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Sir, Autosomal dominant optic atrophy (DOA) is the most com-

monly diagnosed inherited optic neuropathy in clinical practice and

the majority of patients harbour pathogenic mutations within

the OPA1 gene (3q28-q29, OMIM 165500) (Yu-Wai-Man and

Chinnery, 2013). OPA1 is a multifunctional protein located

within the mitochondrial inner membrane and it regulates a

number of critical cellular functions, including mitochondrial net-

work stability, oxidative phosphorylation and mitochondrial cell

death pathways (Lenaers et al., 2009). Until recently, DOA was

largely viewed as a limited genetic disorder that preferentially af-

fects retinal ganglion cells resulting in progressive visual failure

from early childhood (Carelli et al., 2004; Yu-Wai-Man et al.,

2014). It is now abundantly clear that pathogenic OPA1 mutations

can have much more severe multisystemic consequences that are

detrimental not only to optic nerve function, but also target other

tissues that are frequently involved in other well-established mito-

chondrial syndromes (Amati-Bonneau et al., 2008; Hudson et al.,

2008). In a large multicentre study published in Brain, up to 20%

of OPA1 mutation carriers developed these so-called DOA plus

(DOA + ) phenotypes where the optic atrophy was complicated

by a wide range of neuromuscular features that included ataxia,

myopathy, peripheral neuropathy, sensorineural deafness, and fas-

cinatingly, chronic progressive external ophthalmoplegia (Yu-

Wai-Man et al., 2010).

A previous case report in Brain described two brothers diag-

nosed with classical Behr’s syndrome who were eventually found

to carry a single heterozygous pathogenic OPA1 mutation

(c.1652G4A, p.Cys551Tyr) within the catalytic GTPase domain

(Marelli et al., 2011; Yu-Wai-Man and Chinnery, 2011). In their

case series, Bonneau and colleagues extend the association

between pathogenic OPA1 mutations and Behr’s syndrome with

a detailed account of four unrelated children who developed the

typical clinical features of an early-onset progressive optic neuro-

pathy that was further compounded by ataxia, spasticity and per-

ipheral neuropathy (Bonneau et al., 2014). Their most striking

observation is the identification of compound heterozygous

OPA1 mutations in all four patients with the co-occurrence of a

missense GTPase mutation and a truncative nonsense mutation.

Interestingly, three of these families harboured the same missense

GTPase OPA1 mutation (c.1146A4G, p.Ile382Met) that has been

previously reported in another DOA+ family with compound het-

erozygous mutations (Schaaf et al., 2011). This specific pathogenic

variant is clearly highly penetrant for the neurological ‘plus’ fea-

tures and it does support our earlier observation that misssense

GTPase OPA1 mutations seem to have a more potent deleterious

impact, possibly via a dominant negative mechanism and

increased mitochondrial DNA instability (Yu-Wai-Man et al.,

2010; Yu-Wai-Man and Chinnery, 2012). As Bonneau et al.

(2014) correctly point out, we did describe two siblings from a

non-consanguineous Norwegian family in our original Brain paper,

who developed a particularly aggressive disease course character-

ized by ataxia, spasticity, peripheral neuropathy and myopathy

(Yu-Wai-Man et al., 2010). OPA1 sequencing identified two

pathogenic variants in both the affected brother and sister: the

c.768C4G (p.Ser256Arg) missense mutation in exon 5b and the

c.854A4G (p.Gln285Arg) missense mutation in exon 8. Bonneau

et al. (2014) rightly queried whether we had actually proven com-

pound heterozygosity in these two affected Norwegian siblings.

Although DNA was not available from their deceased parents,

we did have access to DNA samples from the brother’s two
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unaffected daughters and both harboured only the c.768C4G

(p.Ser256Arg) substitution in exon 5b. Furthermore, haplotype

analysis provided additional evidence that the proband and his

affected sister were indeed compound heterozygous for the

c.768C4G (p.Ser256Arg) and the c.854A4G (p.Gln285Arg)

OPA1 mutations (Yu-Wai-Man et al., 2010).

Three Opa1 mouse models have been developed harbouring

truncative mutations in exon 8 (c.1051C4T) (Davies et al.,

2007), intron 10 (c.1065 + 5 G4A) (Alavi et al., 2007), and exon

27 (c.2708–2711delTTAG) (Sarzi et al., 2012). Heterozygous

mutant mice exhibited �50% reduction in overall protein expres-

sion, in keeping with a haploinsufficiency mechanism, and these

mice faithfully replicated the human phenotype with a slowly pro-

gressive bilateral optic neuropathy and reduced visual parameters.

Optic nerve degeneration was documented as early as 6 months,

but it was much more striking by 2 years of age. Interestingly, in

all three Opa1 mouse models, homozygous mutant mice died in

utero during early embryogenesis, clearly highlighting the central

role played by OPA1 in early development. This major profusion

protein has been highly conserved throughout evolution and it is

perhaps not surprising that so far, no affected individuals have

been reported that carry homozygous or compound heterozygous

nonsense or frameshift OPA1 mutations, which are likely to be

embryonically lethal.

The final clinically relevant point that we would like to make

relates to the use of Behr’s syndrome (OMIM 210000) as a diag-

nostic label. In 1909, Carl Behr, a German ophthalmologist,

described an infantile form of optic atrophy complicated by

mental retardation and spinocerebellar degeneration that resulted

in ataxia, spasticity and peripheral neuropathy (Behr, 1909). The

genetic advances of the past two decades have transformed our

understanding of human diseases and with the greater availability

of next-generation sequencing technology, it has become appar-

ent that most eponymous syndromes have a heterogeneous mo-

lecular genetic basis and should be viewed as largely historical

descriptions. Behr’s syndrome is a very good illustration of this

fundamental shift in genetic disease classification, based not

solely on the clustering of recognizable clinical features, but pri-

marily on the identification of the underlying genetic defects. This

syndromic inherited optic neuropathy was originally linked to

autosomal recessive OPA3 mutations among Iraqi Jewish patients

with elevated urinary excretion of 3-methylglutaconic acid and

3-methylglutaric acid—a subtype that was known by yet another

eponymous description, namely Costeff syndrome (Costeff et al.,

1989; Anikster et al., 2001). Besides OPA3, we now know that

both single and compound heterozygous OPA1 mutations can

result in multisystemic DOA + phenotypes that would be entirely

consistent with Carl Behr’s original case report. This is certainly not

the end of the story and the list of disease-causing genes is bound

to grow even further, a fact that is clearly exemplified by the

recent identification of compound homozygous C12orf65 muta-

tions in patients with phenotypic manifestations indistinguishable

to those classically associated with ‘Behr’s syndrome’ (Pyle et al.,

2014). Downregulation of the C12orf65 protein results in a mito-

chondrial translation defect and profound multiple respiratory

chain defects. Despite the underlying genetic heterogeneity, a

unifying theme is clearly emerging in ‘Behr’s syndrome’ with

mitochondrial dysfunction being the final common pathway that

is ultimately leading not only to retinal ganglion cell loss and optic

nerve degeneration, but also to more widespread neuronal loss

with multisystemic manifestation. Generic treatment modalities

aimed at correcting these dysfunctional mitochondrial mechanisms

could therefore prove beneficial to this group of patients irrespect-

ive of the causative genetic defect.
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