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Abstract: Patients with incomplete spinal cord injury have decreased mobility, and many do not
recover walking ability. The purpose of this study was to investigate rectus femoris muscle thickness
and echo intensity on ultrasound and functional outcomes in these patients. This was a prospective
cohort study in an inpatient rehabilitation center, which recruited 40 consecutive patients with incom-
plete spinal cord injury. The patients underwent an ultrasound assessment at 6 weeks post-injury.
Ultrasound measurements were performed using B-mode ultrasound scanning and standardized
protocols. Functional outcomes on discharge, including Lower Extremity Muscle Score (LEMS),
Functional Independence Measure (FIM), and Walking Index for Spinal Cord Injury II (WISCI
II), were measured. Rectus femoris muscle thickness was significantly correlated with discharge
LEMS (Spearman’s rho = 0.448; p = 0.004), FIM motor subscale (Spearman’s rho = 0.595; p < 0.001),
FIM walk subscale (Spearman’s rho = 0.621; p < 0.001) and WISCI II (Spearman’s rho = 0.531;
p < 0.001). The rectus femoris echo intensity was also significantly correlated with discharge LEMS
(Spearman’s rho = −0.345; p = 0.029), FIM motor subscale (Spearman’s rho = −0.413; p = 0.008), FIM
walk subscale (Spearman’s rho = −0.352; p = 0.026), and WISCI II (Spearman’s rho = −0.355; p = 0.025).
We report that a relationship exists between rectus femoris muscle ultrasonographic characteristics
and muscle function and ambulatory outcomes after inpatient rehabilitation. Ultrasound muscle
measurements are potentially useful in assessing muscle wasting and function in patients with spinal
cord injury.

Keywords: ultrasonography; skeletal muscle; quadriceps muscle; spinal cord injuries; neurologic
disorders; rehabilitation

1. Introduction

Incomplete spinal cord injury leads to varying degrees of motor impairment, which
often leads to decreased mobility and functional independence in affected patients [1].
Despite that, patients with spinal cord injury may recover some walking ability, depending
on the capability of the lower extremity musculature to generate sufficient voluntary
torque. Several imaging studies have therefore investigated the relationship between
muscle structural changes and functional outcomes in these patients. For example, in
patients with chronic spinal cord injury, MRI findings have demonstrated that those who
were ambulators had a significantly larger plantar flexor cross-sectional area and reduced
muscle fat infiltration compared to those who were wheelchair dependent, suggesting that
progressive muscle wasting may result in limitations in physical function [2].

Although MRI has traditionally been used to assess muscle architectural changes,
ultrasound has been increasingly used to assess lower extremity muscles in clinical settings
due to its portability and reliability compared to MRI muscle imaging [3–5]. Ultrasound is
also less costly and more accessible than MRI [6]. A systematic review found high reliability
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and validity for ultrasound in assessing muscle size in older adults, including the rectus
femoris, vastus medialis, vastus intermedius, and vastus lateralis [7]. Ultrasound of the
rectus femoris has also been shown to reflect muscle strength and physical performance
in aging [8,9]. Similar findings have also been reported in clinical populations [10]. In
healthy untrained individuals, ultrasound measurements of the quadriceps, such as cross-
sectional area and echo intensity, have been reported to predict maximum muscle torque
and isokinetic strength [11–13].

In patients with chronic spinal cord injury, recent ultrasonographic studies have found
that lower muscle area and fatty infiltration discovered by ultrasound were associated with
a lower activity level [14]. However, such studies in the literature are limited to patients
with chronic spinal cord injury. To date, there are limited studies on ultrasonographic
muscle architecture of patients with acute spinal cord injury. This population is of high
clinical interest, as even though many of these patients are undergoing acute rehabilitation,
only a small proportion achieve ambulation [15,16]. It is unclear at present if there is
a relationship between ultrasonographic-derived lower extremity muscle size and fat
infiltration in patients with acute spinal cord injury and the functional and ambulatory
outcomes that patients achieve in the rehabilitation setting.

