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SUMMARY

We describe steps to 1) identify ascending and descending monotonic key genes
from time-ordered stem cell differentiation expression data, 2) construct time-
ordered transcriptional regulatory networks, and 3) infer the involvement of
transcription factors along the differentiation process.
For complete details on the use and execution of this protocol, please refer to
Wong et al. (2020).

BEFORE YOU BEGIN

Download R version 4.2.0 and Rtools 4.2

Timing: 10 min

1. As described on the official website (https://www.r-project.org/), ‘‘R is a free software environ-

ment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX plat-

forms, Windows and MacOS."

a. To download and install R and Rtools, visit https://www.r-project.org/ (R Core Team, 2020)

and follow the instructions. We prepare the protocol with R 4.2.0 and Rtools 4.2.

Note: Rtools are required to build R packages from source R code on Windows. In this proto-

col, we use the MFSelector package to identify key monotonic genes. Since the precompiled

MFSelector package was built with R < 3.6.2, which is incompatible with R 4.2.0, we have to

install and build the package from the R source code. It is possible to build an independent

computing environment to use the precompiled MFSelector package with Conda (https://

docs.conda.io/projects/conda/en/latest/), though we do not recommend to use the old

version of R. See troubleshooting: problem 1.

Download the required packages in R

Timing: 10 min
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2. Download the required packages (listed in the key resources table) through Bio-

cManager::install().

a. Get version 3.15 of Bioconductor by starting R and entering the commands.

b. Install the required packages with the command in the R console.

Note: These packages are deposited in two separated repositories: CRAN and Bioconductor.

Bioconductor has a repository and release schedule that differs from R. Bioconductor version

3.15 is the release for R version. 4.2.0. Visit http://bioconductor.org/install/ for detailed

information.

3. Download and install the MFSelector package through http://microarray.bmi.nycu.edu.tw:8080/

tools/module/MFSelector/index.jsp?mode=support (Wang et al., 2015).

a. Download the R source code to the working directory and install MFSelector with the com-

mands on the R console.

Note: This website is hosted by the original group that published MFSelector. We recom-

mend installing the package from the R source code, which is also supported for parallel

computing with multiple cores. If there is a need to run MFSelector with multiple cores in par-

allel on a Windows machine, see troubleshooting: problem 2.

Download the TO-GCN package

Timing: 2 min

4. To download TO-GCN software, visit https://github.com/petitmingchang/TO-GCN_STAR-Protocol

and download the package from the website.

a. Once you have downloaded the package in zip format, unzip it and you will get a folder named

TO-GCN_STAR-Protocol-main.

KEY RESOURCES TABLE

>if(!require("BiocManager", quietly = TRUE))

>install.packages("BiocManager")

>BiocManager::install(version = "3.15")

>BiocManager::install(c("ggplot2", "gplots", "gridExtra",

"RColorBrewer", "rtracklayer", "GEOquery", "biomaRt"))

>download.file("http://microarray.bmi.nycu.edu.tw:8080/tools/module/MFSelector/content/support/multicore/

MFSelector_1.0.tar.gz", "MFSelector_1.0.tar.gz")

>install.packages("MFSelector_1.0.tar.gz", repos = NULL, type = "source")

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

A time-ordered mesenchymal
stem cell differentiation RNA
sequencing dataset

NCBI Gene Expression Omnibus NCBI GEO: GSE140914 (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE140914)

MFSelector_doSNOW.r (Tsai, 2022) https://github.com/yushuen/MFSelector_
STAR-Protocol (https://doi.org/10.5281/zenodo.6637018)

(Continued on next page)
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STEP-BY-STEP METHOD DETAILS

Download and prepare the data matrix for analysis

Timing: 1 min

Stem cell differentiation is determined by the underlying gene regulatory network during the process of

development, which leads the stem cells into their particular terminal cell phenotype. During stem cell

differentiation, the stemness biomarkers of stem cells will descend over time while the characteristics

and functions of terminal cells will ascend. The proposedprotocol is designed for time-ordered transcrip-

tomic profiling data. First, we use the MFSelector package to identify ascending and descending mono-

tonic key genes. Then, we use the TO-GCN software to identify the time order of transcriptional factors

and biological processes. Based on the official MFSelector tutorial, it accepts data in a tab-delimited text

file with the first column containing gene identifiers. It is first developed for gene expression microarray

data, but it is also compatible for RNA sequencing data. The expression values can be either normalized

read counts (i.e., counts per million, CPM) or other quantitative measures, such as TPM (transcripts per

million), and FPKM (fragments per kilobaseof transcript permillion fragmentsmapped). TO-GCN recom-

mends to use normalized quantitative measures, e.g., TPM but also accepts normalized read counts. In

this protocol, we use an RNA sequencing dataset from our previous study (Wong et al., 2020) as an

example. It is the dataset of mesenchymal stem cells differentiated into mesangial cells. This dataset

has been deposited in the Gene Expression Omnibus (GEO) database: GSE140914 (https://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GSE140914). This dataset has been normalized with TMM

