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Abstract

In the breeding of citrus (Citrus spp.), suitable fruit quality is essential for consumer accep-

tance of new cultivars. To identify parental combinations producing F1 progeny with fruit-

quality traits exceeding certain selection criteria, we developed a simple and practical

method for predicting multiple-trait segregation in an F1 progeny population. This method

uses breeding values of parental genotypes and an additive genetic (co)variance matrix cal-

culated by the best linear unbiased prediction method to construct a model for trait segrega-

tion in F1 progeny. To confirm the validity of our proposed method, we calculated the

breeding values and additive genetic (co)variances based on phenotypic records on nine

fruit-quality traits in 2122 genotypes, and constructed a trait segregation model. Subse-

quently, we applied the trait segregation model to all pairs of the 2122 genotypes (i.e.,

2,252,503 combinations), and predicted the most promising combinations and evaluated

their probabilities of producing superior genotypes exceeding the nine fruit-quality traits of

satsuma mandarin (Citrus unshiu Marcow.) or ‘Shiranuhi’ (‘Kiyomi’ × ‘Nakano No. 3’ pon-

kan), two popular citrus cultivars in Japan. We consider these results to be useful not only

for selecting good parental combinations for fruit quality or other important traits but also for

determining the scale of breeding programs required to achieve specific breeding goals.

Introduction

In the breeding of citrus (Citrus spp.), suitable fruit quality is critical for consumer acceptance

of new cultivars. As such, fruit-quality traits including high sugar content, easy peeling, seed-

lessness, soft pulp, and segment softness have been the major focus of citrus breeding
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programs in Japan, including that of the National Agriculture and Food Research Organiza-

tion (NARO) Institute of Fruit Tree and Tea Science [1].

Previous studies of citrus have shown that many important fruit-quality traits are controlled

by multiple genes [2, 3]. The complex genetic background regulated by multiple genes makes

it difficult to predict the segregation patterns of these traits and identify good parental combi-

nations in citrus cross breeding. This in turn hinders the development of citrus cultivars with

desirable fruit-quality traits, since genetic variability produced by good parental combinations

is essential for obtaining superior genotypes [4,5].

A method for predicting the segregation of a target trait has been proposed on the basis of

repeatedly measured phenotypic records in fruit breeding programs for Japanese persimmons

[6] and grapes [7]. That approach describes trait segregation in F1 progeny derived from each

parental combination as a normal distribution with the mid-parental value as the mean under

the assumption of a fixed common variance for Mendelian sampling in all F1 families. How-

ever, the mid-parental value has poor estimation accuracy when the target trait has low herita-

bility and there are a limited number of observations [8]; it also ignores differences in genetic

variation among F1 families derived from different pairs of parental cultivars. These limitations

make it difficult to accurately predict trait segregation for the selection of promising parental

combinations in fruit breeding programs including citrus.

We recently reported an approach for selecting superior genotypes in citrus breeding pro-

grams that is based on the best linear unbiased prediction (BLUP) method [9]. That approach

was able to accurately predict breeding values and estimate genetic parameters including nar-

row-sense heritability and genetic correlations for nine important fruit-quality traits on the

basis of phenotypic records collected from the ongoing citrus breeding program at the Kuchi-

notsu Citrus Research Station, NARO (Nagasaki, Japan). These accurate breeding values and

genetic parameters could be useful not only for selecting superior genotypes but also for pre-

dicting segregation patterns of multiple traits in F1 progeny and identifying good parental

combinations in citrus breeding programs.

Therefore, the aims of the present study were (1) to propose a practical method for predict-

ing multiple trait segregation patterns in an F1 progeny obtained by crossing parental cultivars

by using breeding values of the parents and genetic parameters calculated by the BLUP

method, and (2) to apply our approach to actual data from a citrus breeding population to

select promising parental combinations that can produce new cultivars with high genetic per-

formance of fruit qualities.

Materials and methods

Plant materials and phenotypic records

We used 111 parental cultivars and their 2011 F1 progeny from 126 biparental crosses obtained

from the breeding program at the Kuchinotsu Citrus Research Station. The F1 progeny were

grafted onto trifoliate orange (Poncirus trifoliata L.) trees during 2006–2008 (in our previous

paper [9], we incorrectly reported that grafting of these materials was conducted during 2005–

2007), which were planted in breeding fields at a spacing of 0.3 m within and 5 m between rows.

