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Abstract: Activity cliffs (ACs) are formed by two structurally similar compounds with a large
difference in potency. Accurate AC prediction is expected to help researchers’ decisions in the early
stages of drug discovery. Previously, predictive models based on matched molecular pair (MMP)
cliffs have been proposed. However, the proposed methods face a challenge of interpretability
due to the black-box character of the predictive models. In this study, we developed interpretable
MMP fingerprints and modified a model-specific interpretation approach for models based on a
support vector machine (SVM) and MMP kernel. We compared important features highlighted
by this SVM-based interpretation approach and the SHapley Additive exPlanations (SHAP) as a
major model-independent approach. The model-specific approach could capture the difference
between AC and non-AC, while SHAP assigned high weights to the features not present in the
test instances. For specific MMPs, the feature weights mapped by the SVM-based interpretation
method were in agreement with the previously confirmed binding knowledge from X-ray co-crystal
structures, indicating that this method is able to interpret the AC prediction model in a chemically
intuitive manner.

Keywords: chemoinformatics; activity-cliff; support vector machine; model interpretation; SHapley
Additive exPlanations; matched molecular pair

1. Introduction

Activity cliffs (ACs) [1] are formed by two structurally similar compounds with a large
difference in potency. ACs can be found in hit-to-lead or lead optimization phases in which
structurally analogous compounds are examined to obtain compounds with the desired
potency or properties such as absorption, distribution, metabolism, excretion, and toxicity.
The existence of ACs indicates the discontinuity of the structure–activity relationship and
prevents efficient lead optimization. Conversely, AC would have substantial information on
the protein–ligand interaction and therefore ACs are of high interest in medicinal chemistry.

A useful tool to represent the similarity between compounds with small chemical
modifications is the matched molecular pair (MMP) [2]. An MMP is composed of two
structurally similar compounds that share a common substructure (core) and differ at a
single site (substituents). MMP is helpful to link the potency change and single chemical
modification, and to systematically identify ACs as MMP-cliffs [3]. An MMP-cliff is defined
as an MMP with a significant difference in potency (generally >2 log units).

In recent years, ligand-based AC prediction, which aims to predict the formation
of AC between two ligand compounds with only their chemical property or structural
features, has been extensively explored [4–8]. Machine learning approaches have attempted
to predict ACs. However, ACs are fundamentally difficult to predict by machine learning
due to their discontinuity; a small difference in input makes a large difference in output [4].
That is why traditional quantitative structure–activity relationship (QSAR) models, which
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construct statistical models between compounds and their potency, have failed to predict
them accurately [9]. To overcome this limitation, models were constructed based on the
structural features of paired analogous compounds to predict their potency difference and
information of not only the core but also substituent transformation was utilized [6,7]. In
this approach, the AC prediction model was constructed with the help of a support vector
machine [10], fingerprints representing the features in core and substituents independently
(MMP fingerprints), and a well-defined kernel function (MMP kernel) for evaluating
the similarity between MMPs. An MMP kernel is a product of the Tanimoto kernel [11]
for the core and substituents. As a result of this study, for specific targets, ACs having
analogous core structures were predictable by using a specific molecular representation
and similarity evaluation approach [7]. In our previous study, we further improved the
performance of AC prediction by defining the applicability domain based on the similarity
of fingerprints, considering the environment around the attachment point of the core and
substituents [8,12]. However, due to the black-box character of the SVM, the predictive
models were not interpretable.

Though interpretability of machine learning models is of high importance in any
scientific field, interpretable AC prediction models have not been explored much. Lindberg
and Lee proposed a model-independent approach termed as the SHapley Additive exPla-
nations (SHAP) to interpret the contribution of each feature to an output [13]. SHAP can
be regarded as an extension of local interpretable model-agnostic explanations (LIME) [14].
SHAP approximates each output of black-box models, such as the SVM with a linear local
explanation model in which weights are Shapley values in game theory. SHAP is being
used in this field due to its robust mathematical background and easy-to-apply library de-
veloped by the authors [15–18]. There is a model-specific approach proposed by Balfer et al.
to interpret an output from the SVM with the Tanimoto kernel [19]. This method obtains
feature contributions by transforming the kernel function into the sum of feature weights
similar to the linear kernel. However, this method cannot be applied to the predictive AC
model with the SVM because the kernel function used for similarity evaluation between
MMPs cannot be transformed into the sum of feature weights.