(Trimmed Mean of the M-values) and and processed CPM values after batch effect removal. These pro-

cessed data are analysis-ready. Only a simple process is required to combine the data of all samples.

1. Download the processed data (GSE140914_RAW.tar) from GEO with GEOquery package.

a. Once the file is downloaded, use the command to extract the file.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Human TF gene list (Hu et al., 2019) http://bioinfo.life.hust.edu.cn/static/
AnimalTFDB3/download/Homo_sapiens_TF

Software and algorithms

R software (R Core Team, 2020) https://www.r-project.org/

TO-GCN package (Chang et al., 2019; Chang, 2022) https://github.com/petitmingchang/
TO-GCN_STAR-Protocol

MFselector package (Wang et al., 2015) http://microarray.bmi.nycu.edu.tw:8080/
tools/module/MFSelector/index.jsp?mode=home

ggplot2 package (Wickham, 2016) https://cran.r-project.org/package=ggplot2

gplots package (Warnes et al., 2016) https://cran.r-project.org/package=gplots

RColorBrewer package (Neuwirth, 2014) https://cran.r-project.org/package=RColorBrewer

parallel package (R Core Team, 2020) https://cran.r-project.org/web/views/
HighPerformanceComputing.html

foreach package (Microsoft and Weston, 2020) https://cran.r-project.org/package=foreach

doSNOW package (Microsoft Corporation
and Weston, 2020)

https://cran.r-project.org/package=doSNOW

GEOquery package (Davis and Meltzer, 2007) https://bioconductor.org/packages/
release/bioc/html/GEOquery.html

biomaRt package (Durinck et al., 2005, 2009) https://bioconductor.org/packages/
release/bioc/html/biomaRt.html

>library(GEOquery)

>getGEOSuppFiles("GSE140914", makeDirectory = F)

>untar("GSE140914_RAW.tar")

>list.files(pattern = "gz$") |> lapply(gunzip)
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b. Import and combine the data with R.

Note:We import the data of 15 samples from 15 decompressed files. Each file contains three

columns, which are Ensembl gene identifiers, HGNC gene symbols, and normalized read

counts. The genes of all files are in the same order. We can combine these data without addi-

tional mapping efforts.

c. Process the sample names.

Note: The third column name is the sample name which is named as ‘‘batch (integer)’’-‘‘days

after differentiation started (integer)’’. When importing file into R, sample names will automat-

ically be converted, for example, ‘1-1’ will become ‘‘X1.1’’. Therefore, we include a few steps in

our example code to deal with this.

d. Process the gene identifiers.

Note: We use these commands to create a merged gene identifier for each gene which is

composed of the Ensembl gene identifier and the HGNC gene symbol. We use the merged

gene identifiers in next step to obtain readable outputs of MFSelector.

e. Generate the input data for MFSelector.

f. Visualize the overall relationship between the samples with a multidimensional scaling (MDS)

plot with R (Figure 1).

# Import data

>data_list <- list.files(pattern="^GSM") |> lapply(read.delim, header = TRUE)

# Combine data

>data_mat <- sapply(data_list, \(x) x[, 3])

# Get sample names, batch information, group information

>sample_names <- sapply(data_list, \(x) colnames(x)[3])

>sample_names <- gsub("X", "", sample_names)

>batch_id <- gsub("\\.\\S+", "", sample_names)

>sample_group <- gsub("\\S+\\.", "", sample_names)

>sample_code <- paste0("B:", batch_id, "_D:", sample_group)

>gene_id <- data_list[[1]][, 1]

>gene_names <- data_list[[1]][, 2]

>gene_labels <- paste(gene_id, gene_names, sep = ":")

