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Introduction

At the present time, thyroidectomy followed by 
radioactive iodine (RAI) therapy, chemotherapy, or both 
are the treatments of choice in thyroid cancers (Fahrner 
et al., 2014; Fortuny et al., 2015). Most types of thyroid 
cancers, such as papillary and follicular thyroid cancers, 
can be treated successfully (Schmidbauer et al., 2017). 
However, advanced cancer types, such as anaplastic 
thyroid carcinoma (ATC), usually have no successful 
treatments. ATC is known as an aggressive, lethal, and 
recurrent malignancy that is resistant to routine treatments, 
especially RAI therapy (Pezzi et al., 2016).

Several factors are involved in effective RAI therapy 
including the sodium-iodide symporter (NIS) protein. 
This glycoprotein is formed in 13 putative transmembrane 
domains and is localized on the basolateral membrane of 
thyrocytes. It expedites iodine uptake in thyroid follicular 
cells and has a critical role in RAI therapy (Darrouzet et al., 
2016; Ferrandino et al., 2016). The function of this protein 
can be affected by different factors, and by mutation in 
some somatic genes such as phosphoinositide-3-kinase 
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(PI3K).
PI3K engages in several cellular activities including 

cell growth, proliferation, differentiation, motility, 
survival, and intracellular trafficking (Bozorg-Ghalati et 
al., 2015). Several studies reported that PI3K silencing 
can induce expression of NIS (Kogai et al., 2008). In 
addition to gene mutations (Bozorg-Ghalati et al., 2016), 
cancer stem cells (CSCs) in thyroid tumors are associated 
with tumor metastasis, recurrence, and drug resistance 
(Nagayama et al., 2016; Bozorg-Ghalati et al., 2017a,b). 
Due to the unknown effects of a mutant PI3K on NIS 
in thyroid CSCs, the present study examined CSCs 
expressing the CD133 surface marker in ATC cell lines, 
and surveyed NIS gene/protein expression after PI3K 
inhibition. 

Materials and Methods

Culture of ATC cell lines 
Three ATC cell lines (SW1736, C643, and 8305C) 

were used in this study. The SW1736 and C643 cell 
lines were graciously supplied by Dr. Vahid Haghpanah 
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(Endocrinology and Metabolism Research Institute, 
Tehran University of Medical Sciences, Tehran, Iran). 
The third cell line (8305C) was purchased from the 
National Cell Bank of Iran (Pasteur Institute of Iran, 
Tehran, Iran). All cells were cultured at 37°C under 5% 
CO2, in RPMI 1640 GlutaMAXTM medium (Biowest, 
Nuaillé, France) and supplemented with 10% fetal bovine 
serum (GibcoTM, EU-Approved, South American), 1% 
penicillin-streptomycin, and 1% non-essential amino 
acids (Biowest).

Magnetic-activated cell sorting (MACS) 
CD133-positive CSCs were isolated from the three 

ATC cell lines by using the MACS method. A MACS® 
human CD133 Microbead Kit-Tumor Tissue (Miltenyi 
Biotec, Bergisch Gladbach, Germany) was used according 
to the manufacturers’ protocol. After cultivation of the 
cell lines, they were harvested by trypsin-EDTA (Sigma-
Aldrich, St. Louis, MO, USA) and centrifuged at 300 
× g for 10 min. The cell pellets were resuspended in 60 
μL of MACS buffer (Miltenyi Biotec), 20 μL of FcR 
blocking reagent (Miltenyi Biotec), and 20 μL of CD133 
microbeads, and incubated at 4°C for 15 min under a low 
rotator speed. Then, the cells were washed with MACS 
buffer, centrifuged at 300 × g for 10 min, and resuspended 
in MACS buffer (500 μL). LS columns (Miltenyi Biotec) 
that were fixed on the MACS separator magnet, were 
rinsed with MACS buffer (3 mL) and the cell suspensions 
were infused. After gathering the effluent from each LS 
column, they were removed from the MACS separator and 
placed into a new collection tube. Finally, by applying the 
MACS buffer (5 mL) and piston, the magnetically-marked 
CD133-positive CSCs were obtained.

