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Abstract

Monte Carlo method was used to study the characteristics of neutron interactions with cells
underneath a water medium layer with varying thickness. The following results were
obtained. (1) The fractions of neutron interaction with 'H, 2C, '*N and '®0 nuclei in the cell
layer were studied. The fraction with 'H increased with increasing medium thickness, while
decreased for '2C, "N and "0 nuclei. The bulges in the interaction fractions with '2C, '*N
and '®0 nuclei were explained by the resonance spikes in the interaction cross-section
data. The interaction fraction decreased in the order: '"H >0 > '2C > '*N. (2) In general, as
the medium thickness increased, the number of “interacting neutrons” which exited the
medium and then further interacted with the cell layer increased. (3) The area under the
angular distributions for “interacting neutrons” decreased with increasing incident neutron
energy. Such results would be useful for deciphering the reasons behind discrepancies
among existing results in the literature.

Introduction

The biological effects of neutrons are less well understood compared to other types of ionizing
radiations [1]. In particular, there were apparent contradicting results in the literature regard-
ing the neutron-induced bystander effects (NIBEs) and neutron-induced radioadaptive
response (RAR). For example, it was noted that neutrons do not produce a bystander effect
during the in vivo and in vitro investigations [2-4]. In contrast, Ng et al. [5] demonstrated the
presence of NIBEs in zebrafish embryos when the biological targets (i.e. zebrafish embryos)
were irradiated using Neutron exposure Accelerator System for Biological Effect Experiments
(NASBEE) facility at the National Institute of Radiological Sciences (NIRS), Chiba, Japan [6].
Furthermore, similar discrepancies were also present in terms of RAR, in which the failure of
neutrons to induce RAR in zebrafish embryos and human lymphocytes has been previously
reported [7,8] and in contrast, the induction of RAR in Chinese hamster V79 cells was
reported in the previous work of Marples and Shov [9].

The experimental conditions (including neutron energies) and the biological targets
(including cell lines and organisms, and their states such as the cell cycle phase [10]) employed
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in the above studies were not identical. In most cases, the thickness of medium layer between
the neutron source and the biological target was not controlled, recorded or reported. As such,
deciphering the reasons behind these discrepancies would be a challenging task. However, the
fundamental parameter remained as the number of biomolecules damaged by the neutrons
[11-13] which would be surrogated by the number of neutron interactions (event frequencies)
in the targeted cells [14], although these parameters would in turn be determined by the abun-
dance of different atomic nuclei within the targeted cells, as well as the incident neutron ener-
gies and the medium thickness etc. [15]. Accordingly, the numbers of neutron interactions or
event frequencies in the targeted cells are essential for proper studies and understanding of the
biological effects of neutrons, as well as for deciphering the reasons behind discrepancies of
reported results. Rossi and Kellerer [10] insightfully remarked that . . .event frequencies in the
cell nucleus is crucial to the discussion, but has been treated somewhat inadequately and a more
rigorous consideration is therefore required. . .”. The present work was therefore devoted to a
rigorous study on the number of neutron interactions in targeted cells in radiobiological
experiments. The main objective was to study four characteristics of neutrons interacting

with the cell layer covered with a water medium for different neutron energies. First, the in-
teraction fractions of neutrons with various nuclei (i.e., ratios between number of neutron
interactions with specific nuclei and total number of neutron interactions) in the cell layer
and the relationships with the medium thickness covering the cell layer were determined. Sec-
ond, the penetration fractions of neutrons (i.e., ratios between number of neutrons that pene-
trated through the water-cell system without any interactions and total number of neutrons
launched) were assessed. Third, the fractions of neutrons interacting within the medium layer
(i.e., ratios between number of neutrons interacting within the medium layer and total number
of neutrons that interacted within the water-cell system) were evaluated. Fourth, the angular
distributions of neutrons exiting the medium layer and then interacting with cell layer were
analyzed.

Three different neutron energies were examined, namely, 100 keV, 2 MeV and 10 MeV.
These characteristics would be rigorously revealed through Monte Carlo simulations. A modi-
fied version of our previously developed computer program [16] was used to study the neutron
transport in the medium layer and the cell layer. The present results and the developed com-
puter program would be useful in determining these neutron characteristics which were inade-
quately addressed in previous radiobiological experiments. Through such results and tools, it
was anticipated that the fundamental parameter, i.e., number of neutron interactions in the
targeted cells, for different radiobiological experiments could be realistically assessed, and the
reasons behind discrepancies among existing results in the literature could be deciphered.