# Assign column names and row names

>colnames(data_mat) <- sample_code

>rownames(data_mat) <- gene_id

# Generate the input data for MFSelector

>data <- cbind(gene_labels, as.data.frame(data_mat))
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Identification of ascending and descending monotonic key genes by Monotonic Feature

Selector

Timing: 30 min

MFSelector is an R package which is designed to identify genes either with increasing or decreasing

expressions across different time ordered stages, i.e., ascending and descending monotonic key

genes. It is suitable for the transcriptomic profiling of cell differentiation investigations. The options

for using MFSelector can be referred to the MFSelector Tutorial shown in the official site: http://

microarray.bmi.nycu.edu.tw:8080/tools/module/MFSelector/index.jsp?mode=support. The key

options for different datasets are the number of data points in each stage, the name represented

for each stage, and the type of monotonic genes. We develop the protocol with the multicore

version of MFSelector.

2. Prepare the inputs with R.

a. Load required package.

b. Prepare MFSelector key input arguments.

# Define a function to generate MDS plot

>get_MDS_plot <- function(prefix, data_mat, sample_group){

cmd <- t(data_mat) |> dist() |> cmdscale()

df <- data.frame(Sample = colnames(data_mat), Dimension_1 = cmd[, 1],

Dimension_2 = cmd[, 2], Group = sample_group)

p1 <- ggplot(df, aes(Dimension_1, Dimension_2)) +

geom_point(aes(colour = Group), size = 4) +

scale_color_brewer(palette="Paired") +

ggtitle(paste(prefix, "MDS Plot"))

print(p1)

}

# Load required package

>library(ggplot2)

# Generate a MDS plot for this dataset -> Figure 1

>get_MDS_plot("GSE140914", data_mat, sample_group)

>ggsave("GSE140914_MDSplot.tiff", dpi = "retina"

>library(MFSelector)

>library(parallel)

>nsc <- table(sample_group)

>stageord <- order(sample_group)

>stagename <- sample_group |> unique() |> sort()
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c. Detect the number of total cores in the current machine.

3. Identify candidate descending monotonic key genes with MFSelector. The outputs are a table of

candidate genes saved in a tab-delimited text file and the scatter plots of all candidate genes

saved in a PDF file.

4. Rename the output files.

5. Identify candidate ascending monotonic key genes.

6. Rename the second output files.

Note: For an alternative solution for running parallel MFSelector on a Windows machine, see

troubleshooting: problem 3.

Export high quality plots (complying with most publication standards)

Timing: 4 min

7. Define an R function to identify genes that have fulfilled the given criteria.

>total_cores <- detectCores()

>half_cores <- total_cores/2

>mfselector(data, nsc, stageord = stageord, stagename = stagename,

type = 1, nline = T, dline = T, pdf = 1:100, cmp = 0, permut = 100, svdenoise = 0.03, svdetimes = 4,

cores = half_cores)

>mf_outputs <- list.files(pattern="^mfselector")

>mf_outputs_type1 <- gsub(".*\\.", "MFSelector_Type1.", mf_outputs)

>mapply(file.rename, mf_outputs, mf_outputs_type1)

>rm(mf_outputs, mf_outputs_type1)

>mfselector(data, nsc, stageord = stageord, stagename = stagename,

type = 2, nline = T, dline = T, pdf = 1:100, cmp = 0, permut = 100,

svdenoise = 0.03, svdetimes = 4, cores = half_cores)

>mf_outputs <- list.files(pattern="^mfselector")

>mf_outputs_type2 <- gsub(".*\\.", "MFSelector_Type2.", mf_outputs)

>mapply(file.rename, mf_outputs, mf_outputs_type2)

>rm(mf_outputs, mf_outputs_type2)
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8. Get candidate monotonic key genes.

9. Find the indices of candidate genes.

10. Generate MDS plots with these candidate genes (e.g., Figure 2).

>candidate_genes_parser <- function(input_file, DE = NULL, SVDE = NULL, nline = NULL, out_col =

NULL, ...){

input_tab <- read.delim(input_file)

rii <- 1:nrow(input_tab)

if(!is.null(DE)){

sii <- which(as.numeric(input_tab[, "DE"]) <= DE)

rii <- intersect(rii, sii)

}

if(!is.null(SVDE)){

sii <- which(as.numeric(input_tab[, "SVDE"]) <= SVDE)

rii <- intersect(rii, sii)

