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Alzheimer’s disease (AD) is a severe type of neurodegeneration which worsens

human memory, thinking and cognition along a temporal continuum. How to identify

the informative phenotypic neuroimaging markers and accurately predict cognitive

assessment are crucial for early detection and diagnosis Alzheimer’s disease. Regression

models are widely used to predict the relationship between imaging biomarkers and

cognitive assessment, and identify discriminative neuroimaging markers. Most existing

methods use different matrix norms as the similarity measures of the empirical loss or

regularization to improve the prediction performance, but ignore the inherent geometry

of the cognitive data. To tackle this issue, in this paper we propose a novel robust

matrix regression model with imposing Wasserstein distances on both loss function and

regularization. It successfully integrate Wasserstein distance into the regression model,

which can excavate the latent geometry of cognitive data. We introduce an efficient

algorithm to solve the proposed new model with convergence analysis. Empirical results

on cognitive data of the ADNI cohort demonstrate the great effectiveness of the proposed

method for clinical cognitive predication.

Keywords: Alzheimer’s disease, cognitive assessment, Wasserstein distance, matrix regression, feature selection

1. INTRODUCTION

Alzheimer’s disease (AD), the most common form of dementia, is a Central Nervous System
(CNS) chronic neurodegenerative disorder with progressive impairment of learning, memory
and other cognitive function. As an incurable disease which severely impacts human thinking
and behavior, Alzheimer’s disease is the 6th cause of death in the United States (Alzheimer’s
Association, 2018). Along with the rapid progress in high-throughput genotype and brain image
techniques, neuroimaging has been developed to effectively predict the progression of AD or
cognitive performance in plentiful research (Ewers et al., 2011; Wang et al., 2011b), which benefits
for early diagnosis and explorition of brain function associated with AD (Petrella et al., 2003;
Avramopoulos, 2009). The Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Mueller et al.,
2005; Jack et al., 2008) provides neuroimaging and cognitive measurement of normal aging, mild
cognitive impairment as well as AD samples, which provides a wealth of resources for the study of
Alzheimer’s diagnosis, treatment and prevention.
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Until now, numerous studies (Eskildsen et al., 2013; Moradi
et al., 2015) have utilized neuroimaging techniques to detect
pathology associated with AD. Among them, structural magnetic
resonance imaging (MRI) is the most extensively used imaging
modality in AD related studies because of its completely non-
invasive nature, high spatial resolution, and high availability.
Thus, researchers have extracted plentiful MRI boimarkers in
classifying AD patients in different disease over the past few
years (Duchesne et al., 2008; Eskildsen et al., 2013; Guerrero
et al., 2014). And these abundant MRI boimarkers have been
used to many AD related studies, such as AD status prediction
and MCI-to-AD conversion prediction. Despite of great efforts,
we still cannot identify informative AD-specific biomarkers for
the early diagnosis and prediction of disease progression. The
reason for this is that the number of clinical status of AD is
small, which makes it difficult to observe and understand the
cognitive progression.

Consequently, many studies use clinical cognitive tests to
measure cognitive assessment. Recently, several clinical tests have
been presented to access individual’s cognitive level, such as Trail
making test (TRAILS) and and Rey Auditory Verbal Learning
Test (RAVLT) (Schmidt, 1996). Through predicting the cognitive
scores with MRI biomarks, we can explore the association
between imaging biomarkers and AD and find informative AD-
specific biomarkers. Therefore, a wide range of machine learning
approaches have been proposed to predict the cognitive scores
and uncover the pathology associated with AD (Wang et al.,
2011a, 2016; Moradi et al., 2017).

In the current study of predicting cognitive scores with
longitudinal phenotypic markers extracted from MRI data,
regression method has been demonstrated as a effective way to
excavate the correlation between cognitive measures. To modify
the traditional regression model, recent methods proposed to
integrate novel regularization term (such as sparse regularization
and low-rank regularization) into the traditional regression
model (Obozinski et al., 2010; Jie et al., 2015; Moradi et al., 2017).
In fact, the intrinsic idea of the studymentioned above is utilizing
different matrix norm or the combination of matrix norms as
the similarity measures of the empirical loss or regularization
to fit the prior assumption of neuroimaging markers. Though
the effectiveness of specific matrix norm as regularization, these
matrix norms simply meet the assumption rather than make full
use of the inherent geometry of the data. Thus, it is easy to achieve
a suboptimal solution for these models.

