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Adenomas from individuals with pathogenic biallelic variants in the MUTYH and 
NTHL1 genes demonstrate base excision repair tumour mutational signature 
profiles similar to colorectal cancers, expanding potential diagnostic and 
variant classification applications 
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ABSTRACT 
Background: Colorectal cancers (CRCs) from people with biallelic germline likely 
pathogenic/pathogenic variants in MUTYH or NTHL1 exhibit specific single base 
substitution (SBS) mutational signatures, namely combined SBS18 and SBS36 
(SBS18+SBS36), and SBS30, respectively. The aim was to determine if adenomas 
from biallelic cases demonstrated these mutational signatures at diagnostic levels. 
Methods: Whole-exome sequencing of FFPE tissue and matched blood-derived DNA 
was performed on 9 adenomas and 15 CRCs from 13 biallelic MUTYH cases, on 7 
adenomas and 2 CRCs from 5 biallelic NTHL1 cases and on 27 adenomas and 26 
CRCs from 46 non-hereditary (sporadic) participants. All samples were assessed for 
COSMIC v3.2 SBS mutational signatures. 
Results: In biallelic MUTYH cases, SBS18+SBS36 signature proportions in 
adenomas (mean±standard deviation, 65.6%±29.6%) were not significantly different 
to those observed in CRCs (76.2%±20.5%, p-value=0.37), but were significantly 
higher compared with non-hereditary adenomas (7.6%±7.0%, p-value=3.4x10-4). 
Similarly, in biallelic NTHL1 cases, SBS30 signature proportions in adenomas 
(74.5%±9.4%) were similar to those in CRCs (78.8%±2.4%) but significantly higher 
compared with non-hereditary adenomas (2.8%±3.6%, p-value=5.1x10-7). 
Additionally, a compound heterozygote with the c.1187G>A p.(Gly396Asp) pathogenic 
variant and the c.533G>C p.(Gly178Ala) variant of unknown significance (VUS) in 
MUTYH demonstrated high levels of SBS18+SBS36 in four adenomas and one CRC, 
providing evidence for reclassification of the VUS to pathogenic. 
Conclusions: SBS18+SBS36 and SBS30 were enriched in adenomas at comparable 
proportions observed in CRCs from biallelic MUTYH and biallelic NTHL1 cases, 
respectively. Therefore, testing adenomas may improve the identification of biallelic 
cases and facilitate variant classification, ultimately enabling opportunities for CRC 
prevention. 
 
 
 
 
KEYWORDS 
Colorectal cancer; mutational signature; adenoma; hereditary cancer predisposition; 
SBS18; SBS36; SBS30; MUTYH; NTHL1; variant of uncertain clinical significance 
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INTRODUCTION 
Identifying people who have an increased risk of developing colorectal cancer (CRC), 
including people with a hereditary CRC or polyposis syndrome, provides important 
opportunities for cancer prevention. Individuals with homozygous or compound 
heterozygous likely pathogenic or pathogenic (LP/P) variants in the base excision 
repair genes MUTYH [1] and NTHL1 [2] (i.e., biallelic cases) predispose to the 
development of multiple pre-cancerous adenomas in the colon (adenomatous 
polyposis), CRC and a spectrum of extra-colonic cancers [2,3]. 

The application of tumour mutational signature profiling to identify hereditary 
cancer syndromes related to DNA repair defects has been highlighted [4]. Single base 
substitution (SBS) and insertion/deletion mutational signatures in CRC have been 
shown to be accurate predictors of Lynch syndrome and biallelic germline LP/P 
variants in MUTYH [5]. In particular, the combination of SBS18 and SBS36 
(SBS18+SBS36) can accurately identify those with germline biallelic MUTYH LP/P 
variants [5,6], while for NTHL1, the SBS30 mutational signature has been identified in 
CRCs from those with biallelic NTHL1 LP/P variants [7]. Moreover, we previously 
identified two recurrent somatic mutations, namely the KRAS c.34G>T p.(Gly12Cys) 
and the PIK3CA c.1636C>A p.(Gln546Lys) mutations, that were strongly enriched in 
CRCs from biallelic MUTYH cases compared with CRCs from non-hereditary/sporadic 
cases (KRAS: p-value=1.4x10-6, PIK3CA: p-value=3.4x10-4) [6]. 
 A further application of tumour mutational signature profiling is to aid variant 
classification. Previously, we have shown the presence of elevated levels of 
SBS18+SBS36 in CRCs provided evidence for an LP/P classification for the germline 
MUTYH variants c.1141G>T p.(Gly381Trp) and c.577-5A>G, where the second allele 
of MUTYH harboured an LP/P variant [6]. Alternatively, the absence of high levels of 
SBS18+SBS36 in CRCs supported a benign classification for MUTYH variants 
c.912C>G p.(Ser304Arg), c.821G>A p.(Arg274Gln), c.925C>T p.(Arg309Cys) and 
c.1431G>C p.(Thr477Thr) [6]. 