}

if(!is.null(nline)){

sii <- which(input_tab[, "with.N.1.distinct.lines"] == TRUE)

rii <- intersect(rii, sii)

}

if(is.null(out_col)){

candidate_genes <- as.character(input_tab[rii, 1])

}else{

candidate_genes <- as.character(input_tab[rii, out_col])

}

return(candidate_genes)

}

>MF_type1_genes <- candidate_genes_parser("MFSelector_Type1.txt", DE = 4)

>MF_type2_genes <- candidate_genes_parser("MFSelector_Type2.txt", DE = 4)

>mii_type1 <- match(MF_type1_genes, gene_labels)

>mii_type2 <- match(MF_type2_genes, gene_labels)

>get_MDS_plot("GSE140914_Type1", data_mat[mii_type1, ], sample_group)

>ggsave("GSE140914_Type1_MDSplot.tiff", dpi = "retina") # Figure 2

>get_MDS_plot("GSE140914_Type2", data_mat[mii_type2, ], sample_group)

>get_MDS_plot("GSE140914_Type1+2", data_mat[c(mii_type1, mii_type2), ], sample_group)
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11. Generate heatmap plots with these candidate genes.

a. Define a function for the Z-score transformation.

b. Define a function to perform hierarchical clustering with the Ward’s method.

c. Define a function to generate a heatmap.

d. Load the required packages for generating heatmap.

e. Generate a heatmap plot with type 1 (descending) monotonic candidate genes (Figure 3).

Note: The default graphics device is 7 inches square, which is not large enough for a heatmap

with a long gene list. Therefore, we create a larger TIFF device to save the heatmap.

12. Generate scatter plots with these candidate genes.

a. Define a function to generate the scatter plot with ggplot2.

>z_transformation <- function(x){(x-mean(x))/sd(x)}

>ward_hclust <- function(d){hclust(d, method = "ward.D")}

>get_heatmap<-function(prefix, data, sample_group, gene_symbols = NULL){

sample_col_fac <- as.factor(sample_group)

n_group <- sample_group |> unique() |> length()

dataZ <- apply(data, 1, z_transformation) |> t()

my_col_palette <- brewer.pal(11, "RdBu") |> rev()

levels(sample_col_fac) <- brewer.pal(n_group, "Paired")

col_colors <- as.character(sample_col_fac)

if(!is.null(gene_symbols)){

rownames(dataZ) <- gene_symbols

}

heatmap.2(dataZ, col = my_col_palette, ColSideColors = col_colors,

Colv = TRUE, dendrogram = "both", hclustfun = ward_hclust,

margins = c(5, 7), trace = "none", keysize = 1.2,

lhei = c(1.5, 9.5), lwid = c(1.5, 6.5))

}

>library(gplots)

>library(RColorBrewer)

>tiff("GSE140914_Type1_Heatmap.tiff", width=10, height=12, unit="in", res = 320)

>get_heatmap("GSE140914_Type1", data_mat[mii_type1, ], sample_group,

gene_symbols = gene_labels[mii_type1])

>dev.off() # Figure 3

>get_scatter_plots <- function(my_gene_id, data, gene_id, sample_group, mf_tab){

mii1 <- which(gene_id == my_gene_id)
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b. Import the output text files of MFSelector.

c. Generate scatter plots with these candidate genes (Figure 4 as an example). If ‘‘parallel’’

package is available in your system, use ‘‘mclapply()’’ instead of ‘‘lapply()’’.

mii2 <- which(mf_tab[, 1] == my_gene_id)

if(length(mii1) > 0 & length(mii2) >0){

DE <- mf_tab[mii2, 2]

PVAL <- round(mf_tab[mii2, 3], 2)

QVAL <- round(mf_tab[mii2, 4], 2)

SVDE <- mf_tab[mii2, 5]

TITLE <- paste(my_gene_id, "\nDE =", DE, " p-value =", PVAL,

" q-value =", QVAL, " SVDE =", SVDE)

expression <- as.numeric(data[mii1, ])

ordered_idx <- order(sample_group)

df <- data.frame(Samples = 1:length(expression),

Expression = expression[ordered_idx],

Group = as.factor(sample_group[ordered_idx]))

group_min_df <- data.frame(

Min = tapply(df$Expression, df$Group, min),

Group = levels(df$Group))

p <- ggplot(data = df, aes(x = Samples, y = Expression)) +

geom_point(aes(color = Group, shape = Group),

size = 4) + scale_color_brewer(palette="Paired") +

scale_x_continuous(breaks = 1:length(expression),

labels = colnames(data)[ordered_idx]) +

geom_hline(aes(yintercept = Min, color = Group),

group_min_df, lty = "dashed") + ggtitle(TITLE) +

theme(plot.title = element_text(hjust = 0.5)) +

theme_bw() + theme(axis.text.x = element_text(angle = 45,

vjust = 1, hjust = 1))

print(p)