Parental cultivars were grafted onto trifoliate orange or satsuma mandarin (Citrus unshiu Mar-

cow.) interstocks in adjacent fields. Crosses were performed solely for producing commercial cul-

tivars, and therefore no specific mating design was adopted. Five colored fruit samples were

randomly harvested for immediate trait evaluation from a tree of each genotype, and nine fruit-

quality traits (fruit weight, fruit skin color, fruit surface texture, peelability, flesh color, pulp firm-

ness, segment firmness, sugar content, and acid content) were evaluated. These phenotypic rec-

ords were evaluated and accumulated in the seedling selection process in our citrus breeding
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program. Experimental details including parental genotypes, parental combinations of F1 prog-

eny, plant management, and fruit evaluation protocols have been previously reported [9].

Breeding values and variance components

To construct a segregation model for the nine fruit-quality traits, we predicted the breeding

values of all 2122 genotypes for each trait and estimated the additive genetic variance for each

trait and the additive genetic covariances among all traits by using the multi-trait BLUP

method. In this method, we constructed an additive genetic relationship matrix for genotypes

based on the pedigree information and assumed the normality of the nine traits. The normality

of each of the residuals in our multi-trait BLUP model was confirmed by visual examination.

The procedures for calculating breeding values and variance components and the correspond-

ing equations are described in our earlier study [9].

Segregation prediction method

We constructed a segregation model for the nine fruit-quality traits in a two-generation family

consisting of two parental cultivars and their F1 progeny as follows:

ao � MVNðamp;VÞ; ð1Þ

where ao is the vector of breeding values of F1 progeny for the nine fruit-quality traits and is

represented as ao = [a1,a2,. . .,a9]0 with aj indicating a breeding value of the jth trait, amp is the

vector of the midparental breeding values of the parental genotypes; and the element is calcu-

lated as (afj + amj)/2, where afj and amj are the breeding values of the jth trait in the seed and

pollen parents, respectively and MVN indicates a multivariate normal distribution (nine vari-

ates in this case) with V being the covariance matrix. We used the predicted breeding values of

seed and pollen parents as afj and amj, which were calculated using the BLUP method for each

trait under the assumption that their F1 progeny was not yet produced. The covariance matrix

V, which represents the genetic (co)variance matrix for Mendelian sampling in F1 progeny for

the nine fruit-quality traits, is written as

V ¼
1
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where Ff and Fm indicate the inbreeding coefficients of seed and pollen parents, respectively.

Inbreeding coefficient refers to the fraction of homozygous loci in a genotype, which does not

affect Mendelian sampling under the infinitesimal model [10]. We calculated the inbreeding

coefficients from pedigree information with the R software [11] ‘nadiv’ package [12], and used

these coefficients to construct the segregation model. s2
aj and σajk are elements of the additive

genetic (co)variance matrix for the jth and kth traits; we incorporated their estimates ŝ2
j and

ŝajk calculated with the restricted maximum likelihood method as a step in the BLUP method.

The outline of our proposed method is shown in Fig 1.

Validation of segregation prediction

The accuracy of the proposed method using the distribution of breeding values of F1 progeny

(1) was evaluated in three F1 families: 93 progeny of ‘Tamami’ × ‘Shiranuhi’, 81 progeny of
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‘Tsunonozomi’ × ‘Mihaya’, and 69 progeny of ‘Harehime’ × ‘Seinannohikari’, which were

included in the 2122 genotypes described above. In each population, we compared the fre-

quency distributions of breeding values of the nine fruit-quality traits obtained by the pro-

posed method using (1) with sample distributions of breeding values of F1 progeny included in

the dataset predicted by the BLUP method. The prediction of trait segregation in F1 progeny

based on the distribution (1) was considered highly accurate if the two distributions were well

coincident with one another. The coincidence between the two distributions was also evalu-

ated by Q–Q (quantile–quantile) plots using the ‘qqplot’ function in R software.

Selection of good parental combinations

We applied the proposed method to all possible pairs of the 2122 genotypes examined, and calcu-

lated the probabilities of obtaining progeny with characteristics superior to satsuma mandarin

and ‘Shiranuhi’ (‘Kiyomi’ × ‘Nakano No. 3’ ponkan) in terms of the nine fruit-quality traits. Since

the reciprocal crosses returned the same probabilities in our method, we searched for good paren-

tal combinations, including selfing among 2122H2 = 2,252,503 possibilities. We set our selection

criteria as fruit quality higher than that of satsuma mandarin or ‘Shiranuhi’ in nine target traits—

i.e., larger fruit size, fruit skin and flesh with a deeper orange color, a smoother fruit surface tex-

ture, easier peelability, softer pulp and segments, higher sugar content, and lower acidity. The

actual values of these criteria were determined from their breeding values predicted by the BLUP

method described above. The probabilities of obtaining superior progeny with characteristics ful-

filling the selection criteria were computed as P values from the multivariate normal distribution

based on our proposed model, using the R software ‘mvtnorm’ package [13].