In this study, for interpreting AC prediction models, we developed the MMP fingerprint-
based model-specific approach. The main idea is to decompose the cross-term contribution
of the MMP kernel into core and substituents evenly, which enables us to approximate
this kernel as the sum of feature weights. This interpretation method was applied to
well-performed AC prediction models using the SVM and MMP kernel for thrombin and
carbonic anhydrase II. SHAP was also applied to the same models as a control calculation.
In qualitative analyses, the features with high contribution indicated by the SVM-based
approach were reasonable, while those by SHAP were difficult to interpret because SHAP
gave high weights to the features not inside the target molecule. The X-ray co-crystal
structure for a particular target was analyzed in order to validate features highlighted by
the SVM-based interpretation approach. This study sheds light on the limitation of SHAP
and enables us to interpret the AC prediction model in a chemically intuitive manner.

2. Result and Discussion
2.1. Performance of the AC Prediction Models

The AC prediction models were constructed for the thrombin (thr) and carbonic
anhydrase II (ca2), which showed high performances in our previous study. A matched
molecular series (MMS) was iteratively selected as the test set and the rest of the MMSs
were used as the training set. This procedure was performed until every MMS was selected
as the test set. MMPs consisting of compounds shared with the training set were discarded
to ensure that the test set did not share the same core and to fairly evaluate the extrapolation
ability. Overall, the performance of the AC prediction models for the targets were high. The
values of recall, the area under the curve of the receiver–operator characteristic (AUC ROC),
and Matthew’s correlation coefficient (MCC) were 0.98, 0.69, and 0.89 for thr, and 0.86,
0.46, and 0.69 for ca2, respectively. The constructed AC prediction models were predictive
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enough, which was consistent with the previous study, though the MMP fingerprint
generation procedure was slightly modified for interpretability.

2.2. Interpretability of the Model

Figure 1 shows two exemplary MMPs for thr predicted as true positive (TP) (Figure 1A)
and true negative (TN) (Figure 1B) with the feature contributions mapped onto the struc-
tures and the corresponding SHAP force plots. For the SVM-based interpretation approach,
the higher the positive or negative feature contribution of an atom or a group, the darker
the orange or blue color was represented on their structures, respectively. For SHAP,
the color in the force plot depicts whether assigned Shapley values are positive (red) or
negative (blue) and the length of the bars corresponds to how each feature contributed
to the prediction. The MMPs depicted in Figure 1A, B share the low potency compound
(ChEMBL605210). The only difference between these MMPs is the substituents of the high
potency compounds; the cyclopentenyl group (A) and the methyl group (B). This structural
difference would be responsible for the formation of AC. For the SVM-based interpretation
approach, positive contributions were assigned to the part of the cyclopentenyl group
and negatives to the methyl group. Conversely, SHAP assigned Shapley values to the
features missing in both MMPs. From this result, the models have learned the features
that would be related to the formation of ACs and the SVM-based interpretation approach
could interpret the model that SHAP could not.

Figure S1 shows three other exemplary MMPs of thr predicted as TP (Figure S1A),
TN (Figure S14B), and false negative (FN) (Figure S1C). In a similar manner as in Figure 1,
the MMPs share the core and one substituent (center) of the low potency compound
(ChEMBL598415). According to the force plot, the Shapley values were assigned to the
features not present in the MMP as in Figure 1. For the MMP in Figure S1C, the model
incorrectly predicted it as non-AC. The SVM-based interpretation approach seemed rational
due to the consistent feature contribution for the common features among the MMPs, unlike
SHAP. Furthermore, the SVM-based approach could derive a possible explanation for the
incorrect prediction for the MMP in Figure S1C. According to the mapped contribution,
the contribution of the 1,1-dimethyl ethyl group, which is the different part compared to
the other MMPs, is underestimated; therefore, it can be considered that the model has not
learned how this substituent affects the formation of ACs.

