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The onset and the termination of innate immune response must be tightly regulated to

maintain homeostasis and prevent excessive inflammation, which can be detrimental

to the organism, particularly in the context of sepsis. Endotoxin tolerance and

compensatory anti-inflammatory response syndrome (CARS) describe a state of

hypo-responsiveness characterized by reduced capacity of myeloid cells to respond

to inflammatory stimuli, particularly those initiated by bacterial lipopolysaccharide

(LPS). To achieve endotoxin tolerance, extensive reprogramming otherwise termed

as “innate immune training”, is required that leads to both modifications of the

intracellular components of TLR signaling and also to alterations in extracellular soluble

mediators. Non-coding RNAs (ncRNAs) have been recognized as critical regulators of

TLR signaling. Specifically, several microRNAs (miR-146, miR-125b, miR-98, miR-579,

miR-132, let-7e and others) are induced upon TLR activation and reciprocally promote

endotoxin tolerance and/or cross tolerance. Many other miRNAs have been also

shown to negatively regulate TLR signaling. The long non-coding (lnc)RNAs (Mirt2,

THRIL, MALAT1, lincRNA-21 and others) are also altered upon TLR activation and

negatively regulate TLR signaling. Furthermore, the promotion or termination of myeloid

cell tolerance is not only regulated by intracellular mediators but is also affected by

other TLR-independent soluble signals that often achieve their effect via modulation of

intracellular ncRNAs. In this article, we review recent evidence on the role of different

ncRNAs in the context of innate immune cell tolerance and trained immunity, and evaluate

their impact on immune system homeostasis.

Keywords: endotoxin tolerance, sepsis, immune suppression, microRNAs, non-coding RNAs, soluble mediators,

lncRNAs

INTRODUCTION

The onset and termination of the host immune responses have to be tightly controlled; the
initial burst of pro-inflammatory cytokines should be timely blunted to avoid overwhelming
inflammatory responses causing tissue damage and secure homeostasis. Endotoxin tolerance is
a crucial homeostatic mechanism that prevents from the excessive activation of innate immune
responses upon sustained toll-like receptor (TLR) stimulation.
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Endotoxin tolerance is defined as the reduced capacity of
a cell to respond to gram(-) bacterial lipopolysaccharide (LPS)
after an initial exposure to this stimulus (1, 2). Endotoxin
tolerance is considered a type of “innate immune memory” (3),
a condition describing tolerance to pathogens, characterized by
innate immune hypo—responsiveness or “immune-paralysis”. It
occurs as a result of persistent TLR stimulation not only from
LPS but from other TLR agonists and even TLR-independent
inflammatory mediators (1). The mechanism by which exposure
to a particular TLR ligand or other inflammatory mediators
such as cytokines reduces the inflammatory response to different
TLR ligands is known as cross–tolerance and cytokine-induced
tolerance, respectively (4–7), both being part of the innate
immune system training (8, 9).

The phenotype of endotoxin tolerance and cross-tolerance has
been extensively studied in monocytes and macrophages, even
though the majority of innate immune cells develop tolerance to
secondary TLR stimuli. These include dendritic cells, neutrophils,
mast cells as well as endothelial and epithelial cells (10–14).

Endotoxin tolerance results to a shift of the cell phenotype
from pro-inflammatory to anti-inflammatory (15). Endotoxin
tolerant macrophages are reprogrammed to produce less tumor
necrosis factor alpha (TNFα), interleukin (IL)-12 and IL-
6 upon secondary stimulation and more anti-inflammatory
cytokines such as IL-10 and transforming growth factor beta
(TGFβ), compared to the levels produced from naive cells
(16, 17). Furthermore, tolerant macrophages and dendritic cells
downregulate human leukocyte antigen (HLA-DR) receptors
thus have impaired capability for antigen presentation (16, 18).
Similar phenotype is also described in cross-tolerance, but to a
lesser extent (19). Endotoxin tolerant phenotype is long lasting
but reversible in nature.

The clinical manifestation of endotoxin tolerance is
recognized as Compensatory Anti-inflammatory Response
Syndrome (CARS) (20). CARS represents the phase of immune
“exhaustion” otherwise termed “immune paralysis”, that is
observed in a subset of septic patients usually following the
first phase of sepsis, known as Systemic Inflammatory Response
Syndrome (SIRS) (21). Endotoxin tolerance explains CARS
immunosuppression state in sepsis since blood leukocytes
from septic patients exhibit similar phenotype to endotoxin
tolerant cells; neutrophils and monocytes from septic patients
are refractory to production of inflammatory mediators while
they upregulate anti-inflammatory molecules when exposed to
secondary TLR stimuli (1, 17, 22, 23). As a result, patients with
CARS exhibit increased susceptibility to secondary infections
(24).