While these genomic features have been shown to be effective with CRC-
derived data, there are important implications that could be facilitated by the ability to 
utilise mutational signature profiling in pre-cancerous adenomas namely: 1) identifying 
biallelic cases early before they develop cancer, including guiding surgical versus 
endoscopic management decision making, 2) enable pre-emptive genetic counselling 
and guide patient management strategies through risk assessment, 3) indicate if a 
second “unidentified” LP/P variant is present in monoallelic LP/P variant carriers, and 
4) provide evidence for pathogenicity for variants of uncertain significance (VUS). 

The aim of this study was to profile and compare the SBS18+SBS36 and 
SBS30 mutational signatures in adenomas and CRCs from biallelic MUTYH and 
biallelic NTHL1 cases, respectively, with sporadic adenomas and CRCs from 
participants without a hereditary CRC/polyposis syndrome to determine their 
discriminatory potential and ability to inform variant classification. 
 
 
MATERIAL AND METHODS 
Study cohort 
Participants were men and women recruited to one of the following studies: 1) 
Applying Novel Genomic approaches to Early-onset and suspected Lynch Syndrome 
colorectal and endometrial cancers (ANGELS, n=4), 2) Colorectal Cancer Family 
Registry (CCFR, n=21) or 3) Genetics of Colonic Polyposis Study (GCPS, n=5) who 
were identified to have either germline biallelic MUTYH or germline biallelic NTHL1 
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LP/P variants from clinical diagnostic or research genetic testing. Formalin-fixed 
paraffin embedded (FFPE) tissue was collected for tumour mutational signature 
profiling comprising: 
1) 9 adenomas and 15 CRCs from 13 biallelic MUTYH cases; 
2) 4 CRCs from 4 monoallelic MUTYH cases; 
3) 7 adenomas, 1 hyperplastic polyp, 1 traditional serrated adenoma and 2 CRCs from 
7 biallelic NTHL1 cases and 
4) 2 CRCs from 2 monoallelic NTHL1 cases. 

A reference/control group of 46 participants from the CCFR who developed 
mismatch repair (MMR)-proficient adenomas (n=27) and/or MMR-proficient CRCs 
(n=26) and who were confirmed to not carry LP/P variants in 16 hereditary 
CRC/polyposis genes as defined in Seifert et al. [8] (i.e., non-hereditary/sporadic 
cases) were included in this study. 

The mutational signature profiles of 12 CRCs from eight biallelic MUTYH cases 
and 4 CRCs from 4 monoallelic MUTYH cases described above have been reported 
previously [5,6]. Two CRCs from two biallelic and two monoallelic NTHL1 cases 
described above have been reported previously [7]. The studies were approved by the 
respective ethics committees and institutional review boards. All participants provided 
written informed consent for collection of tissue and peripheral blood samples. 
 
Whole-exome sequencing and bioinformatic analysis 
Adenoma and CRC tissue DNA and matched blood-derived DNA underwent whole-
exome sequencing (WES) using the SureSelect Clinical Research Exome v.2 kit 
(Agilent Technologies, Santa Clara, CA, United States), to a median depth of 357.9 
reads (interquartile range (IQR)=287.8-464.0) for FFPE tissue DNA samples and 
median depth of 179.1 reads (IQR=118.1-204.6) for blood-derived DNA samples. 
Somatic single-nucleotide variants and short insertion/deletions were determined 
using the intersection of calls from Strelka (v.2.9.2) [9] and Mutect2 (v.4.0) [10]. 
Tumour mutation burden (TMB) was calculated as the total number of all somatic 
single-nucleotide variants and short insertion/deletions observed in a sample divided 
by the size of the capture region (67Mb). A threshold for including variants was chosen 
based on a minimum depth (50 reads) and a minimum variant allele frequency of 10% 
as previously published [5]. Mutational signature profiles were calculated using the 
simulated annealing method previously described by SignatureEstimation [11] using 
a reduced set of 16 SBS signatures (Supplementary Table 1) as previously 
determined to be present in the colon/colorectal cancer tissue [5–7,12–19]. The 
following RefSeq transcripts were used: NM_001128425.1 (MUTYH), NM_002528.7 
(NTHL1), NM_001369786.1 (KRAS) and NM_006218.4 (PIK3CA). 
 