}

}

>mf_tab_1 <- read.delim("MFSelector_Type1.txt", header = TRUE)

>mf_tab_2 <- read.delim("MFSelector_Type2.txt", header = TRUE)

>get_scatter_plots(MF_type1_genes[1], data_mat, gene_labels, sample_group, mf_tab_1)

>ggsave("Figure_4.tiff", dpi = "retina") # Figure 4
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Prepare the input data for TO-GCN

Timing: 5 s

13. Prepare the input files for TO-GCN.

a. Compute the mean CPM values for each group.

b. Define a function to set negative values as zero.

c. Filter out lowly expressed genes (CPM <= 1).

d. Import Ensembl gene biotype annotation. See problem 4 for details.

e. Check if there are gene identifiers without Ensembl gene biotype annotations.

f. Select only protein coding genes.

>pdf("Scatter-Plots_Type1.pdf")

>lapply(MF_type1_genes, get_scatter_plots, data_mat, gene_labels, sample_group,

mf_tab_1)

>dev.off()

>pdf("Scatter-Plots_Type2.pdf")

>lapply(MF_type2_genes, get_scatter_plots, data_mat, gene_labels, sample_group,

mf_tab_2)

>dev.off()

>sample_group_fac <- as.factor(sample_group)

>get_group_mean <- function(x, sample_group_fac){

tapply(x, sample_group_fac, mean)

}

>group_mean_cpm <- apply(data_mat, 1, get_group_mean, sample_group_fac) |> t()

>neg_to_zero <- function(x){ (abs(x)+x)/2 }

>check_mat <- neg_to_zero(group_mean_cpm - 1)

>mode(check_mat) <- "logical"

>check_ans <- apply(check_mat, 1, any)

>group_mean_cpm_subset <- group_mean_cpm[check_ans, ]

>gene_biotype <- read.delim("gene_biotype.txt", header = T)

>bii <- match(rownames(group_mean_cpm_subset), gene_biotype$ensembl_gene_id, nomatch = 0)

>nii <- which(bii!=0)

>feature_type <- gene_biotype[bii[nii], 2]

>pii <- which(feature_type == "protein_coding")

>group_mean_cpm_pro <- group_mean_cpm_subset[nii[pii], ]
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g. Download and import full list of human transcript factors from AnimalTFDB3.0.

h. Identify the indices of genes annotated as transcription factors.

i. Split the mean TPM table into two tables for transcription factor coding genes and non-tran-

scription factor coding genes respectively.

j. Generate the input files for TO-GCN.

Note:Here, we identify protein coding genes based on Ensembl annotations. An example of

how to retrieve this annotation with biomaRt is all provided. See troubleshooting: problem 4.

Run the TO-GCN analysis

Timing: 8 min

Unlike the previous R scripts steps, the TO-GCN analysis is composed of three major parts (by

three tools): (1) estimates the cutoff value (by ‘Cutoff’), (2) constructs the time-ordered gene co-

expression network (by ‘‘TO-GCN’’), and (3) generates a list of co-expressed gene for each level

in the TO-GCN (by ‘GeneLevel’). You can directly run the precompiled executable files or create

the executable files by C++ compiler for your operating systems. In the first part, the ‘Cutoff’ tool

will give you a range of cutoff suggestions for the following analysis by checking all Pearson’s cor-

relation coefficient (PCC) values of expression profiles between all pairs of TF genes. In the second

part, the ‘TO-GCN’ tool will construct a gene co-expression network (GCN) with multiple levels

that correspond to the up-regulation time order of the TF genes. To obtain a reasonable and

meaningful TO-GCN, you need to choose some (at least one) of the TF genes that may be up-

regulated earliest as the initial seed. The candidates for the initial seed can be found in the list

of descending monotonic key genes (MF_type1_genes) generated by the MFSelector. The

output of ‘TO-GCN’ can be visualized by the Cytoscape (https://cytoscape.org). In the last part,

the ‘GeneLevel’ tool will give you a list of genes that correspond to each time-ordered level.

