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Abstract

Background: Drug resistance remains as a challenge in the treatment of HER2-

overexpressed breast cancer. Emerging evidence from clinical studies show

relation of oxidized low density lipoprotein (LDL) and very low density

lipoprotein (VLDL) level with drug resistance. However, the underlying

molecular mechanisms for this effect remain unclear. Therefore, the aim of this

study was to determine the effects of oxidized-LDL and VLDL in drug-resistant

HER2-overexpressed breast cancer cells.

Methods: An in vitro cell model for tamoxifen-resistant HER2 overexpressed

UACC732 cells was created using the pulse method. Cells were exposed to

oxidized LDL (oxLDL) and very low density lipoprotein (VLDL) separately.

Effects on cell morphology was studied using phase contrast microscopic

changes. Percentage of cell viability was measured using proliferation assay kit.

Development of tamoxifen resistance was determined based on P-gp expression
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with flow cytometry. Further analysis includedcell death measurement with flow

cytometry method.

Results: UACC732 cells exposed to VLDL exhibited fibroblast-like morphology.

This was further supported by proliferation assay, where the percentage of cell

viability achieved more than 100% with 100 mg/ml of VLDL exposure,

indicating cell proliferation. Findings also showed that VLDL caused reduction

in expression of Pgp in resistant cells compared to resistant cells alone (p ¼ 0.02).

Conclusion: Results of this study suggest that VLDL may play a role in growth of

drug-resistant HER2-overexpressing cells. Lower expression of P-gp in presence of

VLDL need to be investigated further.

Keywords: Biochemistry, Cancer research, Cell biology, Molecular biology

1. Introduction

Breast cancer is the second leading cause of cancer-related death among women

worldwide [1]. Systemic agents to treat breast cancer are found to be effective in

90% of primary breast cancers and 50% of metastatic cases at the beginning of treat-

ment. However, after a certain period of time, drug resistance develops in almost

60% of patients with breast cancer, which can lead to cancer recurrence. Drug resis-

tance genes often are highly expressed in cancer patients. For example, multi-drug

resistance gene 1 (MDR1) gene is linked to development of resistance in cancer.

Currently, tamoxifen is the standard treatment in estrogen receptor (ER)-positive

breast cancer mainly in premenopausal women. Although widely used, patients

treated with tamoxifen still have high probability of cancer recurrence.

Emerging studies have reported a relationship between lipids and inflammation and

cancer. For example, an increase in the serum level of oxidized low density lipopro-

tein (oxLDL) was noted in patients with breast or ovarian cancer, and thus it was

reported that serum ox-LDL level predicts an increased risk of breast or ovarian can-

cer [2]. Other researchers found that fasting serum triglyceride and very low density

lipoprotein (VLDL) cholesterol levels were significantly increased in Stage I and

Stage IV breast cancer patients [2]. Additionally, patients with stage IV disease

showed a significant increase in triglyceride and VLDL cholesterol levels and de-

creases in total, high density lipoprotein (HDL), and LDL cholesterol levels

compared to patients with stage I breast cancer [3]. Due to their binding affinity to

specific receptors, synthetic lipoproteins with simulated peptides are also being stud-

ied for their potential as drug delivery system and theranostic application [4, 5].

The ATP-binding cassette-B1 (ABCB1) transporter is also known as MDR1 or P-

glycoprotein (Pgp). It promotes the efflux of drugs from cells. MDR is associated

with multidrug resistance-associated protein 1 (ABCC1) and lung resistance-
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related protein (LRP), which is a human major vault protein. Most of the ABC fam-

ily members are integral membrane proteins that could interact closely with mem-

brane lipids. Development of cancer drug resistance is due to these transporter

proteins [6]. Previous studies have linked ABCB1 functional activity with choles-

terol [7, 8, 9]. These reports were based on studies that used CEM-resistant

leukaemia cells and proteoliposomes. Breast cancer is a clinically and biologically

heterogeneous disease, characterized by dysregulation of multiple cellular pathways