Statistical analysis 
For each signature profile, we compared the biallelic cases with the corresponding 
CRCs or adenomas from the non-hereditary group. Statistical significance between 
two groups was determined using a two-sided t-test with a p-value<0.05 considered 
to be statistically significant. For group comparisons, one-way ANOVA was used. 
Additionally, we determined the Cohen’s d effect size to measure the difference 
between the means of two subgroups. 
 
Source code 
All data analysis was performed using Python v.3.11 [20], Numpy v.1.24 [21] and 
Scikit-Learn v.1.3 [22]. Data visualisation was done using the R programming 
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language v.4.3.2 [23] and RStudio v.0.16.0 [24] using the following packages: ggplot2 
v.3.5.1 [25], cowplot v.1.1.3 [26] and dplyr v.1.1.4 [27]. 
 
 
RESULTS 
The clinicopathological characteristics of the participants and their adenomas and 
CRCs are shown in Table 1. The biallelic MUTYH and biallelic NTHL1 cases are 
presented in Supplementary Table 2. Of note, all adenomas and CRCs were MMR-
proficient by immunohistochemistry except for two biallelic MUTYH cases; Pat_301 
(2xCRCs at 50 years, one MMR-proficient and one MMR-deficient with MLH1/PMS2 
loss), and Pat_315 (1xCRC at 39 years with MSH2/MSH6 loss). The SBS mutational 
signature profiles of each adenoma and CRC included in the study are presented in 
Figure 1. 
 
Table 1. The clinicopathological characteristics of the participants and their adenomas 
and CRCs from each of the biallelic MUTYH cases, biallelic NTHL1 cases and the 
adenomas and CRCs from the non-hereditary (control) groups included in this study. 
Overview of the phenotypes by sex, age at diagnosis (including mean and standard 
deviation), anatomical site, histological type, T stage, grade of tumour and study 
separated by adenoma and colorectal cancer tissue type and case subgroups. 

 
MUTYH cases 
(n=13) 

NTHL1 cases (n=5) Non-hereditary 
Controls (n=46) 

Total 
(n=64) 
Individual
s  

Adenom
a 
biallelic 
MUTYH 
(n=9, 
10.5%) 

CRC 
biallelic 
MUTYH 
(n=15, 
17.4%) 

Adenom
a 
biallelic 
NTHL1 
(n=7, 
8.1%) 

CRC 
biallelic 
NTHL1 
(n=2, 
2.3%) 

MMR-
proficient 
Adenoma
s (n=27, 
31.4%) 

MMR-
proficie
nt CRCs 
(n=26, 
30.2%) 

Total 
(n=86, 
100%) 
Tissues 

Sex, n (%)               
     Male 5 

(55.6%) 
11 
(73.3%) 

3 
(42.9%) 

0 (0.0%) 12 
(44.4%) 

12 
(46.2%) 

43 
(50.0%) 

     Female 4 
(44.4%) 

4 
(26.7%) 

4 
(57.1%) 

2 
(100.0%
) 

15 
(55.6%) 

14 
(53.8%) 

43 
(50.0%) 

  
 

            
Age at diagnosis, n 
(%) 

 
            

     Mean ± SD 52.3 ± 
14.4 

52.2 ± 
11.1 

57.7 ± 
5.7 

68.5 ± 
10.6 

43.7 ± 
10.6 

42.8 ± 
9.1 

48.0 ± 
12.1 

     Min. - Max. 33 - 73 33 - 64 51 - 66 61 - 76 27 - 61 21 - 59 21 - 76 
     ≤50 years 2 

(22.2%) 
6 
(40.0%) 

0 (0.0%) 0 (0.0%) 19 
(70.4%) 

22 
(84.6%) 

49 
(57.0%) 

     >50 years 7 
(77.8%) 

9 
(60.0%) 

7 
(100.0%
) 

2 
(100.0%
) 

8 (29.6%) 4 
(15.4%) 

37 
(43.0%) 

  
 

            
Ethnicity, n (%) 
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     European 9 
(100.0%
) 

15 
(100.0%
) 

7 
(100.0%
) 

2 
(100.0%
) 

27 
(100.0%) 

24 
(92.3%) 

84 
(97.7%) 

     East Asian 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (3.8%) 1 (1.2%) 
     South Asian 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (3.8%) 1 (1.2%) 
  

 
            

Anatomical site, n 
(%) 

 
            

     Proximal colon 3 
(33.3%) 

12 
(80.0%) 

2 
(28.6%) 

2 
(100.0%
) 

9 (33.3%) 12 
(46.2%) 

40 
(46.5%) 

     Distal colon 0 (0.0%) 1 (6.7%) 0 (0.0%) 0 (0.0%) 6 (22.2%) 8 
(30.8%) 

15 
(17.4%) 

     Rectum 0 (0.0%) 2 
(13.3%) 