Results

Validation of segregation prediction

The normality of the residuals, which was assumed in our multi-trait BLUP model but which

we did not report in our previous paper [9], were visually confirmed (S1 Fig). Then, using the

breeding values and genetic parameters of the nine fruit-quality traits calculated by the BLUP

Fig 1. Outline for predicting target trait segregation in F1 progeny populations.

https://doi.org/10.1371/journal.pone.0202341.g001
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method [9], we constructed a model for trait segregation in F1 progeny. The accuracy of the

constructed segregation model was evaluated in three F1 populations: 93 progeny of ‘Tamami’

× ‘Shiranuhi’, 81 progeny of ‘Tsunonozomi’ × ‘Mihaya’, and 69 progeny of ‘Harehime’ × ‘Sei-

nannohikari’ (Figs 2–4). For fruit weight in the ‘Tamami’ × ‘Shiranuhi’ F1 progeny (Fig 2) and

flesh color in the ‘Tsunonozomi’ × ‘Mihaya’ F1 progeny (Fig 3), the means of distributions of

breeding values calculated from all datasets differed from the means of the distributions

obtained by the constructed segregation model (1). For fruit skin color in the ‘Tamami’ ×
‘Shiranuhi’ F1 progeny, the dispersions were somewhat different (Fig 2). However, the distri-

butions of breeding values calculated from all datasets generally coincided with those predicted

Fig 2. Frequency distributions of breeding values of nine fruit-quality traits in F1 progeny of ‘Tamami’ × ‘Shiranuhi’ predicted by the best linear unbiased

prediction method (solid line) and those predicted by the proposed method for traits segregation prediction (dashed line).

https://doi.org/10.1371/journal.pone.0202341.g002
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by the constructed segregation model. The coincidence between these two distributions was

also confirmed by Q–Q plot (S2–S4 Figs). These results indicate that our proposed method is

practical for predicting multiple trait segregation in a progeny population, and can be used to

identify promising parental combinations in citrus breeding programs.

Selection of good parental combinations

The proportion of progeny superior to satsuma mandarin or ‘Shiranuhi’ in terms of the nine

fruit-quality traits was calculated for each combination among the all possible pairs of the 2122

Fig 3. Frequency distributions of breeding values of nine fruit-quality traits in F1 progeny of ‘Tsunonozomi’ × ‘Mihaya’ predicted by the best linear unbiased

prediction method (solid line) and those predicted by the proposed method for traits segregation prediction (dashed line).

https://doi.org/10.1371/journal.pone.0202341.g003
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genotypes. We ranked a total of 2,252,503 combinations of parental genotypes with the proba-

bilities of favorable F1 progeny exceeding satsuma mandarin to be generated in the F1 popula-

tions. The best parental combination generated such F1 progeny with a probability of 0.0375,

and in each of the best 30 parental combinations, the probabilities of favorable F1 progeny to

be obtained were around 0.03 (Table 1). Thus, our proposed method indicates that three to

four progeny superior to satsuma mandarin can be obtained from 100 F1 progeny derived

from promising parental combinations. On the other hand, the highest probability of favorable

F1 progeny that were superior to ‘Shiranuhi’ was 0.115, with the best 30 parental combinations

Fig 4. Frequency distributions of breeding values of nine fruit-quality traits in F1 progeny of ‘Harehime’ × ‘Seinannohikari’ predicted by the best linear

unbiased prediction method (solid line) and those predicted by the proposed method for traits segregation prediction (dashed line).

https://doi.org/10.1371/journal.pone.0202341.g004
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having probabilities ranging from 0.08 to 0.11 (Table 2). It was easier to obtain F1 progeny that

were superior to ‘Shiranuhi’ than to satsuma mandarin in our proposed method: that is, 8–12

F1 progeny superior to ‘Shiranuhi’ can be expected from 100 F1 progeny derived from promis-

ing parental combinations.

Discussion

Selecting good parental combinations that can produce F1 progeny with favorable characteris-

tics is an important determinant for the success of fruit breeding programs, including citrus.