and different sensitivities to treatment [10, 11] It is found to show more aggressive

nature compared to estrogen receptor (ER) positive breast cancer cells [12]. Higher

levels of LDL have been reported in HER2 positive breast cancer patients [13]. In

human, lipid alterations are generally characterized by an increase in the level of

very low-density lipoproteins (VLDL), small and dense low-density lipoproteins

(LDL), as well as a high content of triglycerides in LDL and high-density lipopro-

teins (HDL), and an increased susceptibility of LDL to oxidation [14, 15]. Most

of previous clinical studies highlight the role of VLDL in diseases [16, 17, 18].

Increased oxidative stress leads to LDL conversion into oxidized low density lipo-

protein (oxLDL) [19]. It is important to emphasize the positive correlation between

increase serum oxLDL and increased risk of cancer [2]. Cancer cells are usually

exposed to higher reactive oxygen species levels which would further stimulate pro-

liferation, death evasion, angiogenesis, invasiveness, and metastasis [20].

Because of the potential link between lipids and breast cancer, recent treatment ap-

proaches involve the use of statins, which target 3-hydroxy-3-methylglutaryl-CoA

reductase. Statins currently are being evaluated in clinical trials for their anti-

cancer efficacy [21]. However, this approach is limited to targeting a specific enzyme

in the cholesterol synthesis pathway that is not related to drug resistance proteins

such as P-gp and breast cancer resistant protein (BCRP). Additional work is needed

to elucidate metabolic signalling responsible for the effects of oxLDL and VLDL.

Thus, the roles of lipoproteins in drug-resistant HER2 overexpress breast cancer

cells require further study.
2. Materials and methods

2.1. Chemicals

In this study, tamoxifen was purchased from Sigma-Aldrich (Missouri, US).
2.2. Cell culture medium

HER2-overexpressed (UACC732) cells were purchased from the American Type

Culture Collection (Manassas, VA, USA). The cells were resistant to HER2 inhib-

itors such as trastuzumab and lapatinib. They were grown in L-glutamine RPMI-

1640 media from Nacalai Tesque (Kyoto, Japan) with phenol red and supplemented
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with 10% heat-inactivated fetal bovine serum (FBS) purchased from Tico Europe

(Amstelveen, Netherlands) and 1% antibiotics (10,000 U/ml of penicillin, 10,000

mg/ml of streptomycin) from Nacalai-Tesque (Kyoto, Japan).
2.3. oxLDL preparation

Human LDL was purchased fromMerck Millipore (Temecula, CA, USA). The stock

solution contained 150 mM NaCl, pH 7.4 with 0.01% EDTA, and LDL was isolated

by ultracentrifugation. It was dissolved in phosphate buffered saline (PBS) (MP Bio-

medicals, IIIkirch Cedex, France) to 100 mg/ml. The LDL was then incubated with 5

mM of freshly prepared copper (II) sulfate solution for 18 h to allow oxidation to

occur. This process was carried out in an incubator shaker (Certomat H Sartorius,

Goettingen, Germany) that was maintained at 200 rotations per minute at 37 �C. Af-
ter 18 h, the oxLDL was stored in a 4 �C refrigerator to terminate the oxidation [22,

23]. VLDL was purchased from Merck Millipore (Temecula, CA, USA). Experi-

ments using VLDL was carried out as reported previously [24].
2.4. Morphological changes in cells due to lipoprotein exposure

Microscopic images of UACC732 cells were taken using a Zen 2 Lite Zeiss phase

contrast microscope (Oberkochen, Germany). The objective was to identify the

morphological changes that occurred in cells following exposure to oxLDL or

VLDL. Images were captured from each well to show differences in growth of parent

and resistant cells exposed to lipoproteins at 200x magnification. All experiments

were carried out in triplicates.
2.5. Development of drug resistance in UACC 732 cells

To develop drug-resistant cells, UACC732 cells were grown in increasing concen-

trations of tamoxifen (from 3 to 14 mM) using the pulse method. The cells were

exposed to tamoxifen for 3 days. This was followed by growth in drug-free complete

culture medium until confluence was reached before the next cycle of treatment [25].

