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Abstract: In brain disorders, reactive astrocytes, which are characterized by hypertrophy of the cell
body and proliferative properties, are commonly observed. As reactive astrocytes are involved in
the pathogenesis of several brain disorders, the control of astrocytic function has been proposed
as a therapeutic strategy, and target molecules to effectively control astrocytic functions have been
investigated. The production of brain endothelin-1 (ET-1), which increases in brain disorders, is
involved in the pathophysiological response of the nervous system. Endothelin B (ETB) receptors are
highly expressed in reactive astrocytes and are upregulated by brain injury. Activation of astrocyte
ETB receptors promotes the induction of reactive astrocytes. In addition, the production of various
astrocyte-derived factors, including neurotrophic factors and vascular permeability regulators, is
regulated by ETB receptors. In animal models of Alzheimer’s disease, brain ischemia, neuropathic
pain, and traumatic brain injury, ETB-receptor-mediated regulation of astrocytic activation has
been reported to improve brain disorders. Therefore, the astrocytic ETB receptor is expected to
be a promising drug target to improve several brain disorders. This article reviews the roles of
ETB receptors in astrocytic activation and discusses its possible applications in the treatment of
brain disorders.

Keywords: endothelin; reactive astrocyte; ETB receptor; Alzheimer’s disease; brain ischemia; neuro-
pathic pain; traumatic brain injury

1. Introduction

Astrocytes are the most abundant glial cells in the brain and play roles in supplying
nutrients to nerve cells, in reinforcing synaptic structures at nerve endings, and in support-
ing the limited entry of blood components [1,2]. Under physiological conditions, astrocytes
modulate neurotransmission through the clearance of neurotransmitters from the synaptic
cleft; maintenance of extracellular fluid ion concentration; and release of gliotransmitters,
such as ATP, D-serine, and L-glutamate. In brain disorders, astrocytes alter their phenotype
to a reactive phenotype. Reactive astrocytes, which are characterized by hypertrophy of cell
bodies with increased expression of glial fibrillary acidic protein (GFAP), are highly prolif-
erative and often form glial scars at the damaged areas of nerve tissues. Reactive astrocytes
produce various bioactive factors that regulate the pathophysiological responses of the
injured nervous system [3,4]. Cytokines and chemokines produced by reactive astrocytes
promote neuroinflammation and exacerbate nervous system damage [5,6]. Conversely,
increased production of neurotrophic factors supports survival and synaptic formation
of damaged neurons as well as neurogenesis from neural progenitor cells [7–10], which
underlie the recovery of impaired nerve function. Thus, reactive astrocytes have both
detrimental and beneficial effects on the injured nervous system. Therefore, it has been
proposed that the regulation of astrocytic functions can lead to improvements in several
brain disorders [11–15]. Given this background, the factors that regulate astrocytic activa-
tion have been investigated. Endothelin (ET) is a family of peptides that are also potent
vasoconstrictors [16,17]. ETs are also present in nervous tissue. ET-1 production in the
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brain is increased during many neurological conditions such as ischemic stroke [18–23],
traumatic brain injury (TBI) [24,25], Alzheimer’s disease (AD) [26], amyotrophic lateral
sclerosis [27], multiple sclerosis [28], and viral infection [29,30]. Increased ET-1 in the
brain causes various pathophysiological reactions in the injured nervous system, including
exacerbation of neuroinflammation [31], vasospasm-mediated ischemic injury [32], angio-
genesis [33], and neurogenesis [34–36]. Endothelin B (ETB) receptors are highly expressed
in astrocytes [37,38]. Administration of a selective ETB agonist into rat brains promoted the
induction of reactive astrocytes [39], whereas ETB antagonists reduced it in animal models
of brain injury [40–42]. Therefore, the ETB receptor is expected to be a target molecule
to control the functions of astrocytic activation. In addition, examinations to improve
brain disorders by modulating ETB-receptor-mediated signal have being conducted. As
such, this article reviews the roles of ET-1/ETB receptor signals in astrocytic activation and
discusses the possibility of ETB receptor agonists and antagonists being beneficial for some
brain disorders.