In this study, we developed a simple and practical method for predicting the segregation pat-

terns of multiple traits in citrus. Using the proposed method, we could predict the segregation

patterns of nine fruit-quality traits in a F1 population given the breeding values of the two

Table 1. Top 30 parental combinations with the highest probability of obtaining progeny superior to satsuma mandarin (Citrus unshiu Marcow.).

Parental combination Traita

Seed parent Pollen parent FW FSC FST PE FC PF SF SC AC Totalb

080706 (Ehime Kashi No. 28 × Seinannohikari) 051115 (960203 × 980389) 48.4 83.0 78.8 45.4 36.1 41.3 99.8 99.5 68.7 3.75

050376 (960203 × Harumi) 070435 (Ehime Kashi No. 28 × Okitsu 56 Gou) 92.3 52.0 89.2 36.3 33.3 39.1 99.9 99.8 48.3 3.59

071053 (Kuchinotsu 49 Gou × Seinannohikari) 050376 (960203 × Harumi) 42.4 84.3 80.7 45.4 41.8 44.3 99.9 99.0 70.0 3.57

080883 (Ehime Kashi No. 28 × Seinannohikari) 051115 (960203 × 980389) 68.2 54.5 87.3 39.2 35.1 45.6 99.9 99.9 61.9 3.53

050376 (960203 × Harumi) 051115 (960203 × 980389) 92.2 81.0 83.0 40.5 32.5 34.6 99.8 98.4 50.3 3.52

071012 (Kuchinotsu 49 Gou × Seinannohikari) 080706 (Ehime Kashi No. 28 × Seinannohikari) 67.6 94.0 83.5 39.8 31.6 39.8 99.6 96.1 53.3 3.40

080676 (Ehime Kashi No. 28 × Seinannohikari) 050376 (960203 × Harumi) 94.5 99.0 68.6 34.1 34.9 32.5 98.7 89.9 63.8 3.35

080688 (Ehime Kashi No. 28 × Seinannohikari) 051115 (960203 × 980389) 89.6 88.4 67.7 37.2 31.0 41.3 99.9 99.8 52.5 3.32

051115 (960203 × 980389) 080696 (Ehime Kashi No. 28 × Seinannohikari) 74.7 88.9 85.2 34.0 37.8 39.0 99.4 98.8 64.5 3.28

071012 (Kuchinotsu 49 Gou × Seinannohikari) 080694 (Ehime Kashi No. 28 × Seinannohikari) 78.0 76.9 85.9 37.4 33.7 38.1 99.1 94.5 57.8 3.24

071048 (Kuchinotsu 49 Gou × Seinannohikari) 050376 (960203 × Harumi) 42.1 84.6 74.1 45.9 43.8 40.0 99.6 98.3 68.4 3.22

070537 (satsuma mandarin × Okitsu 57 Gou) 051115 (960203 × 980389) 76.1 53.5 81.7 36.2 33.8 35.8 99.9 99.9 59.5 3.19

Ehime Kashi No. 28 (Nankou × Amakusa) 051115 (960203 × 980389) 99.5 49.1 92.8 35.6 31.3 30.3 99.8 96.0 43.1 3.18

070300 (980389 × Okitsu 56 Gou) 050376 (960203 × Harumi) 78.9 88.7 86.7 36.1 37.7 36.7 99.0 92.2 72.3 3.14

080706 (Ehime Kashi No. 28 × Seinannohikari) 060320 (No. 1011 × Tsunonozomi) 21.3 83.4 74.1 48.8 43.6 47.4 99.9 100.0 73.8 3.13

080717 (Ehime Kashi No. 28 × Seinannohikari) 051115 (960203 × 980389) 70.2 55.9 63.2 43.4 35.3 47.4 99.8 99.4 55.0 3.13

071022 (Kuchinotsu 49 Gou × Seinannohikari) 050376 (960203 × Harumi) 73.9 78.6 89.8 29.8 36.0 46.7 99.9 98.3 48.7 3.13

080706 (Ehime Kashi No. 28 × Seinannohikari) 050376 (960203 × Harumi) 31.2 90.9 82.1 50.9 38.4 36.8 98.6 97.4 73.3 3.10

050376 (960203 × Harumi) 080694 (Ehime Kashi No. 28 × Seinannohikari) 94.1 51.7 90.3 38.6 33.2 36.7 99.9 97.6 57.1 3.10