The same situation was observed in the prediction for ca2. Figure S2 shows three
exemplary MMPs of ca2 predicted as TP (Figure S2A), TN (Figure S2B), and false positive
(FP) (Figure S2C). In the same manner as above, SHAP did not assign contributions to the
features present in the MMPs and did not capture the substructure transformation. For
the MMP in Figure S2C, very few training AC MMPs having a highly similar core and
similar substructure transformation of the MMP (C) were found. This might be the reason
for the misclassification.
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Figure 1. Comparison of the feature contribution mapping and SHAP for exemplary accurately 
predicted MMPs of thrombin. Exemplary (A) TP and (B) TN MMPs of thrombin with the feature 
contribution map and SHAP force plot for the MMPs are shown. MMPs are formed by (A) 
ChEMBL605210 and ChEMBL599649, and (B) ChEMBL605210 and ChEMBL597798. The core and 
substituent of the low potency compound in these MMPs were fixed to validate whether the 
model could capture the difference concerning the high potency compound. The orange color rep-
resents positive contribution and the blue color represents negative contribution. For the feature 
contribution mapping, higher contribution towards the predicted results is represented by a 
darker color. In the SHAP force plots, the baseline and output value (bold) are shown. The pres-
ence or absence of the substructures corresponding to the feature numbers are also shown as one 
or zero, respectively. The substructures corresponding to the feature numbers are shown below 
the plot. 

Figure 1. Comparison of the feature contribution mapping and SHAP for exemplary accurately
predicted MMPs of thrombin. Exemplary (A) TP and (B) TN MMPs of thrombin with the fea-
ture contribution map and SHAP force plot for the MMPs are shown. MMPs are formed by
(A) ChEMBL605210 and ChEMBL599649, and (B) ChEMBL605210 and ChEMBL597798. The core and
substituent of the low potency compound in these MMPs were fixed to validate whether the model
could capture the difference concerning the high potency compound. The orange color represents
positive contribution and the blue color represents negative contribution. For the feature contribution
mapping, higher contribution towards the predicted results is represented by a darker color. In the
SHAP force plots, the baseline and output value (bold) are shown. The presence or absence of the
substructures corresponding to the feature numbers are also shown as one or zero, respectively. The
substructures corresponding to the feature numbers are shown below the plot.
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2.3. Validation of Important Features with X-ray Co-Crystal

Figure 2 shows two exemplary MMPs for thr predicted as TP (Figure 2A) and TN
(Figure 2B). The difference between the MMPs is the 2-methyl propyl group (Figure 2A)
and the methyl group (Figure 2B). This substructure transformation is highlighted using the
SVM-based interpretation method, while SHAP did not capture the difference. To further
investigate whether the highlighted features are rational or chemically intuitive, an MMP
(Figure 2A), which forms AC, was compared to the X-ray co-crystal structures retrieved
from PDB (PDBIDs:2ZI2, 2ZNK), identified in a previous study [20]. Figure 3 illustrates the
2D map of the interaction between thr and the compounds forming the MMP in Figure 2A.
ChEMBL 3423003 (top) has a lower potency and ChEMBL 3423208 (bottom) has a higher
potency. From the 2D map, two major aspects that improved the potency are observed.
First, when an amine group was substituted on the carbon atom next to the attachment
point, a hydrogen bond was formed between the glycine 236 and that amine. Second, when
a 1,1-dimethyl ethyl group was substituted on the same carbon atom, the ligand exposure
decreased. These two factors are positively highlighted in Figure 2A. The authors reported
that the complete dual ladder β-sheet-like hydrogen bond network between the ligand and
Gly216 was formed by introducing an amide branch and substituting a 1,1-dimethyl ethyl
group instead of a short alkyl chain, contributing to the release of a water molecule in the
active pocket, which supports our analysis [21]. This insight also supports the negative
feature weight assigned to the methyl group on ChEMBL3423104 in Figure 2B. Thus, the
AC prediction models using the proposed MMP fingerprints have the potential to learn the
rationale and important features related to AC formation, focusing on the existing features
inside the molecules. The SVM-based interpretation method enabled us to see whether the
output was reliable and could be useful for checking whether the models have learned
chemical knowledge or not.