Development of resistance was confirmed by measuring P-gp expression using flow

cytometry. All experiments were carried out in replicates.
2.6. Effects of lipoproteins on UACC732 cell viability determined
using cell proliferation assay

After development of the tamoxifen-resistant UACC732 cell line, cells were

exposed to ox-LDL and VLDL at 10 mg/ml concentration for 72 h [10]. The growth

medium contained RPMI-1640, the antibiotics penicillin and streptomycin (1%), 3

mg/ml of lipoprotein deficient serum (LPDS), and 10 mg/ml of ox-LDL or VLDL
on.2019.e01573
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[22, 26]. LPDS was used in the treatment instead of FBS to exclude the presence of

other lipoproteins.

The experiment was done to determine effects of lipoproteins using the CellTiter

96� AQueous Non-Radioactive Cell Proliferation Assay (Promega). First,

UACC732 parent and resistant cells were seeded separately in a 96-well flat-

bottomed plate at a density of 4 x 103 cells per well in 100 mL of complete medium.

They were left overnight to adhere to the plate before treatment with corresponding

lipoproteins. Cytotoxicity of oxLDL and VLDL was tested on UACC732 cells at li-

poprotein concentrations ranging from 0 to 100 mM for 3 days. The medium then

was removed, and 100 ml of complete medium mixed with 20 ml of CellTiter 96�
were pipetted into each well. The plate was incubated at 37 �C for 1.5 h in a humid-

ified, 5% CO2 atmosphere, and absorbance was measured at 490 nm using the

ELISA microplate reader. All experiments were performed in triplicates. Percentage

of cell viability was calculated using the following formula:

Percentage of cell viability ¼ control absorbance� test absorbance � 100%
control absorbance

The mean of cell viability was derived from triplicates for each concentration. A

dose response curve was plotted. The IC50 inhibition of lipoproteins were deter-

mined as the concentration which reduced cell growth by 50% compared to

untreated.
2.7. P-gp expression and cell death detection using flow
cytometry analysis

P-gp expression was determined based the fluorescence intensity of anti-Pgp PE

stain (BD Bioscience, California, US) by flow cytometry method. For measurement

of cell viability and apoptotic cells, 7-Aminoactinomycin D (7-AAD) was purchased

from BD Bioscience (California, US). It is a fluorescent DNA dye for apoptosis

which can discriminate between viable cells, late and early apoptosis. Parent cells,

resistant cells, resistant cells exposed to 10 mg/ml oxLDL and resistant cells exposed

to 10 mg/ml VLDL were grown in 25-ml culture flasks in triplicates at 37 �C with 5%

CO2. From each flask, a total of 1 x 106 cells was washed twice in 2 mL of PBS sup-

plemented with 0.5% bovine serum albumin (BSA). Next, 0.1 mL of staining buffer

(PBS, 0.5 % BSA, 0.1% sodium azide) and 0.02 mL of anti-Pgp phycoerythrin (PE)

were added to the pelleted cells. The mixture was incubated at room temperature for

30 minutes, followed by centrifugation at 200 g for 10 minutes After centrifugation,

the pellet was resuspended in 0.5 mL of staining buffer and 0.02 mL of 7AAD so-

lution. It was gently mixed and incubated for 30 minutes at 4 �C in the dark. All the

samples were analysed using the BD FACS Calibur flow cytometer (California,

USA). Ten thousand events were collected, and debris and dead cells were gated
on.2019.e01573
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out based on forward versus side scatter dot plots. More than three independent ex-

periments were performed for parent, resistant, resistant cell exposed to oxLDL and

resistant cells exposed to VLDL.
2.8. Statistical analysis

Graphpad Prism version 4 was used to perform one-way analysis of variance and

Dunnet’s Multiple Comparison for the cell proliferation assay. For analysis of P-