080716 (Ehime Kashi No. 28 × Seinannohikari) 050376 (960203 × Harumi) 75.9 54.9 69.1 41.6 36.5 41.7 99.5 99.2 57.4 3.09

080694 (Ehime Kashi No. 28 × Seinannohikari) 051115 (960203 × 980389) 85.6 52.9 90.3 40.5 34.9 36.9 99.8 98.7 62.2 3.09

071020 (Kuchinotsu 49 Gou × Seinannohikari) 050376 (960203 × Harumi) 56.9 97.3 85.9 44.1 33.5 35.9 97.9 90.4 58.4 3.07

080712 (Ehime Kashi No. 28 × Seinannohikari) 051115 (960203 × 980389) 37.6 55.3 85.8 47.5 36.9 44.0 99.3 98.8 76.2 3.07

080881 (Ehime Kashi No. 28 × Seinannohikari) 071012 (Kuchinotsu 49 Gou × Seinannohikari) 61.5 82.4 79.4 44.4 34.6 40.6 99.8 98.5 64.0 3.06

070395 (Ehime Kashi No. 28 × Okitsu 56 Gou) 050376 (960203 × Harumi) 85.1 88.2 82.4 33.2 36.5 27.6 99.2 95.1 70.2 3.01

080706 (Ehime Kashi No. 28 × Seinannohikari) 080706 (Ehime Kashi No. 28 × Seinannohikari) 33.9 57.6 76.7 46.6 39.6 45.9 99.8 99.8 79.2 2.99

051115 (960203 × 980389) 051196 (Kuchinotsu 33 Gou × Okitsu 57 Gou) 68.6 98.0 78.3 39.0 37.4 34.0 98.4 91.7 66.7 2.99

071048 (Kuchinotsu 49 Gou × Seinannohikari) 051115 (960203 × 980389) 71.9 98.2 59.7 43.3 37.6 40.1 99.9 98.5 61.4 2.99

071012 (Kuchinotsu 49 Gou × Seinannohikari) 051115 (960203 × 980389) 95.8 75.1 92.7 34.1 30.2 36.0 99.7 94.1 46.1 2.98

050400 (980389 × Tsunonozomi) 050376 (960203 × Harumi) 92.4 51.8 90.0 38.1 32.7 37.2 99.8 98.5 46.8 2.98

FW fruit weight, FSC fruit skin color, FST fruit surface texture, PE peelability, FC flesh color, PF pulp firmness, SF segment firmness, SC sugar content, AC acid content
a Probabilities of obtaining superior progenies in each trait
b Probabilities of obtaining superior progenies in all traits

https://doi.org/10.1371/journal.pone.0202341.t001
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parents with practical accuracy in citrus, and could identify good parental combinations that

would produce progeny with fruit-quality traits exceeding predefined criteria.

The efficiency of cross-breeding in fruit crops depends largely on the accuracy of pheno-

typic selection for desired characteristics and the choice of good parental combinations that

have high probability of obtaining superior genotypes [6]. With regard to phenotypic selection,

we previously reported the potential of the BLUP method for selecting superior genotypes in a

citrus breeding program [9]. With regard to selecting good parental combinations, we have

proposed a segregation prediction method in this paper. Thus, we have been able to provide a

practical solution for these two important problems in fruit cross-breeding. Recently, Hamil-

ton and Kerr [14] reported an efficient computational method and an R package (“polyAinv”)

for the inverse additive relationship matrix—which is essential for the BLUP method—for

Table 2. Top 30 parental combinations with the highest probability of obtaining progeny superior to ‘Shiranuhi’ (‘Kiyomi’ × ‘Nakano No. 3’ ponkan).

Parental combination Traita

Seed parent Pollen parent FW FSC FST PE FC PF SF SC AC Totalb

080688 (Ehime Kashi No. 28 × Seinannohikari) 060337 (No. 1011 × Tsunonozomi) 67.7 84.2 87.9 78.1 43.9 89.9 70.8 80.3 90.8 11.53

Ehime Kashi No. 28 (Nankou × Amakusa) 050391 (960203 × Harumi) 93.5 62.8 95.4 94.9 47.9 85.2 46.5 34.4 97.1 10.94

080688 (Ehime Kashi No. 28 × Seinannohikari) 050391 (960203 × Harumi) 37.9 72.7 76.8 92.4 54.8 90.1 65.3 89.4 97.5 10.54