The aim of this study was, therefore, to investigate the correlation between muscle
thickness and intramuscular fat of the rectus femoris in acute incomplete spinal cord injury
and functional outcomes.

2. Methods
2.1. Patient Characteristics

This was a prospective single-center cohort study, recruiting a total of 40 patients
with incomplete spinal cord injury admitted to the spinal cord injury unit in a tertiary
rehabilitation center from 1 January 2020 to 6 June 2021. The study was conducted in
accordance with the Declaration of Helsinki and was approved by the local ethics committee
of the hospital (NHG DSRB 2019/00923). Informed written consent was obtained from all
patients prior to their enrollment in this study.

The inclusion criteria for study participants were: first-ever acute spinal cord injury,
recent onset of injury < 1 month, age of ≥21 years old, independent in ambulation prior
to the onset of spinal cord injury, spinal cord injury at the cervical or thoracic levels
(C4-T12) resulting in upper motor neuron lesions in the lower extremity as determined by
neurological examination, and an incomplete injury determined by the American Spinal
Injury Association (ASIA) Impairment Scale (AIS) C or D of sudden onset (<24 h).

The participants were excluded if they had active malignancy, premorbid lower limb
musculoskeletal conditions, e.g., contractures, fractures, or previous operations, had other
active neurological conditions, or were unable to understand study procedures.

All of the spinal cord injury patients had standard inpatient rehabilitation treatment
(2 h/day for 5 days/week), with daily physiotherapy and occupational therapy sessions for
1 h each session, which consisted of mobilization, gait therapy, and conventional rehabilita-
tion. The time to mobilization was determined by the rehabilitation team based on patient
assessment. The Tan Tock Seng Hospital Rehabilitation Center is a tertiary rehabilitation
facility that provides comprehensive inpatient rehabilitation services for patients who are
directly transferred from the acute spinal cord injury units of affiliated hospitals.

2.2. Ultrasound Assessment

An ultrasound assessment was performed at 6 weeks post spinal cord injury. The
rectus femoris muscle was chosen due to its high level of reliability, as reported by
Nijhoth et al. [7]. The rectus femoris has also been found to have low variability with
respect to muscle thickness and echo intensity [17,18]. The thickness and echo intensity
of the rectus femoris were measured using B-mode ultrasound scanning (Terason t3200,
Terason Ultrasound, Burlington, MA, USA) with a 15–4 MHz transducer. The ultrasono-
graphic evaluation was performed with patients in a supine position, with the hip joints in
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a neutral position, the knee joints in full extension, and the ankle joints in a neutral position.
The probe was placed perpendicular to the skin without exerting compression, with all
scans made in the transverse plane.

The rectus femoris was measured at the mid-portion, calculated as half the distance
between the anterior superior iliac spine and the lower edge of the patella [19].

ImageJ software (National Institute of Health, Bethesda, MD, USA, version 1.46) was
used for analysis. Muscle thickness was defined as the distance between the superior border
of the subcutaneous fascia and the deep aponeurosis [20]. Echo intensity was assessed via
the gray scale level, which was expressed in arbitrary units (a.u.), using ImageJ software.
A rectangular region of interest as large as possible was established, excluding the visible
fascia and bone. The average muscle thickness and echo intensity in both lower limbs were
then derived.

All of the ultrasonography measurements were performed in triplicate, with the
average of the scores used in the final analyses. All of the images were obtained by the
same operator.

2.3. Functional Scores

Muscle function was graded with the lower extremity muscle score (LEMS), which was
measured on discharge in accordance with the standard neurologic assessment developed
by ASIA. The voluntary muscle strength of five key muscles (hip flexors, knee extensors,
ankle dorsiflexors, long toe extensors, and ankle plantar flexors) of both lower extremities
was tested [21]. Each muscle was given a value between 0 and 5 according to the strength of
voluntary muscle contraction. Minimum and maximum LEMS were 0 and 50, respectively.