1 
(14.3%) 

0 (0.0%) 6 (22.2%) 6 
(23.1%) 

15 
(17.4%) 

     Unknown 6 
(66.7%) 

0 (0.0%) 4 
(57.1%) 

0 (0.0%) 6 (22.2%) 0 (0.0%) 16 
(18.6%) 

  
 

            
Colorectal 
Adenoma 
Histological Type, n 
(%) 

 
            

     Tubular 
adenoma 

2 
(22.2%) 

- 5 
(71.4%) 

- 14 
(51.9%) 

- - 

     Tubulovillous 
adenoma 

4 
(44.4%) 

- 2 
(28.6%) 

- 13 
(48.1%) 

- - 

     Unknown 3 
(33.3%) 

- 0 (0.0%) - 0 (0.0%) - - 

  
 

            
CRC Histological 
Type, n (%) 

 
            

     
Adenocarcinoma 

- 15 
(100.0%
) 

- 2 
(100.0%
) 

- 24 
(92.3%) 

- 

     Mucinous 
adenocarcinoma 

- 0 (0.0%) - 0 (0.0%) - 0 (0.0%) - 

     Signet ring 
adenocarcinoma 

- 0 (0.0%) - 0 (0.0%) - 1 (3.8%) - 

     Undifferentiated 
(incl. medullary) 

- 0 (0.0%) - 0 (0.0%) - 1 (3.8%) - 

  
 

            
Grade of CRC, n 
(%) 

 
            

     Well 
differentiated 

- 1 (6.7%) - 0 (0.0%) - 3 
(11.5%) 

- 

     Moderately 
differentiated 

- 13 
(86.7%) 

- 2 
(100.0%
) 

- 16 
(61.5%) 

- 

     Poorly 
differentiated 

- 0 (0.0%) - 0 (0.0%) - 4 
(15.4%) 

- 

     Unknown - 1 (6.7%) - 0 (0.0%) - 3 
(11.5%) 

- 

  
 

            
Study, n (%) 

 
            

     ANGELS 0 (0.0%) 0 (0.0%) 4 
(57.1%) 

0 (0.0%) 0 (0.0%) 0 (0.0%) 4 (4.7%) 
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     CCFR 6 
(66.7%) 

14 
(93.3%) 

0 (0.0%) 1 
(50.0%) 

27 
(100.0%) 

27 
(103.8%
) 

74 
(86.0%) 

     GCPS 3 
(33.3%) 

1 (6.7%) 3 
(42.9%) 

1 
(50.0%) 

0 (0.0%) 0 (0.0%) 8 (9.3%) 

 
 
Figure 1: Mutational signatures observed across the cohort. 

 
 
Abbreviations: MMR, DNA mismatch repair; SBS, single base substitution; 
CRC,colorectal cancer. 
 
 
 
The SBS18+SBS36 mutational signature is elevated in both adenomas and 
CRCs from biallelic MUTYH cases 
The mean (±standard deviation) proportion of SBS18+SBS36 in the adenomas 
(65.6%±29.6%) and MMR-proficient CRCs (76.2%±20.5%) from biallelic MUTYH 
cases were not significantly different (p-value=0.37) (Figure 2A, Table 2). This result 
is further highlighted when comparing the SBS18+SB36 proportions in adenomas and 
CRCs from the same participant (Figure 3). In contrast, the mean proportion of 
SBS18+SBS36 in adenomas and CRCs from biallelic MUTYH cases were significantly 
higher compared with the mean proportion in non-hereditary adenomas 
(65.6%±29.6% versus 7.6%±7.0%, p-value=3.4x10-4) and CRCs (76.2%±20.5% 
versus 6.5%±5.5%, p-value=2.2x10-8) (Figure 2A, Table 3). 
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Figure 2: Boxplots of whole-exome sequencing derived genomic features for A) 
SBS18+SBS36 proportions in MUTYH cases and non-hereditary groups and B) 
SBS30 proportions in NTHL1 cases and non-hereditary groups. 

 
 
Abbreviations: MMR, DNA mismatch repair; SBS, single base substitution; 
CRC,colorectal cancer; VUS, variant of uncertain significance; LP, likely pathogenic. 
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Figure 3. Line plot displaying the comparison of SBS18+SBS36 signature proportions 
for adenomas and colorectal cancers related to each biallelic MUTYH case and for the 
participant with a pathogenic and variant of uncertain significance in MUTYH 
(Pat_763). 

 
 
Abbreviations: SBS, single base substitution; CRC, colorectal cancer; VUS, variant of 
uncertain significance; LP, likely pathogenic; ID, identification; Pat, patient ID; Rel, 
relative ID. 
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Table 2. The mean, standard deviation, and range of five genomic features derived from whole-exome sequencing testing for their 
differences between tissue type and by MUTYH or NTHL1 case or non-hereditary status. Statistically significant p-values are 
highlighted in bold.  
  