To tackle this problem, in this paper we consider Wasserstein
distance as distance metric for regression model. Different from
Lp distances (p ≥ 0) (Luo et al., 2017) or Kullback-Leibler
(Csiszár and Shields, 2004) and other f -divergences (Ali and
Silvey, 1966), Wasserstein distance is well-defined between any
pair of probability distributions over a sample space equipped
with a metric. Thus, it provides a meaningful notion of distance
for distributions supported on non-overlapping low dimensional
manifolds. For better performance of cognitive score predication,
we propose to substitute Wasserstein distance for matrix norm.

Although successfully applied to image retrieval (Rubner
et al., 2000), contour matching (Grauman and Darrell, 2004),
cancer detection (Ozolek et al., 2014), super-resolution (Kolouri

and Rohde, 2015), and many other problems, there is an
intrinsic limitation of Wasserstein distances. In fact, Wasserstein
distances are defined only between measures having the same
mass, which makes it difficult to applied Wasserstein distance
into cognitive score prediction. To overcome such a limitation,
many existed study (Piccoli and Rossi, 2014, 2016; Kondratyev
et al., 2016), have been proposed. However, these methods are
all based on distributions or histogram features of data. As
we know, in cognitive score prediction, we usually use the
original features rather histogram features to learn the regression
model parameters. Additionally, most of these methods use
traditional matrix norm to characterize model parameters in
Wasserstein distance loss minimization problem. This often leads
to suboptimal results since matrix norm is usually sensitive to
real noise.

To perfectly integrate Wassterstein distance into regression
model for better performance of cognitive score prediction,
in this paper we propose a novel efficient and robust Matrix
Regression method to employ Joint Wasserstein distances
minimization on both loss function and regularization (JWMR
for short). Different from the existing methods, which need to
extract histogram features of data in the preprocessing stage and
then calculate Wasserstein distances based on them, our method
considers histogram operator as an important component of
objective function and uses it to constrain loss term and the
estimated model parameters which are generated by original data
features. This is the first time for exploiting Wasserstein distance
as loss and regularization terms. As a result, our method is more
reliable and applicable than traditional regression method using
ℓp-norm regularizer. We derive an efficient algorithm based
on a relaxed formulation of optimal transport, which iterates
through applications of alternating optimization. We provide the
convergence analysis of our algorithm and describe a statistical
bound for the proposed new model. We apply our method on
cognitive data of the ADNI cohort and obtain promising results.

Our main contributions are three-fold: (1) The proposed
robust matrix regression via joint Wasserstein distances
minimization to circumvent the natural limitation of matrix
norms in regression model; (2) The proposed model is suitable
for revealing the relationship between cognitive measures
and neuroimaging markers; (3) Because our method not only
includes composition of W(·, ·), but also the computations
of Wasserstein distances with regard to different terms, we
derive an efficient algorithm to solve this problem with
convergence analysis.

2. STUDY OF COGNITIVE SCORE
PREDICTION

2.1. Notations
We summarize the notations and definitions used in this paper.
Matrices are written as boldface uppercase letters. ‖ · ‖F and ‖ · ‖∗
denote Frobenius norm and nuclear norm, respectively. 〈·, ·〉 is
the inner product operation. e ∈ R

m is a column vector of ones.
0 ∈ R

m is a column vector of zeros. For vector m ∈ R
m, its i-th

element is denoted by m(i). For matrix M ∈ R
n×m, its i-th row,
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j-th column and (i, j)-th element are denoted bymi,mj, and mij.
The ℓ2,1-norm ofM is defined as

‖M‖2,1 =

n
∑

i=1

√

√

√

√

m
∑

j=1

m2
ij =

n
∑

i=1

‖mi‖2, (1)

where ‖mi‖2 denotes the ℓ2-norm of the vector mi. We define
the Kullback-Leibler (KL) divergence between two positive
vectors by

KL(x, y) =
〈

x, log(x/y)
〉

+
〈

y− x, e
〉

, (2)

where / denotes the element-wise division.