You can perform the GO (Gene Ontology) term or KEGG pathway enrichment test to obtain dy-

namic biological processes over the time points.

14. Estimate the cutoff value of Pearson correlation coefficient for constructing a gene co-expres-

sion network. The input file contains a matrix of TF gene IDs and their expression level (can

be TPM, FPKM, or CPM, etc.) at each time point.

a. Go to the downloaded TO-GCN folder (using Windows as an example).

>download.file("http://bioinfo.life.hust.edu.cn/static/AnimalTFDB3/download/Homo_sapiens_TF",

"Homo_sapiens_TF.txt")

>human_tf <- read.delim("Homo_sapiens_TF.txt", header = T)

>tii <- match(rownames(group_mean_cpm_pro), human_tf$Ensembl, nomatch = 0)

>tf_vec <- as.logical(tii)

>tf_group_mean_cpm <- group_mean_cpm_pro[tf_vec, ]

>non_tf_group_mean_cpm <- group_mean_cpm_pro[!tf_vec, ]

>write.table(tf_group_mean_cpm, "TF_gene_matrix.tsv", row.names = T, col.names = F, sep =

"\t", quote = F)

>write.table(non_tf_group_mean_cpm, "Non-TF_gene_matrix.tsv", row.names = T, col.names =

F, sep = "\t", quote = F)

ll
OPEN ACCESS

STAR Protocols 3, 101541, September 16, 2022 11

Protocol

https://cytoscape.org
http://bioinfo.life.hust.edu.cn/static/AnimalTFDB3/download/Homo_sapiens_TF


b. Prepare input files (either from the output of step 13 or the example_data folder in package).

c. Get the range of cutoff values for reference with TF gene matrix.

15. Construct a time-ordered gene co-expression network (TO-GCN) of TF genes. Two input files

are required in this step. The first input file contains the TF genematrix used in the step 14, while

the second input file contains a list of TF gene IDs for initiating the BFS (Breadth-First Search)

algorithm to determine the time order for TF genes in the network.

a. Create a text file of the initial TF gene (use ENSG00000175592 as an example).

b. Construct the network with two input files and the PCC cutoff value.

Optional: Use Cytoscape to visualize the network with two output files, Node_relation.csv and

Node_level.tsv, for the input of edges and nodes respectively.

16. Generate sets of gene lists for each time-ordered level. This step requires three input files, a TF

gene matrix, a non-TF gene matrix, and one of the output files (Node_level.tsv) from step 15.

$ cd TO-GCN_STAR-Protocol-main\precompiled_files\Windows

$ copy ..\..\example_data\TF_gene_matrix.tsv .

$ copy ..\..\example_data\Non-TF_gene_matrix.tsv .

$ Cutoff.exe 5 TF_gene_matrix.tsv

No. of TFs: 1122

No. of time points: 5

Cutoff value for your reference: 0.86 � 0.90

$ echo ENSG00000175592 > initial_seed.txt

$ TO-GCN.exe 5 TF_gene_matrix.tsv initial_seed.txt 0.9

No. of TFs: 1122

No. of time points: 5

No. of initial TF seeds: 1

Cutoff: 0.90

Assigning levels for nodes in GCN by Breath-First-Search (BFS) method.

Done!

$ GeneLevel 5 TF_gene_matrix.tsv Non-TF_gene_matrix.tsv Node_level.tsv 0.9

No. of TFs: 1122

No. of non-TF genes: 11118

No. of time points: 5

Cutoff: 0.90

Done!
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Optional: Conduct the functional enrichment test with the list of genes in output files. These

genes were output in a list (Gene_list_in_each_level.csv) and amatrix (Gene_level_matrix.csv).

Note: Although precompiled executable files were provided for Linux, MacOS, andWindows,

you can still use any C++ compiler to generate the executable files with files in the ‘‘source_-

code’’ folder, problem 5.

The suggested cutoff value in step 14 is from the top 5% value (p-value < 0.05) in all PCC values of the

expression profiles between all pairs of TF genes. It is worth noting that a higher cutoff value will

generatemore levels in a TO-GCNwhichmeans higher resolution of time order level, and vice-versa.

However, a very high cutoff value will filter out too many likely co-expression relationships between

TF genes and will obtain very few numbers of TF genes for analysis. Therefore, we provide a range of

cutoff suggestions to build the TO-GCN.