Biallelic MUTYH 
cases 

  
Biallelic NTHL1 
cases 

  
Proficient Controls 

   

 
Adenom
a biallelic 
MUTYH 
(n=9, 
10.7%) 

CRC 
biallelic 
MUTYH 
(n=13, 
15.5%)1 

t-test 
(p-
value)
2 

Effect 
Size 
(Cohen'
s d) 

Adenom
a 
biallelic 
NTHL1 
(n=7, 
8.3%) 

CRC 
biallelic 
NTHL1 
(n=2, 
2.4%) 

t-test 
(p-
value)
2 

Effect 
Size 
(Cohen'
s d) 

Adenom
a 
proficient 
control 
(n=27, 
32.1%) 

CRC 
proficient 
control 
(n=26, 
31.0%) 

t-test 
(p-
value)
2 

Effect 
Size 
(Cohen'
s d) 

Total 
(n=84, 
100%) 

SBS18+SBS
36 

    0.37 -0.4     0.30 0.5     0.53 0.2   

     Mean 65.6% 76.2%     1.0% 0.4%     7.6% 6.5%     23.4% 
     SD 29.6% 20.5%     1.4% 0.0%     7.0% 5.5%     32.0% 
     Range 6.6% - 

91.3% 
19.8% - 
94.2% 

    0% - 
3.2% 

0.4% - 
0.4% 

    0% - 
25.4% 

0% - 
19.5% 

    0% - 
94.2% 

                            
SBS30     0.38 0.4     0.31 -0.5     0.14 -0.4   
     Mean 6.0% 2.0%     74.5% 78.8%     2.8% 5.4%     11.6% 
     SD 12.3% 6.0%     9.4% 2.4%     3.6% 8.0%     23.4% 
     Range 0% - 

32.4% 
0% - 
21.4% 

    55% - 
82.3% 

77.1% - 
80.5% 

    0% - 
13.6% 

0% - 
33.2% 

    0% - 
82.3% 

                            
TMB     0.12 -0.8     0.87 -0.1     7.4x1

0-5 
-1.2   

     Mean 4.8 7.5     7.1 7.5     1.5 2.8     3.8 
     SD 4.3 2.9     4.2 2.0     0.9 1.3     3.3 
     Range 0.3 - 12.7 3.5 - 13.3     2.5 - 

14.8 
6.1 - 8.8     0.3 - 4.1 1.4 - 5.9     0.3 - 

14.8 
                            
INDEL count     0.02 -1.1     0.95 0.0     2.3x1

0-3 
-0.9   
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     Mean 4.4 9.7     10.7 10.5     7.1 11.3     8.9 
     SD 4.9 4.6     9.3 0.7     4.2 5.4     5.6 
     Range 1 - 17 2 -16     2 - 25 10 - 11     1 - 17 3 - 20     1 - 25 
                            
SNV count     0.13 -0.7     0.87 -0.1     9.8x1

0-5 
-1.2   

     Mean 318.6 494.3     466.9 491.0     91.1 178.1     245.6 
     SD 285.4 197.5     274.5 132.9     56.8 86.9     217.9 
     Range 19 - 851 231 - 895     168 - 

974 
397 - 585     16 - 262 84 - 381     16 - 

974 

Abbreviations: CRC, colorectal cancer; SBS, single base substitution; SD, standard deviation; TMB, tumour mutation burden; INDEL, 
large insertion/deletion; SNV, single nucleotide variant. 
 
1 MMR-proficient CRCs only from biallelic MUTYH cases were included. 
2 two-tailed t-test. 
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Table 3. The mean, standard deviation, and range of five genomic features derived from whole-exome sequencing testing assessed 
for their differences between MUTYH or NTHL1 case or non-hereditary status for colorectal adenomas and colorectal cancers 
separately. Statistically significant p-values are highlighted in bold. 
  