2.2. Matrix Regression for Cognitive Score
Prediction
In the association study of predicting cognitive scores from
imaging markers, a wide range of work has employed regression
models to uncover the relationship between neuroimaging data
and cognitive test scores and predict cognitive score. Given the
imaging feature matrix A ∈ R

m×l and the cognitive score
matrix Y ∈ R

l×n, a common paradigm for regression to predict
cognitive score is to minimize the penalized empirical loss:

minZL(Y− ATZ)+ λ�(Z), (3)

where λ > 0 is the balance parameter, Z ∈ R
m×n is the weight

matrix, which is estimated from the imaging feature matrix A

and the cognitive score matrix Y to capture the relevant features
for predicting the cognitive scores, L(Y − ATZ) is the empirical
loss on the training set, and �(Z) is the regularization term that
encodes imaging feature relatedness. Different assumptions on
the loss L(Y − ATZ) and variate Z lead to different models. The
representative model include:

Least Squares Regression (LSR) (Lu et al., 2012):

minZ‖Y− ATZ‖2F + λ‖Z‖2F , (4)

Low Rank Representation (LRR) (Liu et al., 2010):

minZ‖Y− ATZ‖1 + λ‖Z‖∗, (5)

Feature Selection Based on ℓ2,1-norm (Nie et al., 2010):

minZ‖Y− ATZ‖2,1 + λ‖Z‖2,1. (6)

2.3. Feature Selection for Informative
Imaging Marker Identification
Due to the progress and prosperity of brain imaging and high-
throughput genotyping techniques, a large amount of brain
imaging data is available and a great quantity of imaging markers
is alternative to predict cognitive score. However, not all of them
are related to the pathological changes specific to AD, namely
some imaging markers are redundancy for the prediction task.
A forthright method to tackle this problem is to perform feature
selection, which aims to choose a subset of informative features
for improving prediction.

Feature selection has been demonstrated as a efficient way
to reflect the correlation between cognitive measures after
removing the non-distinctive neuroimaging markers. Regression
techniques with specific regularization can also used to identify
discriminative imaging markers. For instance, sparse regression
models have been extensively utilized to select discriminative
voxels for AD study in previous works (Guerrero et al., 2014;
Liu et al., 2014; Xu et al., 2017). Many sparse-inducing norm
have been iterated into the spare regression model: ℓ1 shrinkage
methods such as LASSO can identify informative longitudinal
phenotypic markers in the brain that are related to pathological
changes of AD (Liu et al., 2014); group LASSO with a ℓ2,1-norm
can select the most informative imaging markers related to all
participants including AD, mild cognitive impairment (MCI)
and healthy control (HC) by imposing structured sparsity on
parameter matrix (Jie et al., 2015); ℓ1,1-norm regularization term
can achieve both structured and flat sparsity (Wang et al., 2011a).

Nevertheless, matrix norms such as ℓ1-norm, ℓ2,1-norm, and
ℓ1,1-norm have the natural limitation that they can not take the
inherent geometry of the data into account. On this account, we
need to select a new distance metric to measure the empirical loss
and regularization term. In this paper, we choose the smoothed
Wassersetein distance as the distance metric.

2.4. Smoothed Wasserstein Distance
Wasserstein distance, originally introduced in Monge (1781),
is a powerful geometrical tool for comparing probability
distributions. It is derived form the optimal transport theory and
is intrinsically the optimal solution of transportation problem in
linear programming (Villani, 2008).

In a more formal way, given access to two sets of points

XS =
{

xSi ∈ R
d
}NS

i=1
and XT =

{

xTi ∈ R
d
}NT

i=1
, we construct two

empirical probability distributions as follows

µ̂S =

NS
∑

i=1

pSi δxSi
and µ̂T =

NT
∑

i=1

pSi δxTi
, (7)

where pSi and pTi are probabilities associated to xSi and xTi ,
respectively, and δx is a Dirac measure that can be interpreted
as an indicator function taking value 1 as the position of x

and 0 elsewhere. For these two distribution, the polytope of
transportation plans between XS and XT is defined as follows:

Uµ̂S ,µ̂T
=

{

P ∈ R
NS×NT
+ s.t.