Figure 1. A multidimensional scaling (MDS) plot based on the entire gene expression profile
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EXPECTED OUTCOMES

MFSelector and TO-GCN were the two methods of data analysis used in this workflow. These

methods worked synergistically to provide a deeper understanding of stem cell differentiation

into terminal cells. In this article, the differentiation of mesenchymal stem cells into mesangial cells

was used as example. MFSelector determined the degree of monotonicity for all genes during the

differentiation process and provided an estimation of the expression behavior of the gene during

differentiation. TO-GCN used co-expression relationship to connect TF genes as pairs, in which

they have similar expression patterns (i.e., significantly high PCC) over time. It inferred expression

time orders for all TF genes in the network with the starting TF in the strongest descending pattern

identified by MFSelector. By applying this method to time-series experiments, TO-GCN provided

the time order information of gene regulations in developmental processes. The data obtained

from both methods were further used to identify the TF-key genes at specific time points to the

TO-GCN at different levels. This helped to elucidate the network interaction between TF-TF and

TF-key genes at each level of TO-GCN.

Figure 2. A multidimensional scaling (MDS) plot based on the gene expression profile of candidate descending monotonic key genes
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Figure 3. A heatmap based on the gene expression profile of candidate descending monotonic key genes
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In Figure 1, we used different colors for different groups and different shapes for samples generated

in different batches. The same illustration strategy has been used to generate MDS plots based on

each set of candidate monotonic key genes. For example, Figure 2 is based on the gene expression

profile of candidate descending monotonic key genes with total discriminating errors less than or

equal to four (DE=4). We have also provided a clustering analysis to generate a heatmap with sam-

ples labeled in consistent colors as the ones we used in theMDS plot. We used the same set of candi-

date genes to generate Figure 3 as an example. In addition to the scatter plots generated by MFSe-

lector, we have provided another strategy to create scatter plots in the preferred style (Figure 4). The

MFSelector also outputs a table for each run. Users can select candidate genes according to the

different criteria listed in the table.

Two major outputs of the TO-GCN package are the time-ordered levels of TF genes in the network

and their co-expressed genes for each level. Figure 5 is made with the Cytoscape tool with two

Figure 4. A scatter plot of a selected descending monotonic key gene. DE and SVDE are the discriminating error and the sample variance for the

discriminating error respectively. These concepts were proposed and used by the authors of MFSelector. The statistical significance was assessed

with a permutation process and the defaulted outputs such as p- and q-values were reported. Visit MFSelector official website for more details.
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output files, Node_level.tsv (for node information) and Node_relation.csv (for edge information), in

step 15. In addition to the network, two output files in step 16, Gene_list_in_each_level.csv and Gen-

e_level_matrix.csv, list all co-expressed genes at each level where the former provides a single list of

genes with level IDs and the latter provides a gene ID by level ID matrix. A further functional enrich-

ment test can be conducted with these gene IDs to understand the dynamic biological processes

over time-ordered levels.

LIMITATIONS

This protocol relies on a properly defined grouping of samples and time-ordered data. For datasets

without well-defined groups, e.g., samples of different groups that are not differentiated from the

others physiologically, the MFSelector may not be able to identify monotonic key genes. It should

be noted that MFSelector is designed to identify genes with continuously decreased or increased

expression levels across time-ordered stages. It fits only a specific scope of research. A minimum

of five-time-point time series samples are required to get the meaningful correlation value when

applying TO-GCN. Another limitation is that oscillatory time series data are not suitable for TO-

GCN because the correlation value may fail to infer the order between genes. We strongly suggest

clarifying the research scope before adapting this protocol.

TROUBLESHOOTING

Problem 1

It is necessary to build an independent computing environment to run the precompiled MFSelector.

Potential solution

As described on the official Conda website (https://docs.conda.io/projects/conda/en/latest/),

Conda is an open-source package management system and environment management system

that runs on Windows, MacOS, and Linux. It can quickly install, run, and update packages and their

dependencies. It can create, save, load, and switch between environments on your local computer.

To download and install Conda, visit https://docs.conda.io/projects/conda/en/latest/user-guide/

install/download.html and follow the instructions. Once Conda is available on your local computer,

you can create an independent computing environment for R version 3.6.2 with these commands.