The mechanism of innate immune cell tolerance and CARS
are tightly regulated by complex molecular signatures in
macrophages and other innate immune cells. These molecular
pathways are controlled not only by modulation of intracellular
signaling proteins and histone modifications but also by non-
coding (ncRNAs), mostly microRNAs (miRNAs) and long
ncRNAs (lncRNAs). In this article, we review recent evidence
on the role of ncRNAs, regulated by TLR ligands or other
TLR independent soluble signals, in the regulation of endotoxin
tolerance and discuss their impact in the context of sepsis.

TLR—DEPENDENT REGULATION OF
ENDOTOXIN TOLERANCE VIA ncRNAs

Upon stimulation by pathogen- or danger-associated patterns,
TLR mediate signals through two distinct adaptors pathways,
myeloid differentiation factor 88 (MyD88) and TIR-domain-
containing adapter-inducing interferon-β (TRIF). The MyD88
pathway employs interleukin-1 receptor-associated kinase
(IRAK)1 and 4 kinases and TNF receptor-associated factor
(TRAF)6 to activate nuclear factor κB (NFκB) and mitogen
activated protein kinase (MAPK)/activator protein 1 (AP-
1) signaling, promoting transcription of pro-inflammatory
cytokines. Activation of TRIF pathway leads to janus kinase
(JAK)/signal transducer and activator of transcription (STAT)
and type I interferon activation and increases the expression of
interferon-inducible genes (25, 26). In TLR4 tolerance, defects
in TLR4 signaling have been observed at all levels, including
receptor adaptors, signaling molecules, transcription factors, as
well as, chromatin marks as histone modifications (1, 27).

The molecular signature of endotoxin tolerance involves
downregulation of TLR4 expression, decreased recruitment of
MyD88 or TRIF to TLR4, decreased activation of IRAK1/4
and diminished NFκB signaling via formation of the inactive
p50 homodimers (1, 28). Additionally, negative regulatory
molecules such as IRAK-M, A20, SH2 domain-containing
inositol phosphatase 1 (SHIP1), Pellino-3, suppression of
tumorigenicity 2 (ST2), suppression of cytokine signaling
(SOCS)3 and SOCS1 are upregulated in endotoxin tolerant cells
and inhibit the activation of TLR signaling (1, 28–33). However,
during last two decades, an additional level of regulation through
non-coding regulatory RNAs has been introduced.

TLR Dependent miRNAs That Regulate
Endotoxin Tolerance
MicroRNAs (miRNAs) are a large family of small noncoding
RNAs (about 22 nucleotides in length) that regulate gene
expression post-transcriptionally, by binding to the 3′-
untranslated regions (UTRs) of target mRNAs (34). MiRNAs are
recognized as key players in the regulation of endotoxin tolerance
since multiple levels of the TLR signaling cascade are controlled
by miRNAs (35, 36). At the stage of endotoxin tolerance, two
LPS inducible miRNAs, miR-155 and miR-146α have been
shown to be coordinately regulated via gene colocalization and
transcription factor binding, contributing to the regulation of
endotoxin tolerance (37). Indeed, miR-146α was the first miRNA
described to promote tolerance (38, 39). MiR-146α is induced
upon TLR activation in macrophages and its expression is further
upregulated with LPS restimulation (17, 37). MiR-146α then
targets IRAK1 and TRAF6, critical components downstream
TLR signaling and its prolonged expression has been linked to
endotoxin tolerance and cross—tolerance (19, 39–41). On the
other hand, miR-155 inhibits the expression of the negative
regulators SHIP1 and SOCS1 enhancing TLR signals, promotes
TNFα translation and establishes a proinflammatory phenotype
in macrophages (42–46). However, other studies show that
miR-155 may exert negative regulation of pro-inflammatory
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mediators (47) (Table 1). Suppression of miR-155 in Akt1−/−

macrophages restored sensitivity and tolerance to LPS in vitro
and in vivo, supporting its role in the regulation of endotoxin
tolerance (43).