Flow cytometry
A suspension (100 µL) containing 106 cells/mL was 

prepared. Then, 10 μL of the CD133 antibody (Miltenyi 
Biotec) were added, mixed well, and incubated at 4°C for 
10 min. Subsequently, the cells were washed with MACS 
buffer and centrifuged at 300 × g for 10 min. Finally, 
the supernatant was aspirated and a suitable amount of 
buffer added for analysis of the cells by flow cytometry 
(FACSCalibur; BD Biosciences, Franklin Lakes, NJ, 
USA).

 
Treatments

CD133-positive CSCs isolated from the three ATC 
cell lines (C643, SW1736, and 8305C) were treated 
with 5, 10, 20, or 25 μM LY294002 (a PI3K inhibitor) 
(Chemietek, Indianapolis, IN, USA) and 5 μg/mL bovine 
thyroid-stimulating hormone (Sigma-Aldrich) for 24 
and 48 h. The treatment of 24 samples was repeated two 
times. Cells cultured without the inhibitor were used for 
the control group.

RNA isolation and cDNA synthesis
Total RNA was extracted from the treated cells 

according to the YTA Total RNA Extraction Mini Kit 
protocol (Yekta Tajhiz Azma, Tehran, Iran). The purity, 
quantity, and integrity of total RNA were determined 
by ultraviolet spectrophotometry and agarose gel 

electrophoresis. cDNA was synthesized by using the 
RevertAid First Strand cDNA Synthesis Kit (Thermo 
Scientific, Waltham, MA, USA).

 
Quantitative real-time polymerase chain reaction 
(qRT-PCR)

Samples were loaded in triplicate into 48-well optical 
plates of the StepOne PCR thermal cycler system, 
version 2.3 (Applied Biosystems, Lincoln, NE, USA). 
Each PCR reaction mixture contained 100 ng of cDNA, 
RealQ PCR 2x Master Mix SYBR Green high ROX® 
(Amplicon, Stenhuggervej, Denmark), PI3K or NIS 
primers (Macrogen, Seoul, South Korea), and RNAase/
DNAase-free water (Thermo Scientific). For each sample, 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
was used as the housekeeping gene for normalizing the 
expression of PI3K and NIS. The primer sequences are 
given in Table 1. 

qRT-PCR conditions were as follows: incubation 
(95°C, 10 min), 40 reaction amplifications (30 s at 95ºC, 
30 s at 60ºC, and 30 s at 72ºC), and a melting curve 
(60-95°C). All examinations were performed in triplicate. 
Serial dilutions (10-fold) of the internal standard were 
performed to produce a standard curve for each gene in all 
runs. Correlation coefficients (r2 > 0.999) and efficiency 
(> 99%) were considered reliable. The Livak equation 
(2-ΔΔCt) was applied for each of the data points (Livak and 
Schmittgen, 2001).

Western blotting
Treated cells were lysed in lysis buffer consisting of 50 

mM Tris (pH 8.0) (Merck, Darmstadt, Germany), 150 mM 
NaCl (Merck), 1% Triton X-100 (Sigma-Aldrich), and 10 
μg/mL aprotinin (Sigma-Aldrich). Protein concentrations 
were measured by the Bradford assay (Bio-Rad, Hercules, 
CA, USA). Total proteins (15 μg), the PageRuler ladder 
(Thermo Scientific), and healthy human thyrocyte lysate 
(as a positive control) were loaded onto a 10% sodium 
dodecyl sulfate–polyacrylamide gel and electrophoresed 
(Mini-PROTEAN Tetra Vertical Electrophoresis Cell, 
Bio-Rad, Marnes-la-Coquette, France). The bands were 
transferred (4°C, overnight) onto a Protran Nitrocellulose 
Transfer Membrane (Sigma-Aldrich). The membrane was 
blocked (90 min at room temperature) in 5% skimmed milk 
(Merck) in washing buffer (10 mM Tris–HCl [pH 8.0], 
150 mM NaCl, and 0.05% Tween® 20 [Merck]). After 
washing, it was incubated (1 h at room temperature) with an 
NIS antibody diluted 1:200 (ab17795, Abcam, Cambridge, 
UK) in 1% bovine serum albumin (Sigma-Aldrich)-
washing buffer. Then, the washing steps were repeated and 
the membrane was incubated (45 min at room temperature) 
with horseradish peroxidase-conjugated goat anti-mouse 
IgG (ab97023, Abcam), diluted 1:2000 in 1% bovine 
serum albumin-washing buffer. Finally, the bands were 
visualized with 3,3’-diaminobenzidine (Sigma-Aldrich).