Colorectal 
Adenomas 

  
Colorectal 
Cancers 

  
Colorectal 
Adenomas 

  
Colorectal 
Cancers 

   

 
Bialle
lic 
MUT
YH 
case
s 
(n=9, 
10.7
%) 

Non-
heredit
ary 
control
s 
(n=27, 
32.1%
) 

t-test 
(p-
valu
e)2 

Effect 
Size 
(Cohe
n's d) 

Bialle
lic 
MUT
YH 
cases 
(n=13
, 
15.5
%)1 

Non-
heredit
ary 
control
s 
(n=26, 
31.0%
) 

t-test 
(p-
valu
e)2 

Effect 
Size 
(Cohe
n's d) 

Biall
elic 
NTH
L1 
case
s 
(n=7, 
8.3%
) 

Non-
heredit
ary 
control
s 
(n=27, 
32.1%
) 

t-test 
(p-
valu
e)2 

Effect 
Size 
(Cohe
n's d) 

Bialle
lic 
NTH
L1 
case
s 
(n=2, 
2.4%
) 

Non-
heredit
ary 
control
s 
(n=26, 
31.0%
) 

t-test 
(p-
valu
e)2 

Effect 
Size 
(Cohe
n's d) 

Tota
l 
(n=8
4, 
100
%) 

SBS18+S
BS36 

    3.4x
10-4 

3.7     2.2x
10-8 

5.6     8.0x
10-5 

-1.0     6.4x
10-6 

-1.1   

     Mean 65.6
% 

7.6%     76.2
% 

6.5%     1.0% 7.6%     0.4% 6.5%     23.4
% 

     SD 29.6
% 

7.0%     20.5
% 

5.5%     1.4% 7.0%     0.0% 5.5%     32.0
% 

     Range 6.6% 
- 
91.3
% 

0% - 
25.4% 

    19.8
% - 
94.2
% 

0% - 
19.5% 

    0% - 
3.2% 

0% - 
25.4% 

    0.4% 
- 
0.4% 

0% - 
19.5% 

    0% - 
94.2
% 

                                    
SBS30     0.45 0.5     0.15 -0.5     5.1x

10-7 
13.8     2.9x

10-5 
9.3   

     Mean 6.0% 2.8%     2.0% 5.4%     74.5
% 

2.8%     78.8
% 

5.4%     11.6
% 

     SD 12.3
% 

3.6%     6.0% 8.0%     9.4% 3.6%     2.4% 8.0%     23.4
% 

     Range 0% - 
32.4
% 

0% - 
13.6% 

    0% - 
21.4
% 

0% - 
33.2% 

    55% 
- 
82.3
% 

0% - 
13.6% 

    77.1
% - 
80.5
% 

0% - 
33.2% 

    0% - 
82.3
% 
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TMB     4.7x
10-2 

1.5     7.5x
10-5 

2.3     1.2x
10-2 

2.8     0.18 3.4   

     Mean 4.8 1.5     7.5 2.8     7.1 1.5     7.5 2.8     3.8 
     SD 4.3 0.9     2.9 1.3     4.2 0.9     2.0 1.3     3.3 
     Range 0.3 - 

12.7 
0.3 - 
4.1 

    3.5 - 
13.3 

1.4 - 
5.9 

    2.5 - 
14.8 

0.3 - 
4.1 

    6.1 - 
8.8 

1.4 - 
5.9 

    0.3 - 
14.8 

                                    
INDEL 
count 

    0.18 -0.6     0.33 -0.3     0.35 0.7     0.48 -0.2   

     Mean 4.4 7.1     9.7 11.3     10.7 7.1     10.5 11.3     8.9 
     SD 4.9 4.2     4.6 5.4     9.3 4.2     0.7 5.4     5.6 
     Range 1 - 17 1 - 17     2 - 16 3 - 20     2 - 

25 
1 - 17     10 - 

11 
3 - 20     1 - 

25 
                                    
SNV count     4.4x

10-2 
1.5     6.9x

10-5 
2.4     1.1x

10-2 
2.9     0.18 3.5   

     Mean 318.6 91.1     494.3 178.1     466.
9 

91.1     491.
0 

178.1     245.
6 

     SD 285.4 56.8     197.5 86.9     274.
5 

56.8     132.
9 

86.9     217.
9 

     Range 19 - 
851 

16 - 
262 

    231 - 
895 

84 - 
381 

    168 - 
974 

16 - 
262 

    397 - 
585 

84 - 
381 

    16 - 
974 

 
Abbreviations: CRC, colorectal cancer; SBS, single base substitution; SD, standard deviation; TMB, tumour mutation burden; INDEL, 
large insertion/deletion; SNV, single nucleotide variant. 
 
1 MMR-proficient CRCs only from biallelic MUTYH cases were included 
2 Two-tailed t-test 
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Co-occurrence of mutational processes related to defective MUTYH and 
defective DNA mismatch repair 
In the two MMR-deficient CRCs from biallelic MUTYH cases (Pat_301 and Pat_315), 
the mean proportion of SBS18+SBS36, was significantly lower compared with the 
MMR-proficient CRCs from biallelic MUTYH cases (20.0%±0.5% versus 
76.2%±20.5%, p-value=3.8x10-7) but they were still higher compared with non-
hereditary CRCs (6.5%±5.5%, p-value=2.2x10-8) (Figure 2A, Table 3). Both these 
MMR-deficient CRCs also showed higher proportions of SBS15 and SBS44, which 
are mutational signatures associated with MMR-deficiency (Figure 1). In addition, the 
TMB of these two MMR-deficient CRCs (53.9 and 25.4 mutations/Mb, respectively) 
was higher compared with the mean TMB of the MMR-proficient CRCs from biallelic 
MUTYH cases (7.5±2.9 mutations/Mb) (Figure 4). 