MiR-98 targets IL-10 in macrophages, a key cytokine for
development of endotoxin tolerance; miR-98 is decreased by
LPS in macrophages, thus failing to suppress IL-10 (68). The
miRNAs miR-221, miR-579 and miR-125b are also significantly
induced in endotoxin tolerant macrophages and lead to TNFα
inhibition; miR-221 promotes TNFα degradation, whereas miR-
579 and miR-125b block its translation (52). MiR-132 and miR-
212 are also induced upon TLR2 stimulation and their sustained
expression promotes cross tolerance (54). In a recent report, miR-
221 and miR-222 were identified as regulators of the functional
reprogramming of macrophages during LPS tolerization (3).
MiR-221 and miR-222 were induced after prolonged LPS
stimulation in mice and both promoted transcriptional silencing
of a subset of pro-inflammatory genes via regulation of

chromatin remodeling mediated by SWI/SNF (switch/sucrose
non-fermentable) and STAT transcription factors (3).

However, there is a significant number of other miRNAs that
have been shown to negatively regulate TLR signaling (Table 1).
Among the aforementioned miRNAs, miR-146, miR-155, miR-
221 and miR-222 have been extensively studied and appear to
have a central role in the regulation of innate immune tolerance.
In the context of sepsis, the levels of miR-146, miR-150, miR-
221 and miR-222 among other miRNAs, are dysregulated in the
peripheral blood leukocytes in sepsis patients and correlate with
immunoparalysis and severity of the disease (3, 69–71), thus
providing potential prognostic/diagnostic biomarkers.

LncRNAs That Contribute to Endotoxin
Tolerance
Long noncoding RNAs (lncRNA) are regulatory RNAs that are
over 200 nucleotides in length and do not encode proteins (72–
74). LncRNAs are classified based on their site of action into

TABLE 1 | List of the most prominent miRNAs implicated in the regulation of innate immune cell tolerance.

MiRNA Response to

TLR signal

Target Mechanism of action References

miR-146α Induced TRAF6, IRAK1,

TLR2/4, Notch1

Targets TLR and TRAF6, IRAK1 in macrophages critical components downstream TLR

signaling

(38, 48)

miR-146b Induced TRAF6

IRAK1 TLR4

Targets TLR and TRAF6, IRAK1 critical components downstream TLR signaling (39, 49)

miR-155 Induced SHIP, SOCS1

CEBP/β

FADD, Ripk1

Inhibits the expression of the negative regulators of TLR signaling, SHIP1 and SOCS1.

Promotes TNFα translation. Abrogates expression of anti-inflammatory genes in

macrophages

(42–44)

MyD88

TAB2, IKKe

Negative regulation of inflammatory cytokine production in macrophages and DCs (50, 51)

miR-221 Induced TNFα

STAT1

STAT2

Promotes TNFα degradation. Induces tolerance via chromatin remodeling mediated by

SWI/SNF (switch/sucrose non-fermentable) and STAT1/2 in macrophages

(3, 52)

miR-222 Induced STAT1,

STAT2

Induces tolerance via chromatin remodeling mediated by SWI/SNF (switch/sucrose

non-fermentable) and STAT1 and 2 in macrophages

(3)

miR-132 Induced IRAK4

p300

Responsible for inducing cross tolerance in monocytes/macrophages. Negative effect on

the expression of interferon-stimulated genes and antiviral immunity in endothelial cells

(53, 54)

miR-21 Induced PDCD4

MyD88,IRAK1

IL-12p35

Negative regulation of TLR4 signaling in monocytes. Inhibits the expression of MyD88 and

IRAK1 during viral infection.

(55–58)

miR-579 Induced TNFα Negative regulation of TNFα translation in monocytes. (52)

miR-125b Induced TNFα

MyD88

Negative regulation of TNFα translation. Negatively regulate viral responses by targeting

TLR2/MyD88 signaling in monocytes.

(42, 59)

miR-212 Induced IRAK4 Sustained expression is responsible for inducing cross tolerance in

monocytes/macrophages.