∣

∣

∣

∣

Pe = pS

PTe = pT

}

. (8)

Given a groundmetricmatrixC ∈ R
NS×NT
+ , the optimal transport

consists in finding a probabilistic coupling defined as a joint
probability measure overXS×XT with marginals µ̂S and µ̂T that
minimize the cost of transport

minP∈Uµ̂S ,µ̂T
〈C,P〉, (9)

where P =
{

p(i, j), i = 1, · · · ,NS, j = 1, · · · ,NT

}

is the flow-
network matrix, and p(i, j) denotes the amount of earth moved
from the source XS to the target XT . This problem admits
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a unique solution P∗ and defines a metric on the space of
probability measures (called theWasserstein distance) as follows:

W(µ̂S, µ̂T)
def.
= minP∈Uµ̂S ,µ̂T

〈C,P〉 . (10)

Optimizing Wasserstein distance problem requires several costly
optimal transport problems. Specialized algorithm can solve it
withO((NS+NT) log(NS+NT)

2+NSNT(NS+NT) log(NS+NT))
(Orlin, 1993). To solving the computational problem, recent
works have proposed novel method to accelerate the calculation
procedure. Furthermore, as a minimum of affine functions,
the Wasserstein distance itself is not a smooth function of its
arguments. To overcome the above problems, Cuturi (2013)
proposed to smooth the optimal transport problem with an
entropy term:

Wγ(µ̂S, µ̂T) = minP∈Uµ̂S ,µ̂T
〈C,P〉 − γe(P), (11)

where γ > 0 and e(·) is the entropy function:

e(P) = −
〈

P, log(P)
〉

. (12)

With the entropy term, we can use Sinkhorn-Knopp matrix
scaling algorithm to solve the optimal transport problem
(Sinkhorn and Knopp, 1967).

3. MATRIX REGRESSION BASED ON JOINT
WASSERSTEIN DISTANCE

In the above formulations, the loss term and estimated variate are
characterized via the simple matrix norm. Thus, these models can
be easily solved by conventional convex optimization methods
[e.g., ADMM (Liu et al., 2010), gradient based methods (Bubeck
et al., 2015), and reweighted iterative methods (Nie et al., 2010)].
However, they do not take into account the geometry of the data
through the pairwise distances between the distributions’ points.
Accordingly, these models often achieve the suboptimal results in
cognitive score predication.

3.1. Joint Wasserstein Matrix Regression
Comparing with matrix norm, Wasserstein distance can
circumvent the above limitation. Therefore, in this paper we
propose to use Wasserstein distance to jointly characterize loss
term and estimated variate Z, which is formulated as

minZ

l
∑

i=1

Wγ((h(A
TZ)i), h(Yi))+ λ

m
∑

i=1

Wγ(h(Z
i), 0), (13)

where h(·) and Yi denote the histogram operator and ith row
of matrix Y, respectively. It should be noted that we use the
histogram operator to constrain each variable in model (13).

3.2. Optimization Algorithm
Solving problem (13) is extremely challenging since it not only
includes the composition of h(·) and Wγ(·, ·), but also the
computations of Wasserstein distance with regard to different

terms. Some existing (Genevay et al., 2016; Rolet et al., 2016)
algorithms are only suitable for solving Wasserstein distance loss
minimization with matrix norm regularizer. To cope with this
challenge, we relax the marginal constraints Uµ̂S ,µ̂T

in (11) using
a Kullback-Leibler divergence from thematrix to targetmarginals
µ̂S and µ̂T (Frogner et al., 2015; Chizat et al., 2016), i.e., (11) is
converted as

Wγ(µ̂S, µ̂T) = minP∈Uµ̂S ,µ̂T
γKL(P|K)+ µKL(Pe|µ̂S)

+µKL(PTe|µ̂T), (14)

where K = exp(−C/upgamma).

Algorithm 1: Optimization Algorithm of our proposed method.