Figure 5. Time-ordered levels of TF genes in the network and their co-expressed genes for each level

Each pink circle represents a TF gene and each gray line between pink circle represents their co-expression relationship (PCC R cut-off value). The

number of TF genes for each level is shown in the center. The bar chart below the network demonstrates the up-regulated time order of TF genes at each

level. For example, all TF genes at level 1 were up-regulated at D1 (the first time point: Day1) and gradually downregulated at the following time points.

$ conda create -n R-3.6.2

$ conda activate R-3.6.2

$ conda install -c conda-forge/label/cf202003 r-base
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Be sure to activate the environment every time before running this pipeline with the activate

command.

Also, be sure to deactivate the environment after running it.

Problem 2

It is necessary to run MFSelector with multiple cores in parallel on a Windows machine.

Potential solution

Install the required packages with the command in the R console to enable the use of multiple cores

in parallel on Windows.

Next, download the modified MFSelector R script through https://github.com/yushuen/

MFSelector_STAR-Protocol. Use the command on the R console to read the R code from the file.

Then, MFSelector is set to run with parallel processing in the following analysis.

Problem 3

Run MFSelector in parallel on Windows with our solution.

Potential solution

Load the required packages and import MFSelector with the R commands.

Problem 4

It is necessary to identify protein-coding genes in the dataset.

Potential solution

We use the biomaRt package to identify protein coding genes in the dataset. Here are the com-

mands to retrieve the ‘‘gene biotype’’ annotation for genes included in the dataset and to generate

an output table.

$ conda activate R-3.6.2

$ conda deactivate

>BiocManager::install(c("foreach", "doSNOW"))

>source("MFSelector_doSNOW.r")

# Load required package

>library(foreach)

>library(doSNOW)

# To ensure the original MFSelector has been detached

>detach("package:MFSelector", unload=TRUE)

# Read R code of Monotonic Feature Selector

>source("MFSelector_doSNOW.r")

# Run the same commands as what we provided in the main contents
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Problem 5

To generate executable files on your own, you need a C++ compiler in your operating system.

Potential solution

Except for Linux, both MacOS and Windows require installing a command-line C++ compiler tool

first. On MacOS, you can download the Apple Xcode and install it from Apple Developer website.

On Windows, you can download the open-source C++ compiler and follow the installation instruc-

tion from the CygWin website.

RESOURCE AVAILABILITY

Lead contact

More information and requests for resources and reagents should be directed to and will be fulfilled

by the lead contact, Chee-Yin Wong, wongcy@1utar.my.

Materials availability

This study did not generate new unique reagents.

# Load package

>library(biomaRt)

# Check which databases are available

>listMarts()

# Select the database and create the ensembl object

>ensembl <- useEnsembl(biomart = ’ENSEMBL_MART_ENSEMBL’, host = "uswest.ensembl.org")

# Check which datasets are available

>listDatasets(ensembl)

# Select the dataset and update the ensembl object

>ensembl <- useDataset(dataset = "hsapiens_gene_ensembl", mart = ensembl)

# Check which attributes are available

>listAttributes(ensembl)

# Get gene biotype

>mart_export <- getBM(attributes = c(’ensembl_gene_id’, ’gene_biotype’), filters = ’en-

sembl_gene_id’, values = gene_id, mart = ensembl)

# Generate an output table

>write.table(mart_export, "gene_biotype.txt", row.names = F, col.names = T, sep = "\t",

quote = F)

$ cd TO-GCN_STAR-Protocol-main\source_code

$ g++ Cutoff_STAR.cpp -o ..\precompiled_files\Windows\Cutoff

$ g++ TO-GCN_STAR.cpp -o ..\precompiled_files\Windows\ TO-GCN

$ g++ GeneLevel_STAR.cpp -o ..\precompiled_files\Windows\ GeneLevel

$ cd ..\precompiled_files\Windows
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Data and code availability

The accession number for the RNA sequencing data used as an example in this paper is NCBI GEO:

GSE140914. The Monotonic Feature Selector R function program can be downloaded from http://

microarray.bmi.nycu.edu.tw:8080/tools/module/MFSelector/index.jsp?mode=home. The Time-

Ordered Gene Co-expression Network analysis program can be downloaded from https://github.

com/petitmingchang/TO-GCN_STAR-Protocol. The parallel computing solution of MFSelector for

Windows and all R commands used in the protocol can be downloaded from https://github.com/

yushuen/MFSelector_STAR-Protocol.
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