TGFβ signalling, E –ECM interactions, F – Cell cycle, G – Migration.
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Table 1

Pre-clinical data where IAP inhibition sensitised to anti-cancer therapies.

IAP Cancer Mechanism
of inhibition Increased sensitivity to Ref.

XIAP

Colorectal shRNA
TRAIL
Taxanes

γ-irradiation
[100]

Breast

shRNA TRAIL
Taxanes [101]

siRNA

Etoposide
Doxorubicin [102]

Lapatinib [59]

Lung
Antisense

Doxorubicin
Taxol

Vinorelbine
Etoposide

[103]

siRNA Cisplatin [68]

Pancreatic

siRNA

Doxorubicin
Paclitaxol [104]

Melanoma Dacarbazine
TRAIL [105]

Survivin

Lung siRNA

Adriamycin [106]

Cisplatin
Paclitaxol [107]

Breast
siRNA

Adriamycin [108]

Melanoma TRAIL [105]

Hepatocellular
siRNA Radiotherapy [109]

Antisense TRAIL [110]

cIAP2

Pancreatic siRNA Doxorubicin
Paclitaxel [104]

Oral Squamous
siRNA 5-flurouracil

[111]

Colorectal [112,113]

cIAPs

Glioblastoma

Smac
mimetic Imatinib [114]

Smac
mimetic
(BV6)

γ-irradiation [78]

Non small cell
lung carcinoma

Smac
mimetic
(JP1201)

Doxorubicin
Erlotinib

Gemcitabine
Paclitaxol

Vinorelbine

[115]

Smac
mimetc
(BV6)

Radiotherapy [116]

Breast

Smac
mimetic
(SM164)

TRAIL [116]

Smac
mimetic

(Compound
C)

Herceptin [59]
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IAP Cancer Mechanism
of inhibition Increased sensitivity to Ref.

Prostate Smac
mimetic
(SM164)

TRAIL [117]
Colon
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