The cause of MMR-deficiency in Pat_301 and Pat_315 was not related to 
carrying a germline LP/P variant in one of the DNA MMR genes, but rather from two 
somatic MMR mutations causing biallelic inactivation in each CRC as determined from 
the WES data. The CRC showing loss of MLH1/PMS2 protein expression from 
Pat_301 had two somatic mutations in MLH1 (c.1813G>T p.(Glu605Ter) and 
c.1816G>T p.(Gly606Ter)) and no evidence of tumour MLH1 promoter 
hypermethylation. The CRC showing loss of MSH2/MSH6 protein expression from 
Pat_315 had a somatic mutation in MSH2 (c.394G>T p.(Glu132Ter)) and loss of 
heterozygosity indicating loss of the wildtype MSH2 allele. The somatic single 
nucleotide mutations observed in MLH1 and MSH2 matched the mutational contexts 
associated with SBS18 and SBS36 (Pat_301:TCT>TAT and TCC>TAC; 
Pat_315:TCA>TTA), suggesting the constitutionally defective MUTYH contributed to 
these somatic MMR mutational events and resulted in MMR-deficiency in these two 
CRCs. Interestingly, the synchronous MMR-proficient CRC from Pat_301 exhibited a 
high proportion of SBS18+SBS36 (94.2%) and a low TMB (9.4 mutations/Mb), further 
highlighting the impact of tumour MMR-deficiency on the SBS18+SBS36 signature 
proportions in biallelic MUTYH cases. 
 
Somatic mutations as biomarkers of biallelic MUTYH status in adenomas 
Previously, the KRAS c.34G>T p.(Gly12Cys) and PIK3CA c.1636C>A p.(Gln546Lys) 
somatic mutations were shown to be recurrent mutations significantly increased in 
CRCs from biallelic MUTYH pathogenic variant cases [6]. In adenomas, the KRAS 
c.34G>T mutation was present in 6/9 (66.7%) and 2/27 (7.4%) of the biallelic MUTYH 
and non-hereditary adenomas, respectively (p-value=3.1x10-2). The KRAS c.34G>T 
mutation had a positive predictive value of 75% and a negative predictive value of 
89.3% in adenomas compared with a positive predictive value of 100% and negative 
predictive value of 86.7% in CRCs, indicating that the somatic KRAS mutation may 
not be as clinically useful in identifying biallelic MUTYH cases in adenomas as it is in 
CRCs. The PIK3CA c.1636C>A mutation was not observed in adenomas from biallelic 
MUTYH cases or in adenomas from the non-hereditary group (Supplementary 
Figure 1). 
 
The SBS18+SBS36 mutational signature provides evidence for variant 
classification 
We profiled four adenomas and a CRC from Pat_763 who carried a germline 
heterozygous pathogenic variant (c.1187G>A p.(Gly396Asp)) and a germline 
heterozygous VUS (c.533G>C p.(Gly178Ala)) in MUTYH. All four adenomas (mean 
proportion: 73.0%±14.9%, range: 57.3%-88.0%) and the CRC (72.7%) demonstrated 
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high proportions of SBS18+SBS36 consistent with germline biallelic inactivation of 
MUTYH (Figure 2A, Figure 3). No somatic second hits in MUTYH were observed that 
may have accounted for the high SBS18+SBS36 signature proportions in the 
adenomas and CRC. These findings support a reclassification of the MUTYH 
c.533G>C p.(Gly178Ala) variant as likely pathogenic. 
 
The SBS30 mutational signature is elevated in both adenomas and CRCs from 
biallelic NTHL1 cases 
The mean proportion of SBS30 in adenomas (74.5%±9.4%) and CRCs (78.8%±2.4%) 
from biallelic NTHL1 cases were not significantly different (p-value=0.31) (Figure 2B, 
Table 2). The mean proportion of SBS30 in adenomas from biallelic NTHL1 cases 
was, however, significantly higher compared with the mean proportion in non-
hereditary adenomas (74.5%±9.4% versus 2.8%±1.3%; p-value=5.1x10-7) (Figure 
2B, Table 3). In addition to 7 adenomas and 2 CRCs, a hyperplastic polyp and a 
traditional serrated adenoma from two biallelic NTHL1 cases (Pat_005 and Pat_469) 
were tested. Of note, the traditional serrated adenoma showed high proportion of 
SBS30 at 69.4%, whereas the SBS30 proportion in the hyperplastic polyp was only 
6.2% (Figure 2B). 
 