2.4. Limitations of SHAP for AC Prediction Model Interpretability

So far, the interpretability of the SVM-based method and SHAP is discussed by compar-
ing the important features identified by the two methods. SHAP assigned Shapley values
to the features missing in the test MMPs. Originally, Shapley values indicate how much the
features contribute to the difference between the actual prediction and the expected values
of the prediction. In the context of this study, Shapley values quantified the impact of the
presence or absence of a substructure on the difference between the actual output of the
decision function and the mean output. Therefore, it is natural that the absence of a specific
feature improves the possibility of AC formation. Moreover, during the calculation process
of SHAP, it is considered that sampling the random value to evaluate the prediction without
some features makes SHAP uninterpretable in this study. Fingerprints having features
replaced with random values cannot be assembled to actual chemical structures, and the
predicted values using the fingerprints are unreliable. However, sampling random values
is necessary because unbiased sampling is the key for deriving Shapley values. Further
discussion of this fact has not been reported yet. Conversely, the SVM-based interpretation
method calculates feature contribution for the features only present in the test MMPs. This
is in accordance with chemists’ ways of interpreting inter-molecular interactions, i.e., only
existing protein–ligand interactions are counted. Small molecules generally bind with
targeted protein residues at a specific substructure or at atoms of the molecule. Model
interpretation highlighting this phenomenon can be easily accepted. Even if a machine
learning model actually predicts ACs based on the substructures not present inside the
molecules, it is hard to utilize this information for further chemical optimization. However,
when predicting negative compounds (non-ACs), explanations from both directions seem
acceptable because the features missing in the non-ACs might be crucial for producing
strong interactions against the target protein. In addition, interpretation of the models for
non-toxic compounds and non-active compounds might be in the same category.

For the purpose of interpreting AC prediction models, in particular for AC MMPs, the
SVM-based method was informative and could be helpful in scientists’ decision-making.
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Figure 2. Comparison of the feature contribution mapping and SHAP for exemplary thrombin
MMPs with an X-ray co-crystal structure predicted as TP and TN. Exemplary (A) TP and (B) TN
MMPs of thrombin with the feature contribution map and SHAP force plot for the MMPs are
shown. MMP (A) has an X-ray co-crystal structure. MMPs are formed by (A) ChEMBL3423003 and
ChEMBL3423208, and (B) ChEMBL3423003 and ChEMBL3423014.
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Figure 3. 2D diagrams of the thrombin–ligand interaction based on X-ray co-crystal analysis. 2D diagrams of the inter-
action of thrombin and the compounds that were used in the MMP in Figure 2A are illustrated. The ligand compounds 
are the low potency compound (top) and the high potency compound (bottom). The structural difference between the two 
compounds is emphasized by the red squares. The interaction pose was extracted from PDB and the diagram was gener-
ated by MOE. 

  

Figure 3. 2D diagrams of the thrombin–ligand interaction based on X-ray co-crystal analysis. 2D diagrams of the
interaction of thrombin and the compounds that were used in the MMP in Figure 2A are illustrated. The ligand compounds
are the low potency compound (top) and the high potency compound (bottom). The structural difference between the two
compounds is emphasized by the red squares. The interaction pose was extracted from PDB and the diagram was generated
by MOE.
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3. Materials and Methods
3.1. Data Sets

Two protein targets (thrombin and carbonic anhydrase II) were selected for our analy-
sis as AC prediction models for these targets showed high performance in our previous
research [8]. Compounds active against the targets were retrieved from ChEMBL (version
24, European Bioinformatics Institute of the European Molecular Biology Laboratory, Hinx-
ton, UK) [22] and curated with the same procedure as in the previous study [8]. MMP-cliffs
were used as the AC definition. MMPs with differences in potency larger than two log units
were labeled as AC and less than one as non-AC. The rest of the MMPs were discarded
to avoid the inclusion of ambiguous data. MMPs for each target were computationally
generated using Hussain and Lee’s approach [23] implemented by Wawer and Bajorath [24].
For MMP generation, substructure exchange was restricted to no more than 13 heavy atoms
and the maximum difference between substituents of compounds was restricted to no more
than 8 heavy atoms. MMPs having the same core were grouped as the matched molecular
series [25]. MMSs composed of only AC MMPs or non-AC MMPs were discarded. The
profile of data sets for the selected targets is shown in Table 1.

Table 1. Data sets.