Statistical analysis
Graphpad Prism version 6.01 analytic software 

(Graphpad, San Diego, CA, USA) and the one-way 
analysis of variance test were used to determine differences 
in the expression levels of PI3K and NIS mRNA. A P value 
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Discussion

In this investigation, we studied anaplastic thyroid 
CSCs with the CD133 surface marker. CSCs have 
self-renewal ability and generate diverse cancer cells 
that are linked to tumor recurrence and drug resistance 
(Franco et al., 2016). They are identified by the expression 
of multiple genes (Shimamura et al., 2014) and various 
surface markers such as CD133 (Grasso et al., 2016; 
Zhang et al., 2016). These cells are usually present in low 
numbers (0.5-18%) in tumor tissues or cell lines (Schmohl 
and Vallera, 2016). Because of their low numbers in ATC 
cell lines, and for raising the purity of isolated cells, we 
used the MACS method and repeated the sorting assay 
for the first flow-through with new MACS columns until 
reaching a high purity (more than 70%) of CD133-positive 
CSCs. 

less than 0.0001 was regarded as statistically significant. 
Data from triplicate experiments are expressed as means 
± standard error of the mean.

Results

Verification of CSC purity
CD133-positive CSCs with 92.2, 71.6, and 96.9% 

purity were isolated from the C643, SW1736, and 8305C 
cell lines, respectively (Figure 1).

Evaluation of PI3K and NIS mRNA expression in 
CD133-positive CSCs segregated from ATC cell lines 
after treatment with LY294002

Analysis of the qRT-PCR data showed that, compared 
with the level before treatment (control group), the 
expression of NIS mRNA increased in the CD133-
positive CSCs separated from C643 (Figure 2A), SW1736 
(Figure 2C), and 8305C (Figure 2E) cells after 24 and 
48 h of treatment with 5, 10, 20, or 25 μM LY294002. 
The results also indicated that the expression of PI3K 
mRNA decreased in the CD133-positive CSCs separated 
from C643 (Figure 2B), SW1736 (Figure 2D), and 
8305C (Figure 2F) cells after incubation with these four 
concentrations of LY294002. The data are summarized 
in Table 2.

 
Increased levels of NIS protein expression in 
CD133-positive CSCs after treatment with LY294002

To assess the effects of LY294002 on NIS protein 
levels in CD133-positive CSCs, western blotting was 
performed. The results showed that CD133-positive CSCs 
isolated from C643, SW1736, and 8305C cells treated 
with LY294002 were capable of expressing the NIS 
protein compared with pre-treatment. In addition, various 
LY294002 concentrations caused different changes in 
expression of the NIS protein (Figure 3).

Gene Accession No. Primer sequence (5´ to 3´) Product length(bp)

PI3K NM_006218.2
(F) AACCTCAGGCTTGAAGAG

157
(R) GAAGTGTTAGCATATCTTGC

NIS NM_000453.2
(F) CTATGGCCTCAAGTTCCTCT

178
(R) CGTGGCTACAATGTACTGC

GAPDH NM_002046.5
(F) GCTCTCTGCTCCTCCTGTTC

114
(R) CGACCAAATCCGTTGACTCC

Table 1. Accession Numbers, Primer Sequences, and Expected Product Lengths of PI3K, NIS, and GAPDH

F, forward; R, reverse

Figure 1. Data Showing CD133-positive Cells Isolated 
from C643, SW1736, and 8305C Cell Lines with Purity 
Over 70%.
 