gp expression, percentage of cell viability and percentage of cell death differences,

parametric analysis (ANOVA test) was performed using SPSS version 24 to

compare more than two groups. For two-group comparisons, the independent-

sample T-test was used and p value less than 0.05 was considered as statistically

significant.
3. Results

3.1. Morphological changes in cells due to lipoprotein exposure

Changes in cell morphology were observed to determine effects of oxLDL and

VLDL on cell size and growth. Cells were examined under a phase contrast micro-

scope. Fig. 1 shows changes in cell morphology following exposure to lipoprotein.

Cells exposed to oxLDL were spherical, whereas those exposed to VLDL had a

fibroblast-like appearance. In addition, cell size was larger following exposure to

high concentration of VLDL in both parent and resistant cells.
3.2. Development of tamoxifen resistance in UACC732 cells

Parent UACC732 cells were exposed to a gradual increase of tamoxifen concentra-

tion (from 3 to 14 mM) using the pulse method. Flow cytometry analysis then was
Fig. 1. Morphological changes in parent and tamoxifen-resistant UACC732 cells after exposure to

oxLDL and VLDL. Images were taken at 200x magnification with a Zeiss phase contrast microscope

(n ¼ 3).
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conducted to confirm the development of resistance upon exposure to tamoxifen.

Fig. 2 shows the peak shifting towards the right along the x-axis, which indicates

development of resistance to tamoxifen based on changes in P-gp expression over

time (Fig. 2). The T-test test indicated no significant difference between parent

and resistant cells (p ¼ 0.394).
Fig. 2. Expression of Pgp in UACC732 cells (A) before treatment and (B) after treatment with tamox-

ifen. Peaks in green represent parent cells. Each experiment was conducted in triplicates. Data analysis

indicated no significant difference between parent and UACC 732 cells exposed to tamoxifen (p ¼
0.394).
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3.3. Effects of lipoprotein on UACC732 cell viability determined
using cell cell proliferation assay

Cell viability was studied using the cell proliferation assay. Measurements were

taken after treating UACC732 parent and resistant cells with lipoproteins.

Tamoxifen-resistant UACC732 cells exposed to oxLDL had a higher IC50 value

(73.8 mg/ml) than parent cells (30.9 mg/ml) (Fig. 3). Moreover, oxLDL in-

hibited cell growth at different concentrations in both types of cells. Resistant

cells showed a significant reduction in percentage of viable cells when treated

with oxLDL at 30 mg/ml (p < 0.05), 80 mg/ml (p < 0.05), 90 mg/ml (p < 0.05),

and 100 mg/ml (p < 0.01) compared to untreated resistant cells. Parent cells

showed significant (p < 0.05) reduction in percentage of viable cells only

when treated with 100 mg/ml of oxLDL compared to untreated parent cells.

Generally, cell viability was less than 100% with increasing dose of oxLDL.

Parent cells were more sensitive to oxLDL than resistant cells, as the percent-

age of viability was lower at higher oxLDL concentrations. VLDL did not

inhibit growth of parent or resistant UACC732 cells (Fig. 4). The IC50 was

not achieved in these cells. Furthermore, no significant changes in cell viability

were detected in either parent or resistant cells. Cell viability was greater than

100%, particularly with 100 mg/ml VLDL exposure.
Fig. 3. UACC72 cell viability after exposure to oxLDL was determined using the cell proliferation

assay. Data are presented as mean � standard deviation (n ¼ 3). One-way ANOVA was performed to

compare data. *p < 0.05 and **p < 0.01. A significant reduction in percentage of cell viability was de-

tected for 30, 80, 90, and 100 mg/ml in resistant cells compared to untreated resistant cells; only 100 mg/

ml resulted in a significant reduction in percentage of cell viability of treated parent cells compared to

control.
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3.4. P-gp expression and cell death measurement using flow
cytometry