Monte Carlo method and NRUneutron code

The Monte Carlo method was used to simulate the propagation of neutrons from the water
medium layer to the cell layer, and to simulate the neutron interactions with various nuclei in
the two layers. The system setup is schematically shown in Fig 1.

The NRUneutron code consisted of two main parts, i.e., (1) the collision estimator and (2)
the dose estimator. The collision estimator was built in the main program whereas the dose
estimator was a subroutine which was called at the end of the program to read the output
energy dissipation of neutrons to compute the doses in the medium and cell layers. A simpli-
fied flowchart for the algorithm employed in the collision estimator is shown in Fig 2.

The present computer program was developed using the Fortran90 programming language.
Inputs to the present program included (1) neutron energy, (2) total number of neutrons
launched (NPS), (3) incident angles and (4) dimensions of the medium and cell-layer domains
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Fig 1. Schematic diagram showing the neutron irradiation setup.
https://doi.org/10.1371/journal.pone.0181281.9001

(%, y, 2). The energy dependent neutron cross-section data for different nuclei present in the
domains were also required. The water medium domain contained 'H and '°O while the cell-
layer domain was modelled as a tissue equivalent plastic (TEP) which contained *C, 'H, "*N
and '°0 (density = 1.127 g/cm’; mass composition: 11.1% carbon, 10.1% hydrogen, 2.6%
nitrogen and 76.2% oxygen). Other appropriate compositions could also be chosen, e.g., from
Ref. [17]. It is noted that the culture medium for in vitro experiments in general also contains
other constituents (such as proteins etc.) in addition to water. The presence of other constitu-
ents in the medium can affect the characteristics of neutrons that interact with the cell layer,
which need to be computed for individual scenarios. It would not be feasible to exhaustively
summarize here how the obtained results will be changed by the type and amount of constitu-
ents in the medium.

Energy dependent total neutron cross section

The energy dependent neutron cross-section data for different nuclei were adopted from the
Evaluated Nuclear Data File) (ENDF) library home page: http://www.nndc.bnl.gov/sigma/
tree/index.html. The neutron-energy range from 1 keV to 10 MeV was considered as in our
previous work [16]. The cross-section data were interpolated and sorted with an energy incre-
ment of 1 keV using the quick 1-D linear interpolation function in MATLAB (ver. R2013a).
The total cross-section data used in the present work are shown in Fig 3.

The total macroscopic cross sections (X) for interaction of neutrons with the medium and
cell layers are respectively given as:

. Pr,oNay
H,0 —
My,

(20-H,tat + O-O,tot) (1)
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PrepNay
ZCell = % (4JH,Lot + 46C,tot + O—N,tot + 290—0,[0!) (2)

TEP

where the Avogadro number (N,,) was 6.023x10%* mol ™!, Pry0 = 1.0 g/cm3 and prpp=1.127 g/
cm’, while the molar mass (M) for the medium and cell-layer domains were 18 and 530 g/mol,
respectively. The coefficient preceding each microscopic cross section (o) was the number of
the corresponding nuclei present in a water or TEP molecule. The reciprocal of the macro-
scopic cross section (X) gave the mean free path, i.e.,, A = 1/Z, which represented the average
distance between two successive collisions of a neutron. The computed mean free path of neu-
trons in the medium domain as a function of neutron energy is shown in Fig 4.
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Fig 2. Flowchart for the algorithm in the neutron collision estimator in the NRUneutron code.

https://doi.org/10.1371/journal.pone.0181281.9002
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Fig 3. Energy dependent total neutron cross sections for (a) 'H, (b) '2C, (c) "N and (d) '®O nuclei.

https://doi.org/10.1371/journal.pone.0181281.9003

Geometry and neutron tracking module

In the present work, the cross-sectional area of the medium and cell layers was chosen to be
1x1 cm® while the thickness for the cell layer was fixed as 15 um. The monolayer cell thickness
is usually around 10-15 pm (see e.g., Ref. [18]). However, variation of cell layer from 10 to

30 um has negligible effects on the neutron characteristics as shown in our previous study [1]
(see Figs 4 and 5 in the Ref. [1]). Ten different medium thicknesses of 500, 1000, 1500, 2000,
2500, 3000, 3500, 4000, 4500 and 5000 um were studied [1]. We considered that the neutrons
initially struck the medium layer perpendicularly at (xo, yo, zo) with an incident energy of E,.
The z-axis was defined as the direction of the neutron path from the source towards the
medium layer. The neutron tracking module is schematically shown in Fig 5. The first step
was to determine the neutron’s initial mean free path (1,) through