(54)

let-7e Induced TLR4 Negative regulation of TLR4 signaling in macrophages (43)

let-7i Suppressed TLR4 Post-transcription regulation of TLR4 in epithelial cells (60)

miR-124 Induced TLR6, MyD88

TRAF6, TNFα

Negatively regulates TLR signaling in BCG infection in macrophages (61)

miR-149 Suppressed MyD88 Represses MyD88 translation in macrophages (62)

miR-203 Induced MyD88 Represses MyD88 translation in macrophages (63)

miR-92a Suppressed MAPK4 Inhibits TLR4 —responses in macrophages (64)

miR-210 Induced NFκB1 Targets NFκB1 upon stimulation in macrophages (65)

miR-9 Induced NFκB1 Negative control of NFκB in monocytes (66)

miR-718 Induced PTEN Down regulates TLR4, IRAK1, and NFκB in a negative feedback loop in macrophages (67)

miR-98 Suppressed IL-10 Targets IL-10 in macrophages (68)
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cis-lncRNAs and trans-lncRNAs (nearby or remote to genes) and
based on their relative position to target mRNAs, being exonic
sense, intronic sense, antisense, bidirectional, and intergenic
(75, 76). In contrast to miRNAs that have a clear role in
promoting post-transcriptional regulation of gene expression,
lncRNAs exhibit plethora of actions via transcriptional, post-
transcriptional and translational regulation of gene expression as
well as via controlling mRNA stability and promoting epigenetic
changes (72, 75, 77–79).

LncRNAs have emerged as important regulators of innate
immune responses and TLR signaling (74, 79–83). In response
to LPS or other TLR stimuli, the lncRNAs expression pattern
is altered and lcnRNAs have been shown to either promote or
suppress pro-inflammatory responses (80, 84–86).

Several TLR-inducible lncRNAs limit excessive inflammatory
responses by negatively regulating TLR signaling. The LPS-
responsive lncRNAs Mirt2, THRIL, MALAT1, NKILA, lincRNA-
21, and SeT have been shown to suppress expression of pro-
inflammatory mediators including TNFα, the central cytokine
for tolerance and CARS (Table 2). Mirt2 is expressed in
macrophages and induced by LPS, negatively regulating TLR4
signaling; Mirt2 inhibits TRAF6 ubiquitination thus blocking
NFκB and MARK activation and subsequent TNFα production
(87). THRIL is another immuno-regulatory lncRNA that was
found to interact with hnRNPL at the promoter region of the
TNFα gene inducing TNFα expression (88). However, THRIL
is downregulated upon TLR2 triggering indicating that THRIL
suppression may be a protective feedback loop controlling
TNFα levels and promoting cross–tolerance (88). The lncRNA
MALAT1 has been found to negatively regulate TLR response
via inhibition of NFκB; MALAT1 is upregulated in LPS-activated
macrophages and interacts with NFκB in the nucleus, inhibiting
LPS-induced expression of TNFα and IL-6 (89). Importantly,
MALAT1 was found to be dysregulated in granulocytes from
septic patients indicating its clinical importance in sepsis and
CARS (104). Similar toMALAT1, NKILA is another lncRNA that
regulates TLR4 signaling and restrains NFκB activation; NKILA
is induced by LPS in tumor cells and interacts with the NFκB/IκB
complex, preventing its phosphorylation by IKKs and subsequent
NFκB activation (90). LincRNA-p21 is induced by LPS in
fibroblasts and regulates NFκB activity in monocytes; lincRNA-
p21 physically binds to RelA/p65 mRNA blocking translation of
p65, resulting in inhibition of NFκB (94, 97, 98). Finally, the
lncRNA SeT is expressed in macrophages in response to LPS and
its homologous deletion results in biallelic TNFα expression and
increase in TNFα levels (91). This finding suggests that lncRNA
SeT suppresses expression of one of the two TNFα alleles early
upon LPS stimulation (91).

Additional lncRNAs have been shown to suppress pro-
inflammatory mediators such as IL-6 but their effect on TNFα
expression has not been evaluated (Table 2). Lnc-IL-17R is up-
regulated significantly in response to TLR2 and TLR4 agonists,
promoting H3K27 trimethylation and inhibiting LPS-inducible
inflammatory response genes, such as IL-6, adhesion molecules,
and chemokines (84). Similarly, the lncRNA IL7-AS (antisense)
is induced by LPS in macrophages; knockdown of IL7-AS results
in upregulation of IL-6 (92). Finally, lincRNA-EPS is expressed
in macrophages and dendritic cells and was downregulated upon

microbial infection, while gain-of-function experiments revealed
that lincRNA-EPS binds to chromatin, regulates the nuclear
ribonucleoprotein L (hnRNPL), thus suppressing LPS-induced
pro-inflammatory genes (93). In addition to the lncRNAs
outlined, lincRNA-Cox2 is another LPS inducible lncRNA that
regulates hundreds of genes, but it appears to act both as an
enhancer and as a suppressor of inflammation (80, 94, 95, 105).
Finally, in a recent report, TLR4 tolerisation reversed LPS-
induced suppression of PCGEM1 and HOTTIP lncRNAs and
upregulated snaR lcnRNA, but further investigation is required
to define the function of these lncRNAs in the context of
tolerance (79).