P-gp expression was significantly different between groups with ANOVA test (p ¼
0.088). Pgp expression was highest in resistant cells compared to parent and resistant

cells that were exposed to lipoproteins (Table 1). Exposure to lipoproteins reduced

expression of Pgp in resistant cells (Fig. 5). Pgp expression was reduced in resistant

cells following exposure to oxLDL and VLDL compared to resistant cells, which

illustrates a shift of the peak towards the left in treated cells. Further analysis was

performed using independent T test. no significant difference in Pgp expression

was detected between resistant UACC732 cells and resistant cells treated with

oxLDL (p ¼ 0.059) (Fig. 6). However, there was a significant difference in Pgp

expression between resistant UACC732 cells and resistant cells exposed to VLDL

(p ¼ 0.02) (Fig. 7). Thus, VLDL reduced the expression of Pgp in resistant cells.
Table 1. Pgp expression in (1) parent cells; (2) resistant cells; (3) resistant cells

exposed to oxLDL; (4) resistant cells exposed to VLDL.

Total P-gp

1 (n [ 4) 2 (n [ 13) 3 (n [ 12) 4 (n [ 6) p

Mean 0.1460 0.3346 0.0800 0.0100 0.088

Std deviation 0.3042 0.4385 0.05705 0.0089

No significant differences between any of the cell types.
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For cell death, the percentage of 7ADD expression was highest in resistant cells

exposed to oxLDL compared to the other cell types studied (Table 2). However,

no significant difference was noted between all cells with ANOVA analysis (p ¼
0.19). Exposure to the lipoproteins increased mean expression of 7AAD in resistant

cells compared to parent cells (Fig. 8). However, the no significant difference was

noted (p¼ 0.152). Effect of lipoproteins was studied. Percentage was higher in resis-

tant cells exposed to oxLDL (18.79%) compared to cells exposed to VLDL

(16.08%). However, the further analysis with T test showed no significant difference

in expression of 7AAD in resistant cells after exposure to oxLDL (p ¼ 0.789) and

after exposure to VLDL (0.607).
4. Discussion

Currently many anti-cancer treatments are effective at the beginning but over time

lose efficacy as cancer cells begin to develop resistance to drugs. MDR is one of
Table 2. Percentage cell death of different cell types: (1) parent cells; (2) resistant
cells; (3) resistant cells exposed to oxLDL; (4) resistant cells exposed to VLDL.

Total 7AAD Positive

1 (n [ 5) 2 (n [ 12) 3 (n [ 12) 4 (n [ 6) p

Mean 11.33 18.05 18.79 16.08 0.19

Std deviation 8.485 8.335 3.544 5.298

No significant differences between any of the cell types.
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ysis: (1) parent cells; (2) resistant cells; (3) resistant cells exposed to oxLDL; (4) resistant cells exposed to

VLDL. Data are presented as mean � standard deviation. There was no significant difference between

parent and resistant (p-0.152), resistant alone and resistant exposed to oxLDL (p ¼ 0.783) and resistant

alone with resistant exposed to VLDL (p ¼ 0.607). All experiments were performed in replicates (parent
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the major and most common obstacles to the effective treatment of cancer. One of the

important mechanisms underlying MDR is cellular overproduction of P-gp, which is

encoded by the MDR1 gene and acts as an efflux pump for various hydrophobic anti-

cancer drugs. P-gp belongs to the superfamily of ATP-binding cassette (ABC) trans-

porters which also comprises other proteins, such as the MDR-associated proteins

(MRPs) or the half transporter ABCG2 (other definitions MXR, mitoxantrone-

resistance protein, and BCRP, breast cancer resistance protein), also associated

with MDR. P-gp overexpression in cancer cells has become a therapeutic target

for circumventing MDR [27]. Therefore, it is important to study the mechanisms

that underlie development of drug resistance. Emerging studies suggest that lipopro-

teins might be involved in cancer and in development of resistance to anti-cancer

drugs. The transport of cholesterol in blood circulation occurs through lipoproteins,

mainly in LDL. It was reported to increase cell proliferation in ER-positive and ER-

negative cells. In contrast, HDL only increased the proliferation of ER-negative cells