ChEMBL ID Target Abbreviation #CPDs #MMPs #AC #MMSs
Potency (pKi) MW #HA

Max Min Max Min Max Min

204 Thrombin thr 221 839 311 29 10.30 2.81 693.86 280.75 50 19

205 Carbonic anhydrase II ca2 362 989 248 70 11.00 0.70 678.36 153.14 42 11

For each data set, the CHEMBL ID, number of compounds (#CPDs), number of MMSs (#MMSs), maximum and minimum potencies (pKi
values), maximum and minimum molecular weight (MW), and heavy atom counts (#HA) are reported.

3.2. MMP Fingerprints

MMP fingerprints were generated from MMPs according to the procedure depicted in
Figure 4. Fingerprints representing the core and substituent parts were individually calcu-
lated for each MMP. Extended connectivity fingerprints of bond diameter 4 (ECFP4) [26]
were used as the molecular representation. Features within bond diameter 1 were not used
in ECFP4 calculation to clarify the contributions of features over bond diameter 2. For
each part, all identifiers corresponding to the features were sorted in ascending order and
assigned to bits in the fingerprint vectors in the same order; therefore, the length of MMP
fingerprints depended on the target. This was done to prevent feature collision, to ensure
the availability of the features for predicting AC, and to calculate feature contribution.
The substituent fingerprints were composed of fingerprints calculated by taking the XOR
operation and AND operation for each substituent feature vector to represent unique and
common features in the two substituents separately and focus on the transformation.

3.3. Construction and Evaluation of the AC Prediction Model

An AC prediction model was constructed with the help of a support vector machine.
The SVM is a supervised learning approach that distinguishes two classes using a hyper-
plane obtained by maximizing the margin between the hyperplane and support vectors.
This method was originally developed for linear classification problems but the kernel
function enables the use of this method for non-linear classification problems. In the
present study, the MMP kernel, which is the product of the Tanimoto similarity of the cores
and the substituents, was used as a kernel function.

AC prediction was conducted by MMSs. One MMS was selected as a test set and the
rest of the MMSs were used as training set. For each test set, MMPs that were composed
of compounds used for forming the MMP in the training set were eliminated. After a
prediction for the selected test MMS was completed, other MMS were selected as the test
set and predicted for. This iterative prediction was performed until all MMSs were selected
as the test set. This operation was done to evaluate the extrapolation ability by preventing
the sharing of the same core between the test and training sets. In our previous study,
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two models were constructed with different MMP fingerprint orders for substituents. The
predicted output was defined based on both outputs of the models to identify MMPs
whose potency improved due to the transformation. However, in this study, because we
focused on the model interpretation, only one type of fingerprint order was used for further
discussion. The hyperparameter C in each SVM model was optimized using five-fold
cross-validation. The performances of the AC prediction models were evaluated using
recall, AUC ROC, and MCC.
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Figure 4. Fingerprint generation for MMPs. An MMP is formed by two compounds that share a common scaffold (core)
and individual substituents. From each MMP, one core and a set of two substituents were extracted, and then fingerprints
were generated for each part. Two types of fingerprints were concatenated to obtain fingerprints representing substituents.
One is calculated by taking the XOR operation of two fingerprints of given substituents and the other is calculated by taking
the AND operation to represent specific and common features. Finally, MMP fingerprints were generated by concatenating
fingerprints for the core and substituents.

3.4. Feature Contributions for the Tanimoto Kernel in SVM

Our proposed method for feature contribution is based on the feature weighting
method for the Tanimoto kernel-based SVM proposed by Balfer and Bajorath [19].

When the SVM is used for non-linear classification tasks, the test instances xts are
classified based on the following decision function with the kernel function:

f (x) = sign

(
n

∑
i=1

α(i)y(i)K
(

x(i)tr , x
)
− b

)
(1)
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where α(i) are Lagrangian multipliers on the dual problem of the objective function to
identify the optimal hyperplane; xtr is the training set composed of n samples with the
corresponding binary class label y; and b is the bias term of the calculated hyperplane.