The Functional Independence Measure (FIM) is one of the most widely used mea-
sures of disability [22]. The FIM-motor subscale was used to assess the patient’s ADL
performance on admission and discharge. The FIM motor subscale ranges from 13 (totally
dependent) to 91 (independent without modification).

Gait abilities were measured using the FIM-walk subscale and the Walking Index for
Spinal Cord Injury II (WISCI II). The FIM-walk subscale is scored based on the distance
travelled over 150 feet and the level of assistance or device required and ranges from 1 to 7.
The WISCI II assesses the physical assistance (i.e., number of people) and assistive devices
(i.e., walking aids) a patient needs to ambulate 10 m, with a scale from 0 to 20, with a higher
number indicating less impairment [23].

2.4. Statistical Analysis

The distributions of the sociodemographic and clinical data were presented with
appropriate descriptive statistics, e.g., standard deviation. The Student’s t-test or anal-
ysis of variance (ANOVA) was used for the analysis of the continuous variables for the
independent samples as appropriate when examining the effect of age and ethnicity on
ultrasound measurements. The correlation between the muscle thickness and echo inten-
sity of the rectus femoris with clinical characteristics (age, height, and weight) as well as
the outcome variables (FIM motor subscale, FIM walk subscale, LEMS, WISCI II) were
determined using Spearman rank correlation coefficient. Poor, fair, moderately strong,
and very strong correlation coefficients were defined as <0.3, 0.3–0.5, 0.60–0.80, and at
least 0.80, respectively [24]. Statistical analyses were performed using SPSS version 26.0
(IBM Corp., Armonk, NY, USA). All statistical tests were performed at a two-sided 5%
significance level.

3. Results

There were 40 patients recruited, with two patients excluded due to the presence
of lower limb fractures. The mean age of 60.0 ± 16.7 years. The majority of spinal cord
injury etiologies were due to falls (65.0%) and motor vehicle accidents (25.0%). The study
participants had either ASIA C (40.0%) or ASIA D (60.0%) injuries. The characteristics of
the study cohort are shown in Table 1.
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Table 1. Participants’ characteristics (n = 40).

Characteristics

Age, years, mean ± SD 60.0 ± 16.7
Sex (Male: female) 29:11

Ethnicity, n (%)
Chinese 31 (77.5)
Malay 8 (20.0)
Indian 1 (2.5)

Etiology, n (%)
Fall 26 (65.0)

Motor vehicle accident 10 (25.0)
Infectious 1 (2.5)

Inflammatory 2 (5.0)
Vascular 1 (2.5)

ASIA classification, n (%)
C 16 (40.0)
D 24 (60.0)

Height, mean ± SD 1.65 ± 0.0904
Weight, mean ± SD 62.4 ± 17.8

Body mass index, mean ± SD 22.9 ± 5.52
Average rehabilitation stay, mean ± SD 57.3 ± 10.2

Admission scores
LEMS, mean ± SD 28.4 ± 17.0

FIM motor subscale, mean ± SD 29.4 ± 15.0
FIM walk subscale, mean ± SD 1.78 ± 1.12

WISCI II, mean ± SD 4.25 ± 6.00
Discharge scores

LEMS, mean ± SD 35.2 ± 17.3
FIM motor subscale, mean ± SD 50.2 ± 25.7
FIM walk subscale, mean ± SD 3.90 ± 2.19

WISCI II, mean ± SD 10.2 ± 7.56
Rectus femoris thickness, mm 137.3 (54.3)

Rectus femoris echo intensity, AU 65.7 (24.7)
ASIA: American Spinal Cord Injury Association; LEMS: Lower Extremity Motor Score; FIM: Functional Indepen-
dence Measure; WISCI II: Walking Index for Spinal Cord Injury II, AU: Arbitrary Units.