Figure 2. Quantitative Real-Time PCR Analyses 
Revealed that the Expression NIS (A, C, E) and PI3K 
(B, D, F) mRNA was Changed in CD133-positive Cells 
Isolated from the ATC Cell Lines after Treatment with 
LY294002. Data are Presented as means ± SEM (n = 3). 
P < 0.0001. 
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Analysis of the qRT-PCR data revealed that various 
concentrations (5, 10, 20, and 25 μM) and times (24 and 
48 h) of LY294002 treatment had different effects on 
PI3K and NIS mRNA levels. We found that 20 μM of this 
inhibitor was most effective at raising and diminishing NIS 
and PI3K mRNA levels, respectively. LY294002 at 25 µM 
had the least influence on the expression of NIS and PI3K. 
This indicates that an elevated concentration of the PI3K 
inhibitor limited its action on NIS expression. We believe 
that other factors may be involved in this mechanism 
and should be studied in the future. In addition, although 
all cells isolated from the three distinct ATC cell lines 
(C643, SW1736, and 8305C) were treated under identical 
conditions, the fold inductions of NIS were not the same. 
These data illustrate that intensifying activity of the PI3K/
Akt pathway in CSCs plays a dominant role in activating 
NIS. Our findings are consistent with previous studies (Liu 
et al., 2012; Serrano-Nascimento et al., 2014). 

Recent studies revealed that PI3K activation can 
modify NIS on the cell surface and reduce all-trans 
retinoic acid and hydrocortisone-influenced glycosylated 
NIS protein expression, and NIS-mediated RAI uptake 
(Knostman et al., 2004; Li et al., 2006; Ohashi et al., 2009; 
Wu et al., 2005). Based on our PI3K expression findings, 
NIS protein expression was assessed in the treated CSCs. 

We found that CD133-positive CSCs isolated from the 
8305C cell line and treated with 25 μM LY294002 for 
24 and 48 h did not express increased NIS protein even 
though the mRNA levels were increased 1.68 ± 0.09- and 
1.34 ± 0.06-fold at 24 and 48 h, respectively. The mRNA 
levels of other CD133-positive CSCs that expressed levels 
of this protein, were increased more than 2-fold. This 
indicates that expression of the NIS protein is linked to 
its mRNA levels. Other factors may also be involved in 
the process of protein expression that need to be clarified 
in future studies.

Overall, our data indicate that expression of the NIS 
protein in CSCs is very low and thus not a major factor 
in the iodide uptake process. However, we believe that 
focusing on CSCs in a targeted therapy manner is an 
effective way to create successful treatments for ATC 
patients. Our study shows that these cells express NIS 
mRNA and protein as a thyroid differentiation marker. 
It may be possible to eradicate these cells with several 
strategies such as the use of toxins (Waldron et al., 2014; 
Waldron and Vallera, 2013), immunotoxins (Ohlfest 
et al., 2013), monospecific anti-CSCs antibodies 
(Damek-Poprawa et al., 2011), anti-CSC conjugated 
nanoparticles (Swaminathan et al., 2013), anti-CSCs bi-
specific antibodies (Huang et al., 2013), trispecific natural 
killer engagers (Schmohl et al., 2016; Waldmann, 2014), 
and aptamers (Shigdar et al., 2013). 

In conclusions, our results reveal that CD133-positive 
CSCs found in ATC cell lines do not have NIS gene/protein 
expression as a major factor for RAI therapy. Thus, 
we believe that the presence of CSCs in tumor tissue, 
particularly ATC, is a likely reason for the failure of 
RAI therapy. Molecular CSC targeted therapy could be 
a treatment of choice to improve RAI therapy. Our data 
show that by targeting these cells with a PI3K inhibitor, we 
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Time PI3K gene 
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Mean ± SEM, 
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NIS gene 
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Mean ± SEM, 
n=3,  r2 = 1,
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Table 2. Fold Changes in PI3K and NIS mRNA Levels 
Using the Livak Method in CD133-Positive Cells 
Isolated from the ATC Cell Lines after 24 and 48 h 
Treatment with LY294002.

Figure 3. Western Blotting Shows that, Before Treatment 
(A), CD133-positive Cells Isolated from ATC Cell 
Lines Expressed Low Levels of the NIS Protein. 
Various LY294002 Concentrations Caused Different 
Changes in Expression of the NIS Protein (B-I). Normal 
Human Thyrocyte Lysate (J) and β-actin were Used as 
the Positive Control and for Normalization of Protein 
Expression, Respectively. 
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could induce expression of NIS mRNA and protein. This 
may improve the efficacy of RAI therapy in aggressive 
cancers like ATC.
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