It appears that the changes in the outlined lncRNAs
significantly regulate TLR signaling toward TLR reprogramming.
However, the majority of the above lncRNAs were not evaluated
in endotoxin tolerant experimental setting per se since their
expression and function was not evaluated upon secondary
TLR stimulation. Also, their relative contribution to tolerant
state in conjunction with several miRNAs, that were mentioned
above and have an established central role in endotoxin
tolerance, has not been studied yet. Further research is required
to address the importance and the level of contribution
of these lcnRNAs in endotoxin tolerance and/or cross
tolerance.

TLR-INDEPENDENT REGULATION OF
ENDOTOXIN TOLERANCE VIA ncRNAs

Establishment of endotoxin tolerance and cross-tolerance is
not strictly a result of excessive TLR signaling and subsequent
induction of intracellular regulators. The magnitude and
duration of the innate cell tolerance is also controlled by a
plethora of TLR—independent soluble mediators.

Soluble Mediators in Innate Immune Cell
Tolerance and Their Impact in ncRNAs
Cytokines such as IL-1β , IL-10, TGFβ , and TNFα are capable to
induce cross-tolerance or cytokine-mediated tolerance initiating
intracellular signals similar to those of TLR ligands (17, 106).
Indeed, IL-10 and TGFβ are part of a negative feedback loop
produced from activated macrophages acting in an autocrine and
paracrine manner to promote tolerance and suppress secondary
TLR responses. However, LPS priming provokes more sustained
tolerance than IL-10 priming, since IL-10-primed monocytes
rapidly recover and produce TNFα (107). Also, endogenous
hormones, such as adiponectin and glucocorticoids blunt LPS-
induced inflammation and promote anti-inflammatory responses
(108, 109). In contrast, interferons such as interferon gamma
(INF-γ ) and α2-interferon, are known to abrogate endotoxin
tolerance and restore induction of pro-inflammatory cytokines
(110, 111).

The aforementioned soluble mediators have been reported
to achieve their effect via modulation of intracellular ncRNAs.
The capability of IL-1β priming to induce tolerance and cross-
tolerance in monocytes and epithelial cells is mediated via the
increase of miR-146α (6). IL-10 has been shown to promote miR-
146b upregulation in human monocytes and its transcription
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TABLE 2 | LcnRNAs that have been implicated in the regulation of innate immune cell tolerance.

LncRNA Response to

TLR signal

Target Mechanism of action References

Mirt2 Induced TRAF6 Inhibits TRAF6 ubiquitination, NFκB and MARK activation and subsequent TNFα production in

macrophages

(87)

THRIL Suppressed TNFα Interacts with hnRNPL at the promoter of TNFα gene inducing TNFα expression in macrophages (88)

MALAT1 Induced NFκB Interacts with nuclear NFκB, inhibits LPS-induced TNFα and IL-6 in macrophages (89)

NKILA Induced NFακB/IκB Interacts with NFκB/IκB complex in epithelial tumor cells, preventing its phosphorylation by IKKs

and subsequent NFκB activation

(90)

SeT Induced TNFα Suppresses expression of one of the two TNFα alleles early upon LPS stimuli in macrophages (91)

Lnc-IL-17R Induced IL-6 Promotes H3K27 trimethylation, inhibits LPS-inducible inflammatory response genes (IL-6,

chemokines) in macrophages/endothelial cells

(84)

IL7-AS Induced IL-6 IL7-AS suppression induces IL-6 in macrophages (92)

lincRNA-EPS Suppressed NFκB Binds to chromatin, regulates the nuclear ribonucleoprotein L (hnRNPL), and suppress

pro-inflammatory genes in macrophages

(93)

lincRNA-Cox2 Induced NFκB Activates the NFκB –regulated late-primary inflammatory genes via interaction with hnRNP-A/B and

hnRNP-A2/B1 in macrophages. In epithelial cells it represses TNFα-induced IL-12β transcription via

recruitment of Mi-2/NuRD repressor complex to the IL-12β promoter

(80, 94–96)