Input: the given ADNI data A and related cognitive score
matrix Y and parameter λ

Output: model parameter Z
1: Initialization: P0 and P̂0

2: repeat

3: for t = 1 tom do

4: Update each Zi with proximal coordinate descent
5: end for

6: Update P(1), · · · ,P(l), P̂(1), · · · , P̂(m) via Sinkhorn iteration
7: until convergence

Let

fµ̂S ,µ̂T
(P) = γKL(P|K)+ µKL(Pe|µ̂S)+ µKL(PTe|µ̂T), (15)

where parameters γ, µ ≥ 0. Thenmodel (11) ultimately becomes
the following form

min J(Z;P(1), · · · ,P(l), P̂(1), · · · , P̂(m))

=

l
∑

i=1

f(ATZ)i ,Yi (P(i))+ γ

m
∑

i=1

fZi ,0(P̂(i))

s.t. Zi ≥ 0, ∀i = 1, 2, · · · ,m

(16)

where P and P̂ denote the flow-network matrix of
Wγ((h(A

TZ)i), h(Yi)) and Wγ(h(Z
i), 0), respectively, and

Zi ≥ 0 means all the elements in Zi is greater than or equal to 0.
Due to the relax operation in (14), we can straightly utilize

the original data ATZ, Y, and Z in model (16). Thus, we
do not need to extract the histogram features of data in the
preprocessing stage, which makes it suitable for the prediction
task in neuroimaging data.

TABLE 1 | Numbers of participants in the experiments using two different types of

imaging markers.

#Total #AD #pMCI #sMCI #HC

FreeSurfer 805 186 167 226 226

VBM 805 186 167 226 226
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FIGURE 1 | RMSE of four regression methods for VBM memory score prediction.

Strong convexity of model (16) is given by the entropy
terms KL(P|K). Thus, we propose to solve (16) by block
coordinate descent, alternating the minimization with respect to
the parameters {P(1), · · · ,P(l), P̂(1), · · · , P̂(m)} and each Zi, which
can be updated independently and therefore in parallel. This is
summarized in Algorithm 1. We now detail the two steps of
the procedure.

Updating coefficient matrix Z. Minimizing with respect to one
Zi while keeping all other variables fixed to their current estimate
yields the following problem

min
Zi

KL(P(i)e|(A
TZ)i)+ λKL(P(i)e|Z

i). (17)

Recalling the definition (2), it is easy to calculate the gradient of
objective (17) with regard to eachZi. Thus, we can use accelerated
gradient descent (Bubeck et al., 2015) to optimize problem (17).

Updating parameter set {P(1), · · · ,P(l), P̂(1), · · · , P̂(m)}. For

fixed Z, the update of each P(i) and P̂(i) boils down to an OT
problem, which can be solved via Sinkhorn iteration (Cuturi,
2013). These steps are summarized in Algorithm 2, where we list
the detailed iteration process for each P(i). For each P̂(i), we need
to replace (ATZ)i and Yi with Zi and 0.

3.3. Convergence Analysis
Following Sandler and Lindenbaum (2011), we can derive the
theorem as follow.

Theorem 1. Algorithm 1 converges to a local minimum.

Proof: Algorithm 1 is the alternative iteration with two iteration
stage. In the first stage, we can use gradient descent to solve the
convex problem (17). Thus it is obvious that it has a feasible
solution. And in the second stage, the problem is a sequence
of linear programming processes. As shown in (Sandler and
Lindenbaum, 2011), there is a feasible solution for every one of
them. To sum up, a feasible solution for (16) exists.

J(Z;P(1), · · · ,P(l), P̂(1), · · · P̂(m)) is convex, so applying

(17) can derive globally optimal Zk when given a
{P(1), · · · ,P(l), P̂(1), · · · P̂(m)}

k−1, where k denotes the iteration
time. Besides, linear programming minimizes the flow-network
matrix P and P̂. Thus, we can find global optimal Pk and P̂k for
a give Zk−1. Furthermore, the accelerated gradient descent used

TABLE 2 | Prediction performance measured by RMSE with top 10 features.