080676 (Ehime Kashi No. 28 × Seinannohikari) 060063 (No. 1011 × Nankou) 41.0 98.4 70.0 95.3 53.7 92.5 61.8 84.5 91.0 10.53

080688 (Ehime Kashi No. 28 × Seinannohikari) 060344 (No. 1011 × Tsunonozomi) 59.9 93.7 74.9 94.7 47.0 90.2 56.4 79.8 98.0 10.27

050376 (960203 × Harumi) 080688 (Ehime Kashi No. 28 × Seinannohikari) 94.3 93.8 60.8 93.0 48.1 68.6 46.0 56.6 99.0 10.19

Ehime Kashi No. 28 (Nankou × Amakusa) 060174 (Tamami × Shiranuhi) 79.6 70.7 83.1 92.8 53.1 85.9 54.3 53.2 97.0 10.08

080698 (Ehime Kashi No. 28 × Seinannohikari) 060337 (No. 1011 × Tsunonozomi) 69.7 89.7 84.0 86.0 44.9 90.0 66.7 71.4 88.3 9.93

060174 (Tamami × Shiranuhi) 080688 (Ehime Kashi No. 28 × Seinannohikari) 83.3 93.6 67.2 90.7 49.9 89.3 63.9 49.8 83.8 9.87

Ehime Kashi No. 28 (Nankou × Amakusa) 060337 (No.1011 × Tsunonozomi) 99.5 68.4 94.4 85.3 40.5 63.0 66.5 17.1 78.9 9.71

071012 (Kuchinotsu 49 Gou × Seinannohikari) 080688 (Ehime Kashi No. 28 × Seinannohikari) 34.7 89.2 84.4 96.5 56.8 90.1 52.5 87.0 98.6 9.36

060063 (No. 1011 × Nankou) 080688 (Ehime Kashi No. 28 × Seinannohikari) 99.6 64.4 86.6 78.5 36.3 56.5 73.6 34.8 71.9 9.32

Ehime Kashi No. 28 (Nankou × Amakusa) 050376 (960203 × Harumi) 65.6 67.1 93.3 93.4 54.4 90.7 64.3 57.1 97.4 9.24

080883 (Ehime Kashi No. 28 × Seinannohikari) 050391 (960203 × Harumi) 80.9 66.2 81.3 92.8 51.4 72.9 54.0 71.1 98.9 9.19

060174 (Tamami × Shiranuhi) 080883 (Ehime Kashi No. 28 × Seinannohikari) 95.4 87.8 76.3 89.4 40.9 84.9 63.9 51.9 79.3 8.95

Ehime Kashi No. 28 (Nankou × Amakusa) 060344 (No. 1011 × Tsunonozomi) 94.2 58.8 88.7 91.5 43.6 80.8 54.7 55.3 95.1 8.89

080698 (Ehime Kashi No. 28 × Seinannohikari) 050391 (960203 × Harumi) 37.5 64.4 87.6 87.7 48.0 84.3 64.8 87.3 98.8 8.88

051196 (Kuchinotsu 33 Gou × Okitsu 57 Gou) 060337 (No. 1011 × Tsunonozomi) 85.7 72.3 62.6 90.0 56.1 67.1 55.1 71.3 98.7 8.87

060063 (No. 1011 × Nankou) 080687 (Ehime Kashi No. 28 × Seinannohikari) 81.5 66.7 68.4 88.3 48.5 81.5 62.5 73.5 94.9 8.82

080883 (Ehime Kashi No. 28 × Seinannohikari) 060337 (No.1011 × Tsunonozomi) 76.2 60.7 84.9 91.5 44.3 85.0 61.0 73.2 95.8 8.79

051257 (Tsunokagayaki × Kuchinotsu 33 Gou) 060174 (Tamami × Shiranuhi) 92.4 72.5 91.9 82.1 47.1 73.3 81.3 36.3 80.7 8.76

051257 (Tsunokagayaki × Kuchinotsu 33 Gou) 050376 (960203 × Harumi) 12.9 93.1 60.9 95.0 62.0 90.8 60.2 95.0 98.5 8.68

050376 (960203 × Harumi) 080698 (Ehime Kashi No. 28 × Seinannohikari) 43.5 90.0 65.9 95.0 59.6 75.5 53.3 94.3 99.4 8.61

Ehime Kashi No. 28 (Nankou × Amakusa) 071012 (Kuchinotsu 49 Gou × Seinannohikari) 94.9 89.9 87.9 93.3 45.0 88.6 56.2 31.8 84.9 8.59