1
Z(E,)

b=~ In(y)

where y was a uniformly distributed random number in the interval of [0,1].
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Fig 4. Mean free path for neutrons in the water medium as a function of the neutron energy.
https://doi.org/10.1371/journal.pone.0181281.9004

The domain in which interaction took place was chosen based on the neutron’s mean free
path while the nucleus with which the neutron interacted was chosen based on the neutron
interaction cross-section data. A neutron with an initial energy of E, made its first interaction
at the point A,. Upon interaction with a hydrogen nucleus, the neutron would have its energy
reduced to the scattered energy E,. given by

Esc = E(] : ’y (4)

where y was a new random number called through the Fortran90 intrinsic function of CALL
RANDOM_NUMBER(GAMMA). After determining E,,, the scattering angle 0 of the neutron
in the laboratory coordinate system was determined as

cos(8) = % (5)

0

The scattering angle 0 at A, defined a cone about the vertical z-axis. Accordingly, the angle ¢

PLOS ONE | https://doi.org/10.1371/journal.pone.0181281

July 13,2017 6/17


https://doi.org/10.1371/journal.pone.0181281.g004
https://doi.org/10.1371/journal.pone.0181281

@° PLOS | ONE

Monte Carlo studies on neutron interactions in radiobiological experiments

7/
" Cell layer

Variant thickness
(500, 1000, 1500,
2000, ..., 5000 um)

e 1cm

v

Water medium layer 4+ (¥oYo %) X (Fixed)

v

<
<

Initial neutron

1cm
(Fixed)

Fig 5. Three-dimensional neutron tracking module and geometry of interaction with water-cell system.

https://doi.org/10.1371/journal.pone.0181281.9005

measured on the x-y plane was sampled as ¢ = 27y, where y was another random number. For
interactions with other nuclei with atomic mass A, E,. was sampled between E,,;, and Ej,
where E, i, = [(A-1)/(A+1)]*E,, whereas the scattering angle 0 was determined as

cos = \/(1 IAA) (£, ;OE“) (6)

After interaction at point A, the scattered neutron had a new mean free path A, and would
interact at point A;. The program also checked whether the neutron would exit the medium or
cell layer (see flowchart in Fig 2). For the interaction at A,, the scattering angle was & which
defined a cone with the direction of the central axis (7,) defined by the neutron trajectory
before this interaction. The angle ¢ was then sampled on a plane containing the circle K;. These
procedures were repeated until the neutron left the layers or completely stopped in the layers.

Benchmarking of NRUneutron code

The present computer program was benchmarked using the Monte Carlo N-Particle (MCNP)
5 code [19], both of which used pointwise cross-section data. The absorbed neutron dose in
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the cell layer covered by the water medium was used to compare the reliability and accuracy of
the present program. The dose was determined by the interactions along the neutron trajec-
tory within the target volume, so comparisons under different incident neutron energies and
medium thicknesses were necessary. The results are shown in Fig 6, which show good agree-
ment. The decrease in the absorbed neutron dose in the cell layer with increasing medium
thickness was due to the reduction in neutron energy exiting the thicker medium layer.

Computation scheme and outputs

The present work focused on the effects of the incident neutron energy (namely, 100 keV, 2
and 10 MeV) and water medium thickness on the absorbed neutron dose, so we kept the cell-
layer thickness constant at 15 um. The output results were:

1. Interaction fraction of neutrons with 'H, '°C, "N and '°O nuclei within cell layer;
2. Penetration fraction of neutrons;
3. Fraction of neutrons interacting within medium layer; and

4. Angular distribution of neutrons exiting medium layer and then interacting with cell layer.

Interaction fraction of neutrons with various nuclei within cell layer

The results for 100 keV incident neutrons are shown in Fig 7. The interaction fractions
decreased with increasing medium layer thickness for '*C, *N and '°O nuclei, but increased
with increasing medium thickness for "H nuclei. As shown in Fig 3, the interaction cross sec-
tions with 'H nuclei were much larger compared to other nuclei, so the neutron interactions
would be dominated by those with 'H nuclei. A thicker medium layer absorbed more energy
from a neutron and thus significantly increased its interaction probability with "H nuclei, so
the interaction fraction with 'H nuclei within the cell layer increased with increasing medium
thickness. Despite that in our computations only 10.1% of the cell content (approximated
using TEP material) was made up of hydrogen, interaction fractions with 'H nuclei were the
largest due to its larger interaction cross sections. In relation, the increase in the interaction
fractions with 'H nuclei reduced the chance of neutron interactions with '*C, "*N and '°O
nuclei so the interaction fractions with these nuclei decreased with increasing medium thick-
ness. The decrease in the interaction fractions in the order '°0 > >C > "N nuclei was mainly
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Fig 7. Interaction fractions of neutrons with (a) 'H, (b) '2C, (c) N and (d) '®O within cell layer for 100 keV incident neutrons.

https://doi.org/10.1371/journal.pone.0181281.9007

due to the relative abundance of these nuclei in the cell layer, namely, *°O (76.2%), '*C (11.1%)
and "N (2.6%).