RR ℓ2,1 RSR RLRSS Proposed

VBM FLUENCY 0.8446 0.9166 0.9044 0.8564 0.8437

RAVLT 0.8376 0.8636 0.8742 0.8943 0.8263

TRAILS 0.9040 0.8823 0.8865 0.8886 0.8820

FreeSurfer FLUENCY 0.8136 0.8387 0.8536 0.8686 0.8122

RAVLT 0.7833 0.8051 0.8337 0.8132 0.7815

TRAILS 0.8416 0.8181 0.8433 0.8379 0.8626

The bold values indicate the minimal value in the raw (i.e., the best performance among

these methods).

TABLE 3 | Prediction performance measured by RMSE with top 30 features.

RR ℓ2,1 RFS RLRSS Proposed

VBM FLUENCY 0.8627 0.8815 0.8879 0.8503 0.8471

RAVLT 0.8543 0.8663 0.8741 0.8736 0.8327

TRAILS 0.8826 0.8618 0.8903 0.8743 0.8603

FreeSurfer FLUENCY 0.8351 0.8323 0.8517 0.8322 0.8186

RAVLT 0.8136 0.7903 0.8154 0.8051 0.7788

TRAILS 0.8295 0.8677 0.8579 0.8335 0.8274

The bold values indicate the minimal value in the raw (i.e., the best performance among

these methods).

to update Z and the Sinkhorn Iteration used to update P, P̂ both
have been proven converge.

Since the objective in these two stage is the same,
J(Zk; {P, P̂}k−1) ≤ J(Zk−1; {P, P̂}k−1), and J(Zk; {P, P̂}k) ≤
J(Zk; {P, P̂}k−1).

In above, every iteration of Algorithm 1 monotonically
decreases J(Z;P1, · · · ,P(l), P̂1, · · · P̂(m)). This objective is lower
bounded, and therefore the algorithm converges.

4. EXPERIMENTAL RESULTS

In this section, we evaluate the prediction performance of our
proposed method by applying it to the Alzheimer’s Disease
Neuroimaging Initiative (ANDI) database (adni.loni.usc.edu),
where a plenty of imaging markers measured over a period of
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FIGURE 2 | Heat maps of our learned weight matrices on different cognitive assessment scores. The upper panel shows the weight matrices in VBM data and the

lower panel shows the weight matrices in FreeSurfer data.
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FIGURE 3 | Visualization of top identified imaging markers for RAVLT memory score prediction.

Algorithm 2: Sinkhorn Iteration.

Input: the given ADNI data A and coefficient matrix Z
Output: {P1, · · · ,Pl}
1: for i = 1 to n do

2: K(i) = exp(−C(i)/γ), where C(i) is the ground metric
between ((AZ)i)T and (Yi)T

3: repeat

4: ui ← (((AZ)i)T/Kvi)
5: vi ← ((Yi)T/KTui)
6: until convergence
7: P(i) ← (p(i)jt)n×n, where the (j, t)-th element of P(i) is p(i)jt =

ui(j)k(i)jtvi(t)
8: end for

2 years are examined and associated to cognitive scores that are
relevant to AD.

4.1. Data Description
The data used in the preparation of our work were obtained from
the ADNI cohort. As we know, two widely employed automated
MRI analysis techniques were used to process and extract
imaging phenotypes form scans of ADNI participants (Shen et al.,
2010). One is Voxel-Based Morphometry (VBM) (Ashburner
and Friston, 2000), which was performed to define global
gray matter (GM) density maps and extract local gray matter
density values for 90 target regions. The other one is automated
parcellation via FreeSurfer V4 (Fischl et al., 2002), which was
conducted to define volumetric total intracranial volume (ICV).
All these measures were adjusted for the baseline ICV using
the regression weights derived from the healthy control (HC)
participants. In this study, there are 805 participants, including
186 AD samples, progressive mild cognitive impairment (pMCI)

samples, 167 stable mild cognitive impairment (sMCI) samples
and 226 health control (HC) samples. In our work, we adopt
FressSurfer markers and VBM markers as imaging phenotypes.
Furthermore, the longitudinal scores were downloaded form
three independent cognitive assessments including Fluency Test,
RAVLT, and TRAILS. The details of these cognitive assessments
can be found in the ADNI procedure manuals. The detailed
information are shown in Table 1.