060174 (Tamami × Shiranuhi) 051196 (Kuchinotsu 33 Gou × Okitsu 57 Gou) 37.8 87.0 71.2 93.9 52.5 86.8 60.4 94.8 97.5 8.55

060344 (No. 1011 × Tsunonozomi) 051196 (Kuchinotsu 33 Gou × Okitsu 57 Gou) 94.1 93.9 86.6 48.9 36.7 86.6 73.6 45.4 72.9 8.50

060337 (No.1011 × Tsunonozomi) 050391 (960203 × Harumi) 95.1 96.9 81.4 74.9 39.5 89.1 69.5 37.1 66.0 8.50

080883 (Ehime Kashi No. 28 × Seinannohikari) 060344 (No. 1011 × Tsunonozomi) 78.4 90.4 84.0 93.2 45.7 91.3 62.4 50.8 86.8 8.47

050391 (960203 × Harumi) 060344 (No. 1011 × Tsunonozomi) 53.4 71.6 73.0 92.0 53.2 82.9 61.8 72.7 98.3 8.45

060063 (No. 1011 × Nankou) 080686 (Ehime Kashi No. 28 × Seinannohikari) 80.2 60.1 81.1 90.8 44.0 77.5 62.0 73.5 97.2 8.44

FW fruit weight, FSC fruit skin color, FST fruit surface texture, PE peelability, FC flesh color, PF pulp firmness, SF segment firmness, SC sugar content, AC acid content
a Probabilities of obtaining superior progenies in each trait
b Probabilities of obtaining superior progenies in all traits

https://doi.org/10.1371/journal.pone.0202341.t002

Predicting segregation of fruit-quality traits in citrus

PLOS ONE | https://doi.org/10.1371/journal.pone.0202341 August 16, 2018 9 / 13

https://doi.org/10.1371/journal.pone.0202341.t002
https://doi.org/10.1371/journal.pone.0202341


multiple-ploidy populations. By using their method, the BLUP method and our proposed seg-

regation prediction method can be applied not only to diploid fruit crops, but also to multiple

ploidy fruit crops including species of economic importance such as Japanese persimmons,

grapes, and so on.

Another important problem in fruit breeding programs is that a huge area is needed to

grow and evaluate seedlings, because of their large size [15]. Consequently, even when a good

parental combination is selected, the number of progeny within the parental combination that

are actually grown may often be small, and thus outstanding progeny might not be obtained.

With regard to this problem, our proposed method was able to predict the probabilities of

obtaining promising progeny that exceed the predefined criteria in any parental combination,

as well as being able to select good parental combinations, as demonstrated in this study

(Tables 1 and 2). Therefore, our proposed method can be used to determine the scale of breed-

ing programs necessary to achieve specific breeding goals.

A limitation of our proposed method is that its accuracy for trait segregation prediction

depends on the accuracy of its parameters. We used phenotypic records and pedigree informa-

tion on 2122 genotypes to obtain parameters for constructing the trait segregation model. Col-

lecting a larger dataset from multiple locations and/or for longer periods could further

increase the accuracy of our prediction method. These large datasets could be established by

collecting data from several citrus breeding programs, and would offer enough information

for more precise prediction of trait segregation. They would also enable precise selection of

prominent genotypes even in breeding programs that have been running for only a short time

and have only a small amount of accumulated data by analyzing combined datasets using the

BLUP method. Moreover, the set of data collected across multiple environments is applicable

to the BLUP method with a genotype-by-environment interaction term (e.g., Smith et al. [16]),

which may offer useful information for developing regionally adapted genotypes.

The accuracy of our proposed method also depends on the mode of inheritance of target

traits. Our method considers additive polygenic effects under the assumption of an infinitesi-

mal model [17]. However, in fruit breeding, not only additive effects but also non-additive

effects (i.e., dominance and epistasis) can be utilized because superior genotypes with domi-

nance and epistasis effects can be propagated by grafting or other asexual means. Several stud-

ies have demonstrated that the breeding values predicted by the BLUP method with an

additive relationship matrix capture a large part of the dominance and epistasis effects [18, 19],

and it seems justified in our case (S5 Fig); nevertheless, using a model that incorporates non-

additive effects could be valuable in fruit crops (e.g., Minamikawa et al. [20]). In animal breed-

ing, the BLUP method using pedigree information is extended to predict non-additive effects

[21–23]. In these studies, one proposed model [24] may be more appropriate for fruit breeding

—which typically involves inbreeding—since it can predict exact additive and dominance

effects in a population with inbreeding (Narita, personal communication). Once the non-addi-

tive effects are evaluated, we can incorporate this information into our proposed method to

improve the accuracy of trait segregation.