The corresponding results for 2 MeV incident neutrons are shown in Fig 8, and the trends
were similar to those for 100 keV incident neutrons. The decrease in the interaction fraction in
the order: "H > '°0 > '2C > "N remained the same. The magnitudes of interaction fractions
were different between 100 keV and 2 MeV incident neutrons due to the different interaction
cross sections. In particular, the interaction fractions with 'H nuclei were reduced when com-
pared to 100 keV incident neutrons due to reduced interaction cross sections for 2 MeV neu-
trons (see Fig 3). The main new features here were the conspicuous bulges in the interaction
fractions with '*C, "*N and '°O nuclei, which were due to the resonances in the interaction
cross sections for "*C, "*N and '°O nuclei for neutron energies larger than 100 keV as shown
in Fig 3. As a result of energy reduction of neutrons (initially launched at 2 MeV) while tra-
versing the medium layer, their interaction cross sections would fall into resonance regions
which significantly enhanced their interaction probabilities.

The corresponding results for 10 MeV incident neutrons are shown in Fig 9, and the gen-
eral trends were similar to those for 100 keV and 2 MeV incident neutrons. The decrease in
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Fig 8. Interaction fractions of neutrons with (a) 'H, (b) 2C, (c) '*N and (d) '®O within cell layer for 2 MeV incident neutrons.

https://doi.org/10.1371/journal.pone.0181281.9008

the interaction fraction in the order: 'H > '°O > ">C > "N remained the same. The magni-
tudes of interaction fractions were changed as a result of different interaction cross sections.
The interaction fractions with 'H nuclei were further reduced when compared to 2 MeV inci-
dent neutrons due to reduced interaction cross sections for 10 MeV neutrons (see Fig 3). The
interaction fractions for 10 MeV neutrons with '*C nuclei displayed more conspicuous bulges
compared to other nuclei, which was explained by the resonance spikes in its interaction cross
sections for energies below 10 MeV.

Penetration fraction of neutrons

The penetration fractions of neutrons with incident energies of 100 keV, 2 and 10 MeV are
shown in Fig 10. As expected, the penetration fractions decreased with increasing medium
thickness, since a thicker medium contained a larger number of atoms so the probability of
having a neutron interaction would be higher. In our previous work, a similar trend was
obtained for the penetration fraction of neutrons through a polyethylene layer [16]. On the
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other hand, the penetration fraction increased with the incident neutron energy, which was
explained by the corresponding reduction in the interaction cross sections. For higher incident
neutron energies, the effect of medium thickness on the penetration fraction was diminished.

Fraction of neutrons interacting within medium layer

The fractions of neutrons interacting within the medium layer are shown in Fig 11 to increase
with the medium thickness, which is expected since thicker media contained more nuclei to
enable more effective neutron interactions. Fig 11 also shows that these fractions decrease with
increasing incident neutron energy. An interesting observation was the absence of conspicu-
ous bulges in the trend for 2 MeV neutrons, despite the large and dense resonance spikes in
the interaction cross sections of '°O in the 2-MeV region, which was explained by the insuffi-
cient shifting of the neutron energy within the medium layer. To achieve significant effects
from the resonance spikes in the interaction cross sections, the neutron energy should have
been adequately shifted to reach the resonance spikes in the interaction cross sections, which
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meant that the neutrons should have traversed the entire medium layer. Therefore, when the
medium layers were studied alone, the effect of resonances was negligible. Furthermore, the
minimum and maximum fractions shown in Fig 11(A) to 11(C) were ~33% and 46%, respec-
tively. Accordingly, the fractions of neutrons interacting within the cell layer would be larger
(minimum of ~54% and maximum of ~67%; not counting those neutrons penetrating through
the cell-medium system without interactions here), which was explained by the reduction of
neutron energy through the medium layer and the corresponding increase in the probability
of neutron interaction in the cell layer.