4.2. Performance Comparison on the ADNI
Cohort
To evaluate the performance of our model, we compare it
with the following related methods: RR (multivariate ridge
regression), ℓ2,1 (robust feature selection based on ℓ2,1-norm),
RSR (Regularized Self-Representation) (Zhu et al., 2015), and
RLRSS (Robust Low-Rank Structured Sparse Model) (Xu et al.,
2017). These comparing methods are all widely used in statistical
learning and brain image analysis.

In the experiments, we use ridge regression for the prediction
experiment after selecting the top related imaging markers.
We tune the hyper-parameter of all models in the range
of {10−4, 10−3, · · · , 104} via nested five-fold cross-validation
strategy, and report the best result of each method. To measure
prediction performance, we compute the root mean square error
(RMSE) between the predicted score and the ground truth.

The average results for each method are reported in Figure 1,
while, we also list the RMSE using the top 10 and 30 imaging
markers and reported in Tables 2, 3. It can be seen that our
ap proach obviously outperforms most of methods significantly.
Different matrix norms fit different assumption of the cognitive
measures, which makes it enable to uncover part of the
correlation of cognitive measures. However, due to the natural
limitation of the matrix norms, they fails to uncover the inherent
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geometry of the cognitive data. As for our proposedmethod, with
the effectiveness of Wasserstein distance, it can well utilize the
inherent geometry to reveal the underlying relationship between
cognitive measures and neuroimaging markers.

4.3. Identification of Informative Markers
The primary goal of the proposed method is to identify the
discriminative AD-specific imaging biomarkers which is crucial
for early detection, diagnosis and prediction of AD. Therefore,
we examine the neuroimaging markers selected by our method
and show it in Figure 2. Visualizing the parameter weights shown
in Figure 2 can help us locate the informative markers which
play important roles in the corresponding cognitive prediction
tasks. As the heat map in Figure 2 shows, different coefficient
values are represented in different colors. The yellow polar
means a significant effect of corresponding markers on cognitive
score performance.

As the Figure 2 shows, the extracted informative imaging
biomarks are highly AD-specific and effective for related studies
of AD, since it actually meets with the existing research findings.
For example, among the top selected features, we found that
hippocampal volume (HippVol) and middle temporal gyrus
thickness (MidTemporal) are on the top, whose impact on AD
have already been proved in the previous papers (Braak and
Braak, 1991; West et al., 1994). Furthermore, it also confirms
the important significance of the selected neuroimaging cognitive
associations to uncover the relationships between MRI measures
and cognitive levels.

4.4. Visualization of Top Identified Imaging
Markers
As shown in Figure 3, we also visualize the top ten selected
features for RAVLT memory score prediction on brain map
as a demonstration. In the brainmap for FreeSurfer, the top
15 brain regions are (in descending order according to the
ℓ2-norm of feature weights): LPrecuneus, RCerebellWM,
LHippVol, RCerebellCtx, RMedOrbFrontal, RLatVent,
RCerebWM, RPrecuneus, LParahipp, LMidTemporal,
LInfTemporal, RParacentral, LLingual, LPutamVol, RBanksSTS.
In the brainmap for VBM, the top 15 brain regions are
(in descending order according to the ℓ2-norm of feature

weights): LRectus, RAntCingulate, LInfFrontal_Triang,

RMidCingulate, ROlfactory, RCalcarine, RAmygdala, RRectus,
LParahipp, LPallidum, LInsula, RParacentral, LSupOccipital,
LInfFrontal_Oper, RMidOrbFrontal.

5. CONCLUSION

To reveal relationship between neuroimaging data and cognitive
test scores and predict cognitive score, we proposed a
novel efficient matrix regression model which employs joint
Wasserstein distances minimization on both loss function and
regularization. To eliminate the natural limitation of the matrix
norm in regression model, we utilize Wasserstein distance as
distance metric. Wasserstein based regularizer can promote
parameters that are close, according the OT geometry, which
take into account a prior geometric knowledge on the regressor
variables. Thus, our proposed method Furthermore, we provide
an efficient algorithm to solve the proposed model. Extensive
empirical studies on ADNI cohort demonstrate the effectiveness
of our method.
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