 
DISCUSSION 
In this study, we showed that the SBS18+SBS36 and SBS30 mutational signatures 
associated with biallelic MUTYH and biallelic NTHL1 deficiencies, were present in 
adenomas at similar proportions to those observed in CRCs and were significantly 
higher when compared with the proportions observed in non-hereditary adenomas and 
CRCs. Together, these results demonstrate the presence of these mutational 
processes and consequent mutational signatures, at diagnostic levels in the pre-
malignant stage, thereby enabling the opportunity for early CRC detection by 
expanding the potential tissue available for profiling. 

We identified two scenarios where SBS30 or SBS18+SBS36 may present with 
limitations. Firstly, although SBS30 was shown to be a predominant mutational 
signature in adenomas from biallelic NTHL1 cases, our results showed variable 
presence of SBS30 in two serrated polyp subtypes, 69.4% in the traditional serrated 
adenoma and only 6.2% in the hyperplastic polyp. As biallelic NTHL1 cases can 
present with mixed polyp types [28], further research is needed to determine the utility 
of testing serrated polyps for mutational signatures for NTHL1 and more broadly for 
other hereditary CRC/polyposis syndromes. Secondly, we tested two MMR-deficient 
CRCs from two biallelic MUTYH cases where the mutational signature profile showed 
defective MMR related to the presence of SBS15 and SBS44 and a hypermutated 
TMB that co-occurred with the SBS18+SBS36 signature, albeit at lower proportions 
than observed in MMR-proficient CRCs from biallelic MUTYH cases. These findings 
highlight MMR-deficiency as an important diagnostic caveat for utilising 
SBS18+SBS36 to identify biallelic MUTYH cases or for classifying variants. 

This study extends on our previous work for applying SBS18+SBS36 in CRCs 
to reclassify VUSs in MUTYH [5]. We showed high levels of SBS18+SBS36 in the 
CRC and multiple adenomas from the same person provides high confidence that the 
MUTYH c.533G>C p.(Gly178Ala) variant is pathogenic. Additional evidence related to 
its absence in gnomAD and from in-silico predictions from REVEL, SIFT, PolyPhen-2 
and Align-GVGD suggest this missense change affects protein function, further 
supporting pathogenicity (https://www.ncbi.nlm.nih.gov/clinvar/variation/481808/, last 
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accessed date: August 1st, 2024). The ability to test multiple independent 
adenomas/CRCs provides high confidence for variant classification where all or none 
of the lesions have the signature. The clinical genetics community is increasingly 
challenged by VUS, where around half (47.8%, 1329/2782) of MUTYH variants in 
ClinVar are currently classified as VUS (stand: August 6th, 2024) [29]. Approaches to 
classify variants with existing and widely used infrastructure i.e., next generation 
sequencing and validated bioinformatic tools, will aid in reclassifying variants and 
optimising clinical management and cancer prevention for the patient and their 
relatives. 
 Limitations of this study include the lack of ethnic diversity within the case and 
non-hereditary groups which were predominantly white European. Similarly, there was 
a limited range of germline LP/P variants for both MUTYH and NTHL1. The 
consistency of mutational signature findings across a broader group of cases of 
different pathogenic variants and ethnic backgrounds would provide evidence of the 
robustness of this approach. All of the CRCs and adenomas tested in this study were 
from FFPE tissue, however we have previously shown that mutational signature 
profiling is effective in both FFPE and fresh frozen tissue DNA samples [5]. 
 
CONCLUSIONS 
This study provides important findings demonstrating that testing adenomas for 
SBS18+SBS36 or SBS30 can be an equally effective alternative to identifying biallelic 
MUTYH or biallelic NTHL1 cases, respectively, if CRC has not yet developed or tissue 
is not available. This provides important opportunities for clinical management 
decision-making such as colectomy versus endoscopic polypectomy for CRC 
prevention given the established high CRC penetrance in biallelic cases. Furthermore, 
the specificity of these signatures enables the utility of mutational signature profiling 
to classify VUS. Our study identified potential caveats to using mutational signatures 
diagnostically, namely, the presence of MMR-deficiency which may diminish the 
SBS18+SBS36 signature, while for SBS30, testing of serrated polyps needs further 
investigation. This study adds to the growing evidence of the clinical utility of gene 
specific mutational signature profiling for identifying hereditary CRC/polyposis 
syndromes and further expands the opportunities to utilise mutational signatures as a 
supportive feature for variant classification. 
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