Angular distributions of neutrons exiting medium layer and then
interacting with cell layer
The angular distributions (dn/d0) of neutrons exiting medium layer and then interacting with

cell layer (hereafter referred to as the angular distributions) are shown in Fig 12. It is remarked
that those neutrons which have penetrated through the cell layer without interactions after
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exiting the medium layer are not included in these distributions. The areas under the angular

max dn

distributions shown in Fig 12, i.e., ( f((,) dn

teracting neutrons”) which have exited from the medium layer and then have undergone inter-
actions in the underlying cell layer. For neutrons perpendicularly impinging the medium
layer, a peak in the angular distributions was generally observed from 50° to 55°. As the neu-
tron energy increased, this peak shifted toward angles larger than ~45° mainly due to scatter-
ing of neutrons with "H nuclei, which is dominating the neutron interaction. Incidentally, an
associated scattering phenomenon was noted in our previous work [16] where the peak in the
angular distributions of ejected protons would be smaller than ~45° when neutrons perpendic-
ularly impinged the target. The sum of scattering angles of the neutron and 'H nucleus was

90° in the laboratory frame. In Eq (5), the term E,/E, was always smaller than unity. As the
neutron lost more energy during its propagation in the medium layer, its scattering angle
would be larger than ~45°.

For the incident neutron energy of 100 keV, the number of interacting neutrons increased
with the medium thickness. The same trend was also observed for higher incident neutron
energies of 2 and 10 MeV, but with weaker dependence on the medium thickness. The phe-
nomenon was expected as an increase in the medium thickness would reduce the neutron

d0), represent the total numbers of neutrons (“in-

energy and the exited neutron could more likely undergo interactions within the underlying
cell layer. It was also noted that the total number of “interacting neutrons” in the cell layer
(area under the angular distributions) decreased with increasing incident neutron energy. In
order to have a more informative comparison, the average angular distributions (averaged for
different medium thicknesses) for specific incident neutron energies were plotted, which are
shown in Fig 13. For an equal number of neutrons entering the medium layer, the number of
neutrons exiting from the medium layer and then underwent some interactions in the under-
lying cell layer for incident neutron energy of 100 keV was ~3.4 times higher than the corre-
sponding number for incident neutron energy of 2 MeV, which was in turn ~1.5 times higher
than the corresponding number for incident neutron energy of 10 MeV.

Conclusions and discussion

The characteristics and the underlying mechanism of neutron interactions during radiobiolog-
ical experiments were comprehensively investigated using the self-written NRUneutron com-
puter code. The reliability of the obtained results was assessed by benchmarking the absorbed
neutron dose in the cells underneath the medium layer with varying thicknesses. A number of
important observations were made:
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Fig 13. Average angular distributions of neutrons exiting the medium layer that interact in the cell layer for incident neutron energies of (a) 100 keV, (b) 2
MeV and (c) 10 MeV.
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1. The interaction fraction of neutrons with 'H nuclei within the cell layer increased with the
medium thickness, whereas the interaction fractions with '*C, *N and '°O nuclei decreased
with increasing medium thickness. The conspicuous bulges in the interaction fractions
with '2C, "N and '°0 nuclei were explained by the resonance spikes in the interaction
cross-section data, mainly for neutron energies larger than 100 keV. The interaction frac-
tion of neutrons decreased in the order: "H > '°0 > '*C > "N.

2. In general, as the medium thickness increased, the number of neutrons which exited the
medium and then further interacted with the cell layer increased.

3. The area under the angular distributions for “interacting neutrons” decreased with increas-
ing incident neutron energy. For an equal number of neutrons entering the medium layer,
the number of interacting neutrons for incident neutron energy of 100 keV was ~3.4 times
higher than the corresponding number for incident neutron energy of 2 MeV, which was in
turn ~1.5 times higher than the corresponding number for incident neutron energy of 10
MeV.

These results highlighted the critical dependence of the number of neutron interactions in
the targeted cells, which was a fundamental parameter controlling the radiobiological effects of
neutron irradiation, on the experimental conditions (neutron energies and medium thickness)
and the biological targets themselves (abundance of different atomic nuclei within the targeted
cells). As such, special attention needs to be paid to comparisons among different experimental
results obtained using different neutron energies.

The developed computer program would be useful in determining these neutron character-
istics and would be made public. It is hoped that in all future studies on radiobiological effects
of neutrons, these characteristics of neutron interactions could be obtained using the program
and reported to enable more meaningful comparisons. It is also hoped that such comparisons
will avoid further discrepancies in the results. Notwithstanding, it is also noted that such dis-
crepancies might also be due to biological reasons, e.g., different cells might respond to radia-
tion in different ways.
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