LincRNA-p21 Induced RelA/p65 Induced by TLR stimuli in fibroblasts. Physically binds to RelA/p65 mRNA blocking translation of

p65 in monocytes

(97, 98)

lnc-DC Induced STAT3 Activates STAT3 by preventing SHIP1 mediated STAT3 dephosphorylation, resulting in reduced

ability of dendritic cells to activate T cells

(99, 100)

NeST or Tmevpg1 Induced IFN-γ Alters H3K4 trimethylation in IFN-γ locus, upregulates IFN-γ expression in T cells and indirectly

mitigates endotoxin tolerance

(101)

Lethe Induced RelA Binds and inactivates RelA/p65 and decreases p65 binding at NFκB sites to restrict excessive

inflammatory response in fibroblasts

(102)

PACER Induced p50 Interacts and sequesters excess p50 from COX2 promoter, activates COX2 in macrophages and

epithelial cells

(103)

PCGEM1 Suppressed unknown TLR4 tolerisation reversed LPS-induced PCGEM1 suppression in macrophages (79)

HOTTIP Suppressed unknown TLR4 tolerisation reversed LPS-induced suppression of HOTTIP in macrophages (79)

is driven by STAT3, a transcription factor induced by IL-10
signals (49, 112). Similarly, TGFβ also promotes tolerance in
human monocytes via upregulation of miR-146b driven by the
transcription factor RUNX3 (112). Glucocorticoids and TGFβ
have been shown to downregulate TLR4 signaling via induction
of miR-511-5p, which targets TLR4 (113).

Stimulation with TNFα promotes TNFα–induced tolerance
via regulation of ncRNAs. The lncRNA implicated in suppression
of NFκB inflammatory response in fibroblasts upon TNFα
stimulation is Lethe; Lethe binds and inactivates RelA/p65 and
decreases p65 binding at NFκB sites (102). Moreover, upon
TNFα stimulation, lincRNA-Cox2 is induced and promotes
recruitment of the Mi-2/nucleosome remodeling and deacetylase
(Mi-2/NuRD) repressor complex to the IL-12β promoter
suppressing IL-12β expression (96).

IFN-γ is another mediator that enhances macrophage
activation and reverses tolerance via regulation of ncRNAs.
IFN-γ is known to inhibit miR-146b expression, a miRNA that
contributes to endotoxin tolerance (112). Also, IFN-γ induces
phosphatase and tensin homolog (PTEN) via downregulation
of miR-3473b; MiR-3473b targets PTEN and promotes
Akt/glycogen synthase kinase 3 signaling and IL-10 production
(114). Furthermore, NeST, also known as Tmevpg1 or IFNgAS1,
is a lncRNA located near the IFN-γ gene in both humans and
mice and positively regulates expression of IFN-γ in T cells via
histone modifications in IFN-γ locus (101).

Soluble ncRNAs as Modulators of
Endotoxin Tolerance
Tissue injury leads to release of extracellular vehicles (EVs) that
frequently include miRNAs (115–117). EVs are present in the
circulation acting in a paracrine and endocrine manner and can
modulate pro-inflammatory cytokine production contributing
to a tolerogenic response (116). In addition freely circulating
extracellular miRNAs may function as TLR agonists inducing
tolerance (55, 118). EVs also promote tolerance in distant
cells. For example, Treg derived exosomes deliver miR-150-5p
and miR-142-3p to dendritic cells leading to the induction of
LPS-induced IL-10 and suppression of LPS-induced IL-6, thus
promoting tolerance (119).

CONCLUSIONS

To conclude, it appears that a variety of TLR ligands, cytokines,
and soluble mediators control endotoxin tolerance and cross-
tolerance via the regulation of ncRNAs. However, there is a
significant number of ncRNAs that are implicated in endotoxin
tolerance and their relative importance and contribution in this
process remains unknown. It is also unclear whether a level
of interdependency among these ncRNAs exists and how their
function may converge toward common pathways or potentially
contradict each other. Further research is required to take into
account the levels of contribution of each ncRNA in the context
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of innate immune tolerance and to highlight the ones that have
the potential to develop into therapeutic tools for CARS, the
clinical syndrome associated with innate immune tolerance.
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