[28, 29]. Apart from that, serum oxidized low density lipoprotein increased the risk

of colon cancer [30]. Similarly, increased level of oxidized low density lipoprotein
on.2019.e01573

ors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

censes/by-nc-nd/4.0/).

https://doi.org/10.1016/j.heliyon.2019.e01573
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 https://doi.org/10.1016/j.heliy

2405-8440/� 2019 The Auth

(http://creativecommons.org/li

Article Nowe01573
was also noted in breast cancer patients [31, 32]. Studies suggest that the intracellular

lipid accumulation is linked with aggressive nature of ER-breast cancer and prostate

cancer [32,33]. Besides cholesterol transport, lipoproteins are also involved in trans-

port of triglycerides. VLDL is the major transporter of triglycerides [34]. A

population-based study suggests that pre-diagnostic triglycerides and high-density

lipoprotein-cholesterol/total cholesterol ratio may independently provide unique in-

formation in regard to prognostic outcome among patients with triple negative breast

cancer [35]. Membrane lipid research show the varied roles of lipids in regulating

membrane Pgp function, membrane trafficking, apoptotic pathways, drug transport,

and endocytic functions, particularly endocytosis, the primary mechanism of cellular

uptake of nanoparticle-based drug delivery systems [36]. In this study, we focused

the role of lipids in HER2 overexpressed subtype as it is one of the most commonly

studied proto-oncogene in human cancer studies. It plays a pivotal role in oncogenic

transformation, tumorigenesis, and metastasis. HER2 gene is amplified and/or over-

expressed in w20%e30% of invasive breast carcinomas and is associated with un-

favorable prognosis, shorter relapse time, and decreased overall survival [37,38]. A

better knowledge of mechanisms responsible for primary and acquired resistance

may improve treatment sensitivity [39]. In vitro study in HER2 overexpressed cells

indicated that elevated StAR-related lipid transfer protein 3 (StARD3), may

contribute to breast cancer aggressiveness by increasing membrane cholesterol

and enhancing oncogenic signalling [40]. However, there is still limited knowledge

on effects of lipids and lipoproteins in HER2 cell proliferation and development of

resistance. This study was conducted to compare the effects of oxLDL and VLDL on

HER2 overexpressed cell proliferation and resistance.

Morphology changes of resistant and parent UACC732 cells were compared

following exposure to oxLDL and VLDL. After 24 h of exposure to 10 mg/ml of

oxLDL or VLDL, cells remained spherical in shape. However, exposure to 100

mg/ml of VLDL resulted in the presence of fibroblast-like cells in both parent and

resistant cells. This finding suggests that exposure to VLDL promoted epithelial

to mesenchymal transition (EMT) characteristics in the cells. Previous studies

have reported evidence of EMT involvement in drug resistance and metastasis of

cancers [41]. For example, continuous exposure of A549 lung adenocarcinoma cells

to the drug gefitinib resulted in induction of the EMT [23]. Phenotypic changes

indicative of the EMT, including spindle cell shape and increased pseudopodia for-

mation, were detected in these A549 cells, and these changes were accompanied by a

decrease of E-cadherin and an increase of vimentin, a mesenchymal marker.

Effects of lipoproteins on cell proliferation also were investigated in both parent and

resistant UACC732 cells. The IC50 value of oxLDL in resistant cells (73.8 mg/ml)

was higher than that in parent cells (30.9 mg/ml), which showed that the resistant

cells required more oxLDL compared to parent cells to achieve 50% cell death.