On discharge from inpatient rehabilitation, the participants had a mean LEMS of
35.2 ± 17.3, FIM motor subscale of 50.2 ± 25.7, FIM walk subscale of 3.90 ± 2.19, and a
WISCI II of 10.2 ± 7.56. On the ultrasound assessment performed, the study participants
were found to have a mean rectus femoris thickness of 137.3 ± 54.3 mm and a mean rectus
femoris echo intensity of 65.7 ± 24.7 AU at 6 weeks post-injury.

There were no significant correlations between the clinical characteristics (age, height,
weight, gender, ethnicity) and the ultrasound measurements of the rectus femoris muscle.

After performing correlation analyses, the rectus femoris muscle thickness was found
to be positively correlated with LEMS (Spearman’s rho = 0.448; p = 0.004), FIM motor
subscale (Spearman’s rho = 0.595; p < 0.001), FIM walk subscale (Spearman’s rho = 0.621;
p < 0.001), and WISCI II (Spearman’s rho = 0.531; p < 0.001) (Table 2).

Table 2. Correlation coefficients between rectus femoris muscle thickness and echo intensity with
discharge functional outcomes.

Outcome Variables Correlation Coefficient (Spearman’s Rho) p Value

Rectus femoris muscle thickness
LEMS 0.448 0.004

FIM motor subscale 0.595 <0.001
FIM walk subscale 0.621 <0.001

WISCI II 0.531 <0.001
Rectus femoris echo intensity

LEMS −0.345 0.029
FIM motor subscale −0.413 0.008
FIM walk subscale −0.352 0.026

WISCI II −0.355 0.025
LEMS: Lower Extremity Motor Score; FIM: Functional Independence Measure; WISCI II: Walking Index for Spinal
Cord Injury II.
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We also found that the rectus femoris echo intensity was negatively correlated with LEMS
(Spearman’s rho = −0.345; p = 0.029), FIM motor subscale (Spearman’s rho = −0.413; p = 0.008),
FIM walk subscale (Spearman’s rho = −0.352; p = 0.026), and WISCI II (Spearman’s rho = −0.355;
p = 0.025) (Table 2).

4. Discussion

We report fair to moderately strong correlations between ultrasound muscle archi-
tecture of the rectus femoris muscle and functional outcomes in patients with incomplete
spinal cord injury.

Studies in non-spinal cord injury populations have demonstrated that ultrasono-
graphic muscle changes may have a significant relationship with functional measures. An
observational study in patients with subacute stroke undergoing rehabilitation reported
findings of decreased muscle mass and increased echo intensity in the vastus lateralis [25].
Reduced quadriceps muscle thickness in patients with subarachnoid hemorrhage was
found to be correlated with a poorer modified Rankin Scale at 90 days post-stroke [26]. In
patients with chronic stroke, echo intensity and muscle thickness of the quadriceps were
found to be related to muscle strength and a decrease in aerobic exercise capacity [27,28].
Apart from patients with stroke, studies in older adults have found correlations between
lower limb muscle thickness, knee extensor strength and physical activity [29,30]. A high
echo intensity on muscle ultrasound has also been shown to be correlated with lower
muscle quality and grip strength in older adults [31,32]. Other studies in older patients
have also reported an association of echo intensity with muscle power [33], gait ability [34],
and Short Physical Performance Battery [35]. This study mirrors the findings in non-spinal
cord injury patients, suggesting that both muscle size and muscle quality evaluated by
ultrasonography can be a useful marker of functional capacity.