When the linear kernel is used as a kernel function, the feature contribution is easily
calculated because Equation (1) can be represented as the sum of feature contributions
weighted by α(i)y(i) and bias b:

f (x) = sign

(
∑

d ∈ f eatures
f clinear(x, d)− b

)
(2)

f clinear(x, d) =
n

∑
i=1

α(i)y(i)x(i)tr dxd (3)

To facilitate further explanation, we introduce the fragment feature contribution
(frag_fc), which is one term of feature contribution. frag_fc and f clinear can be represented
as follows:

f rag_ f clinear(x, d, i) = α(i)y(i)x(i)tr dxd (4)

f clinear(x, d) =
n

∑
i=1

f rag_ f clinear(x, d, i) (5)

When a non-linear kernel function is used, the decision function is not represented as
the sum of feature contribution and bias. The Tanimoto kernel is a good example and is one
of the widely used non-linear kernels for molecular property prediction using fingerprints.
The Tanimoto kernel is defined as:

KTanimoto(u, v) =
〈u, v〉

〈u, u〉+ 〈v, v〉 − 〈u, v〉=
D

∑
d=1

udvd
〈u, u〉+ 〈v, v〉 − 〈u, v〉 (6)

The decision function with the Tanimoto kernel can be represented as the sum of
feature contributions and the bias as the denominator of the kernel function is constant for
individual kernel calculations. Considering this condition, the fragment feature contribu-
tion and feature contribution is represented as follows based on the linear kernel:

f rag_ f cTanimoto(x, d, i) =
α(i)y(i)x(i)tr dxd〈

x(i)tr , x(i)tr

〉
+ 〈x, x〉 −

〈
x(i)tr , x

〉 (7)

f cTanimoto(x, d) =
n

∑
i=1

f rag_ f cTanimoto(x, d, i) (8)

To introduce fragment feature contribution, the decision function using the Tanimoto
kernel is calculated as the sum of all fragments of feature contribution, defined as:

f (x) = sign

(
∑

d ∈ f eatures
f cTanimoto(x, d)− b

)
(9)

3.5. Feature Contributions for the MMP Kernel

SVM using the MMP kernel has been used for AC predictions due to its high perfor-
mance. The MMP kernel, however, cannot be represented as the sum of feature contribu-
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tions because it is the product of core-wise and substituent-wise Tanimoto kernel functions,
defined as:

KMMP(u, v)
= KTanimoto(uc, vc)× KTanimoto(us, vs)

= 〈uc,vc〉
〈uc,uc〉+〈vc,vc〉−〈uc,vc〉 ×

〈us,vs〉
〈us,us〉+〈vs,vs〉−〈us,vs〉

=
Dc
∑

dc=1

uc dc vc dc
〈uc,uc〉+〈vc,vc〉−〈uc,vc〉 ×

Ds
∑

ds=1

us ds vs ds
〈us,us〉+〈vs,vs〉−〈us,vs〉

(10)

where the subscripts of c and s represent the core and substituent parts of MMP fingerprints,
respectively. For the MMP kernel, two parts of the feature contributions can be individually
represented as Equation (7) and a cross-term of features appears by the product of two
feature contributions from the two kernels, represented as:

f rag_ f cMMP(x, dc, ds, i)

=
α(i)y(i)x(i)tr,c dc

xc dc〈
x(i)tr, c,x(i)tr,c

〉
+〈xc,xc〉−

〈
x(i)tr,c,xc

〉
× x(i)tr,s ds

xs ds〈
x(i)tr, s,x(i)tr,s

〉
+〈xs,xs〉−

〈
x(i)tr,s,xs

〉
(11)

In order to represent an MMP kernel value as the sum of feature contributions, we
propose to decompose the cross-term into half and assign them to a core feature and a
substituent feature equally so that the sum of the linear contributions of all the features
equals to the SVM output. Figure 5 shows an exemplary case with one support vector (sv)
and one test instance (ts). Each vector has three features for the core and another three for
the substituents. The test instance has the first and third feature present in the core and
all three features in the substituents. The support vector has all the features present in the
core and the second and third feature in the substituents. The matrix in Figure 5 shows
how each frag_fcTanimoto contributes to the whole MMP kernel. The row corresponds to
frag_fcTanimoto of the core and the column corresponds to frag_fcTanimoto of the substituents.
Considering the value of the MMP kernel is a sum of the cross-terms of frag_fcTanimoto of
the core and substituents, the contribution of a single feature cannot be calculated. To
represent the MMP kernel as the sum of the fragments of feature contributions, each
cross-term, namely frag_fcMMP, is divided into the corresponding features for the core and
substituents. For instance, at the upper right corner, the cross-term is one-ninth calculated
from frag_fcTanimoto for the first feature in the core and that for the third feature in the
substituents, and half of the cross-term value is assigned to the first feature of the core and
another half is assigned to the third feature of the substituents. After dividing the cross-
terms, the feature contribution for a feature can be calculated by summing up the divided
values along the axis. Using this operation, the MMP kernel is represented as the sum of
feature contributions and can be interpreted in the same way as using the simple Tanimoto
kernel. Feature contributions were mapped onto the predicted MMP with the same method
as in the previous study [19]. The calculated feature contribution for a substructure was
distributed for its corresponding atom and bond evenly. Each of the atoms and bonds
appeared in substructures more than once; therefore, the weight for an atom or bond was
calculated by accumulating the contribution deriving from different substructures. The
weights for atoms and bonds are color-coded: red represents positive, blue represents
negative, and white represents a weight of zero. The darkness of color-coding corresponds
to the magnitude of the assigned weight.
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substituent (orange) parts that are divided from MMP fingerprints. Half of the cross-term feature weightings are assigned
to the features in the core and half to the substituent features.