The dose-response curve indicated that exposure to 100 mg/ml of oxLDL reduced
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cell viability to less than 10% in parent cells and to approximately 40% in resistant

cells based on the proliferation assay. Similar finding was reported previously, where

oxLDL can initiate cell death in cancer cells [42]. In contrast, a study of MDA MB

231 breast cancer cells showed that exposure to 100 mg/ml of LDL had a growth

stimulatory effect; however, HDL did not promote cell growth [43]. In this study,

VLDL caused increase in cell proliferation in parent and resistant UACC732 cells

especially with 100 mg/ml of VLDL. Previous study with 10e25 mg/ml of VLDL

in MCF-7 and MDA-MB-231 cells also increased cell viability [34].

P-gp, also known as ABCB1 and MDR1 in human cells, mediates the efflux of drugs

and toxic agents from cells and plays a key role in the MDR of cancer cells [44]. It

functions as a transporter via excretion of drugs, toxic agents, and xenobiotics from

cells. Several natural compounds, dietary phytochemicals, and herbal medicines

have the ability to modulate P-gp function and cause effects such as drug-drug,

herb-drug, and herb-toxicant interactions [45]. In this study, P-gp expression in

UACC732 cells treated with lipoproteins was assessed using flow cytometry. P-gp

expression was high in resistant cells compared to parent cells, but exposure of resis-

tant cells to lipoproteins reduced P-gp expression. A significant reduction in P-gp

expression was detected among VLDL-treated resistant cells (p ¼ 0.02). These find-

ings suggest VLDL may regulate P-gp expression in HER2-overexpressed cells.

Additionally, possible role of triglycerides, the major component of VLDL in down-

regulating expression of P-gp functions needs further investigation.

In this study, oxLDL-exposed resistant cells also exhibited lower P-gp expression

compared to resistant cells alone. In contrast, a previous study of doxorubicin-

resistant uterine sarcoma cells showed that LDL, depending on its concentration,

caused an increase in ABCB1, ABCC1, and LRP expression, whereas ABCB1

expression increased at low HDL and decreased at high HDL concentrations [27].

Nevertheless, another study reported that 100 mg of LDL significantly decreased

ABCB1-associated ATPase activity in a vinblastine-resistant human lymphoblastic

leukemia cell line [46]. This shows the expression of P-gp may be influenced by

level of LDL oxidation and cancer types. It was reported that the reduction in P-

gp expression could relate to cholesterol homeostasis. When a cell contains sufficient

cholesterol, LDL receptor synthesis is reduced so that additional LDL molecules

cannot be taken up [47]. In another study focused on the relationship between

LDL and P-gp expression, the drug atorvastatin was more effective at reducing

LDL cholesterol in ABCB1 high expressors than in low expressors [31]. This sug-

gests a possible interaction between P-gp and lipoprotein metabolism.

Staining for dead cells with 7AAD showed that the 10 mg/ml oxLDL-exposed resis-

tant cells had the highest percentage of dead cells compared to resistant cells exposed

to 10 mg/ml VLDL. However, the difference was not significant compared to resis-

tant cells alone. Lu et al. (2016) compared the effects of LDL subfractions 1 and 5
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(L1 and L5) and VLDL on MCF7 and MDA-MD-231 cells [13]. In MCF7 cells,

only VLDL (1e10 mg/ml) increased the number of viable cells, whereas HDL (10

and 25 mg/ml) decreased the number of viable cells. In MDA-MD-231 cells, L1

(5e25 mg/ml), L5 (5e25 mg/ml), and VLDL (25 mg/ml) all caused a significant in-

crease of viable cells. However, the viability of MDA-MD-231 cells was not affected

by HDL. They reported that only VLDL provided a survival advantage and that it

promoted lung metastasis in MDA-MD-231-injected mice [34]. Therefore, this

shows that VLDL was found to promote cell viability in different subtypes of breast

cancer.
5. Conclusion

The study was done to compare the effects of different lipoproteins in HER2 over-

expressed breast cancer cells on cell growth dan development of resistance. Findings

suggest that VLDL particularly caused morphological changes and increased cell

viability in HER2 overexpressed resistant and parent cells. Interestingly, P-gp

expression was found to be reduced in these cells following exposure to lipoprotein

which renders further investigation.
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