Few studies have examined lower extremity muscle thickness in patients with acute
incomplete spinal cord injury. Although a case series of six patients with incomplete
spinal cord injury showed a reduction in muscle cross-sectional area at 6 weeks compared
to healthy controls [36], no functional correlates were reported. We report a significant
correlation between the lower extremity muscle thickness in patients with incomplete
spinal cord injury and functional scores in terms of LEMS, FIM motor, FIM walk, and
WISCI II scores. Muscle thickness is believed to be a reproducible measure of muscle
mass and hence has been thought to influence functional measures [37–39]. One possible
explanation for our findings is that the participants who had a higher LEMS or ambulatory
score were able to weight-bear through the affected lower extremities, activating the anti-
gravity lower extremity muscles and attenuating the degree of muscle atrophy, and hence
had a larger muscle thickness. This is supported by studies that demonstrated that an
increased cross-sectional area of quadriceps on MRI and improved lean body mass on
DEXA after therapeutic exercise with functional electrical stimulation or body weight
supported treadmill training in spinal cord injury patients [40]. Our findings, therefore,
suggest that ultrasound-derived measurements of muscle size, as a surrogate of muscle
strength, is potentially a marker of ambulatory performance.

We also found reduced echo intensity, which indicates reduced intramuscular fat,
to be correlated with superior muscle function and ambulatory outcomes. Although
accumulation of intramuscular fat after chronic spinal cord injury has been well studied [41],
there are no studies that have investigated functional correlates in acute spinal cord injury.
For example, Moore et al. found that LEMS was associated with increased muscle density
as measured on CT for both complete and incomplete chronic spinal cord injury patients,
although no ambulatory outcomes were obtained [14]. Studies in the non-neurologically
impaired population have also reported a negative relationship between fatty infiltration, as
evaluated by ultrasonographic echo intensity, with functional performance in middle-aged
and older individuals [42]. It has also been postulated that prolonged critical illness and
sedentary behavior can result in ectopic fat accumulation in skeletal muscles [43–45]. We
believe that our results build on these prior studies by demonstrating that increased echo
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intensity is correlated with muscle function and ambulatory outcomes in the acute phase.
Fukumoto et al. showed that skeletal muscle echo intensity is associated with intramuscular
infiltration of adipose tissue [29], and ultrasound measurements provide a reliable method
for evaluating muscle health. Hence, measuring muscle echo intensity may be a useful
adjunct for measuring skeletal muscle function and guiding rehabilitation interventions in
the subacute phase.

We did not find any significant correlation with clinical characteristics in the acute
spinal cord injury setting. A negative relationship between age and a loss of muscle mass
and increased intramuscular fat has been reported in healthy adults [46]. Weight has
also been thought to contribute to muscle thickness and echo intensity in chronic stroke
survivors [47]. However, these were not found in our study in patients with acute spinal
cord injury, possibly because our patients were relatively older and had a higher body mass
index. We speculate that acute muscle wasting may also have played a more significant
role compared to the effects of age or body mass index.

Some limitations in this study should be highlighted. Firstly, we did not measure
other muscle function outcomes such as muscle strength or torque. Second, although we
studied muscle parameters on discharge, we did not study if longitudinal changes in the
rectus femoris parameters were also a determinant of functional outcomes. We also did
not measure the extent of spasticity, which may affect muscle echo intensity [48]. Third,
although ultrasound echo intensity measurements are reliable, the lack of comparison with
absolute fat mass as measured on DEXA or intramuscular fat infiltration as measured on
MRI was also a limitation. Fourth, we did not study the other muscles of the quadriceps,
nor did we compare measurements at proximal or distal regions of the thigh [17]. Fifth, we
also did not correct for subcutaneous fat when measuring muscle echo intensity [18]. Lastly,
asymmetric lower limb neurological deficits may have differential effects on the muscle
thickness and echo intensity of either limb, although we did not study the contribution of
the left or right rectus femoris in isolation.

5. Conclusions

In conclusion, our findings suggest that rectus femoris muscle thickness and echo
intensity may be a valid method to assess muscle function and ambulatory outcomes
during inpatient rehabilitation. These findings have the potential to guide rehabilitative
interventions targeted at the muscle unit to induce muscle hypertrophy and architectural
changes [49]. Further prospective studies are required to determine the contributory factors
to muscular atrophy and fatty infiltration during the process of spinal cord rehabilitation.
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