In addition to non-additive effects, the mode of inheritance of target traits would involve

major genes that have significant effects on the phenotype [25]. To predict the trait segregation

with a major gene, Iwanami et al. applied the segregation analysis [26] in a pedigreed apple

population [27]. That study revealed the existence of a major gene controlling fruit acidity in

apple, and predicted the distribution of genotypic values of F1 progeny in consideration of

parental genotypes of the major gene. In fruit cross breeding, segregation analysis may be espe-

cially useful for a population in which molecular markers cannot be used—such as a formerly

culled population—because segregation analysis requires only phenotypic records from a pedi-

greed population. In contrast, if molecular markers linked to QTLs are available, they can be
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used to predict trait segregation and to select prominent genotypes [28, 29]. When parental

genotypes of major genes are available, this information can be incorporated into our pro-

posed method, especially for predicting single-trait segregation. However, in the case of multi-

ple traits, a trait segregation model can be more complicated because pleiotropic effects of and

linkage between major genes must be taken into account.

In a recent case study of Japanese pear, a novel method was proposed for predicting the seg-

regation of target traits based on genome-wide markers [5]. That method constructed a segre-

gation model based on the estimated effects of each of all genome-wide markers, and can

therefore predict the Mendelian sampling effects in a progeny population. Consequently, that

method could be more accurate than our method. However, in ongoing fruit breeding pro-

grams where there are large phenotypic records but no molecular marker information—which

is the case in most fruit breeding programs—our method offers a simple and practical way to

predict segregation of target traits using large accumulated datasets. In the future, a novel

method that uses the combined information derived from genotyped and non-genotyped indi-

viduals should be developed, such as the method for predicting breeding values [30, 31].

In conclusion, concerning the difficult problem of selecting parental combinations for cit-

rus breeding, we have proposed a practical solution for selecting prominent parental combina-

tions by using accumulated phenotypic data in ongoing citrus breeding programs. In the near

future, we intend to validate our proposed method in other fruit breeding programs.

Supporting information

S1 Fig. Residuals for each trait in the multi-trait BLUP model. Frequency is shown on the

vertical axis, and residuals are shown on the horizontal axis. FW fruit weight, FSC fruit skin

color, FST fruit surface texture, PE peelability, FC flesh color, PF pulp firmness, SF segment

firmness, SC sugar content, AC acid content.

(PDF)

S2 Fig. Q–Q plot of frequency distributions of breeding values of nine fruit-quality traits

in F1 progeny of ‘Tamami’ × ‘Shiranuhi’ predicted by the best linear unbiased prediction

method (y-axis) and those predicted by the proposed method for traits segregation predic-

tion (x-axis). Squared Mahalanobis distance was calculated from breeding values of nine fruit-

quality traits, and their distributions were compared.

(PDF)

S3 Fig. Q–Q plot of frequency distributions of breeding values of nine fruit-quality traits

in F1 progeny of ‘Tsunonozomi’ × ‘Mihaya’ predicted by the best linear unbiased predic-

tion method (y-axis) and those predicted by the proposed method for traits segregation

prediction (x-axis). Squared Mahalanobis distance was calculated from breeding values of

nine fruit-quality traits, and their distributions were compared.

(PDF)

S4 Fig. Q–Q plot of frequency distributions of breeding values of nine fruit-quality traits

in F1 progeny of ‘Harehime’ × ‘Seinannohikari’ predicted by the best linear unbiased pre-

diction method (y-axis) and those predicted by the proposed method for traits segregation

prediction (x-axis). Squared Mahalanobis distance was calculated from breeding values of

nine fruit-quality traits, and their distributions were compared.

(PDF)

S5 Fig. Comparison between additive effects (breeding value, x-axis) and sum of the addi-

tive and dominance effects (y-axis) predicted in single-trait BLUP method. Correlation
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coefficients between these two predicted values are shown in each trait. The computational

iteration procedure was not convergent in the multi-trait model when dominance effects were

included, and thus we applied the single-trait model with dominance effect. FW fruit weight,

FSC fruit skin color, FST fruit surface texture, PE peelability, FC flesh color, PF pulp firmness,

SF segment firmness, SC sugar content, AC acid content.

(PDF)
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