3.6. SHAP Theory

SHAP aims to explain the output of a model by computing Shapley values for each
feature as the feature contribution based on the coalitional game theory. The Shapley
value was originally proposed to fairly distribute the payout among the players along
with their contribution to the games. In the context of this study, the players correspond
to the features in fingerprints and the payouts correspond to the output of the decision
function. In the SHAP algorithm, the output for a test instance is approximated with a
local explanation model, defined as:

g
(
x′
)
= φ0 +

N

∑
i=1

φix
′
i

where g is the local explanation model; x′ ∈ {0, 1}N takes one when the feature is present
in the test instance and zero when absent; N is the number of features; and φi ∈ R is the



Molecules 2021, 26, 4916 13 of 14

Shapley value as a contribution for feature i. All possible combinations of the feature
set without the ith feature are needed to calculate exact Shapley values for the features
and this calculation is highly expensive due to the enormous feature subset. Thus, kernel
SHAP is used to efficiently estimate the Shapley values. Kernel SHAP needs a dataset
to construct a linear regression model whose coefficients equals Shapley values. First, x′

representing feature presence or absence is generated K times and then x′ is transformed
into feature vectors using mapping function h which maps to the corresponding feature in
the test instance if a bit is set on (present) or to a random value sampled from the marginal
distribution if set off (absent). Subsequently, the linear regression model is constructed
as local explanation model g so that g(x′) = f (h(x′)), where f is the original model. The
model g is optimized by minimizing the squared loss weighted by the SHAP kernel. The
coefficients of the model g are the Shapley values defined as the feature contributions. φ0 is
the expected explanatory value (baseline) that represents an expected output value if all
input features do not exist. This baseline is calculated as the mean of the objective variable
over the training instances.

4. Conclusions

MMP-cliff based AC prediction has been explored and predictive models have been
proposed previously. However, these models experience a lack of interpretability because
of the black-box character. In this study, we developed interpretable MMP fingerprints and
modified a model-specific approach to interpret a well-constructed AC prediction model
using the SVM and MMP kernel. The important features highlighted by this interpretation
method and SHAP were compared to each other. Almost all of the high Shapley values
were assigned to features not present in the test instance, which indicates that SHAP is not
helpful to obtain a chemically intuitive interpretation. Conversely, the SVM-based method
highlighted features present in the test instance. To validate the features highlighted
by this method, an X-ray co-crystal structures for a particular target were analyzed and
it accurately assigned a high contribution to the features related to hydrogen bonding
and ligand exposure. This study sheds light on the limitation of SHAP and enables us
to interpret the AC prediction model in a chemically intuitive manner using a model-
specific approach.

Supplementary Materials: The following are available online, Figure S1: Comparison of feature
contribution mapping and SHAP for exemplary thrombin MMPs predicted as TP, TN, FN. Figure S2:
Comparison of feature contribution mapping and SHAP for exemplary ca2 MMPs predicted as TP,
TN, FP. Datasets.xlsx: two sheets corresponding to the target proteins. Each row has the SMILES for
a core, substituent1 and substituent2, potency difference between the compounds of an MMP, the
class label of AC (represented as 1) or non-AC (represented as −1), and the MMS ID.
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