2. Overview of Endothelin
2.1. Endothelin Ligands

The ET peptide family is composed of three isoforms of 21 amino acid cyclic peptides
that are the product of different genes. Since its discovery in 1989 as a novel family of
peptides produced by the vascular endothelium [16], the function of ET has attracted
attention due to its role in the circulatory system because of its strong vasoconstrictor
effect. However, shortly after discovery, ET ligands were shown to be present in various
tissues, including the central nervous system, and have a wide range of functions, such
as cell proliferation, differentiation, and neurotransmission [17]. ET-1 was the subtype
discovered first and is expressed in many tissue types, including nerve tissues. Some
studies have shown that the expression of ET-2 is largely limited to the gastrointestinal
tract, sex organs, and pituitary gland [43–45]. Chang et al. found that ET-2 is involved
in energy homeostasis, thermoregulation, and the maintenance of lung morphology and
function [46]. ET-3 is abundantly expressed in the intestine, pituitary gland, and brain [47].
Genetic deficiency of ET-3 function in the gastrointestinal tract is associated with the
development of Hirschsprung disease [48,49].

ET-1 biosynthesis is regulated by transcription and processing after translation of
the prepro-ET-1 gene, which is a precursor protein. Transcription of ET-1 is promoted by
transcription factors including AP-1, GATA-2, Smad, HIF-1α, and NFkB [50], for which the
binding sites are present in the 5′-flanking region of the gene. These transcription factors
are activated not only by cytokines and hormones but also by pathological conditions
such as hypoxia [51] and mechanical stress [16], which underlie the increase in ET-1
production under pathological conditions. The prepro-ET-1 protein is cleaved by neutral
endopeptidase to form an inactive precursor called big-ET (Figure 1A). The conversion of
big-ET to ET-1 is mediated by a family of endothelin-converting enzymes (ECEs). ECEs
have three isoforms, ECE-1, ECE-2, and ECE-3, which differ in cell distribution, localization,
and substrate specificity [17]. ECE-1 and ECE-2 are the prominent isoforms that cleave big-
ET-1. These ECEs are involved in the production of ET-1 and the degradation of amyloid-β
proteins [52,53], which is a causative factor of AD. Therefore, the role of ECEs in AD
pathology has been investigated from the perspective of ET production and degradation of
amyloid-β proteins [14,54].

2.2. Endothelin Receptors

ETs exhibit their actions through two G-protein-conjugated receptor subtypes: the
ETA and ETB receptors. Among the endogenous ET ligands, the ETA receptor shows
higher affinities for ET-1 and ET-2 than for ET-3. However, the ETB receptor has an
equal affinity for these three ET ligands (Figure 1B) [17]. Both of these ET receptors are
linked to the Gq protein and increase intracellular Ca2+ by activating phospholipase C
(PLC) [55–57]. For adenylate cyclase-mediated signals, the ETA and ETB receptors have
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different regulatory mechanisms, wherein the ETA type is Gs-linked to increase cAMP,
whereas ETB is linked to Gi and suppresses the signal [58,59]. In addition, the ETA and
ETB receptors are linked to the G12/13 protein. Signals triggered by the G12/13 protein
activate the Rho protein, a low molecular weight G protein, and stimulate Rho-associated
protein kinase (ROCK) [60], which regulates cellular proliferation, Ca2+, and cytoskeletal
actin reorganization [61–64]. Similar to other G-protein-coupled receptors, ET receptors
form dimers. Evance et al. showed that the ETA/ETB heterodimer induces a long-lasting
intracellular Ca2+ increase in response to ET-1, which was not observed by the activation
of ETA or ETB receptor homodimers [65,66].

Figure 1. (A) Biosynthesis of human endothelin-1 (ET-1) from prepro-ET-1. ET-1 is translated as
an inactive precursor protein called prepro-ET-1. Prepro-ET-1 is cleaved by dibasic pair-specific
endopeptidases and converted to big-ET-1. Specific processing of big-ET-1 by endothelin-converting
enzymes (ECEs) results in the production of mature ET-1. (B) Ligand preference and signal transduc-
tion of ETA and ETB receptors. There are three distinct ET family peptides: ET-1, ET-2, and ET-3. The
ETA receptor has a ligand preference for ET-1 and ET-2, whereas the ETB receptor binds these three
ET ligands with a similar affinity. Both ETA and ETB receptors are linked to Gq- and G12/13-type
G proteins, which activate Ca2+/protein kinase C (PKC) and rho/Rho-associated protein kinase
(ROCK), respectively. ETA receptors are also linked to the Gs protein to trigger cAMP-mediated
signals, whereas ETB receptors are linked to Gi to suppress them.

ET receptors are also expressed in astrocytes. Ligand binding experiments [17] and
measurement of mRNA expression levels [16] showed that ETB receptors are highly ex-
pressed in astrocytes over ETA receptors. Activation of the astrocytic ETB receptor causes in-
creased intracellular Ca2+ and activation of protein kinase C/extracellular signal-regulated
kinase signals via Gq-type proteins [17,64,67,68], which are intracellular signals involved
in ET-induced astrocytic proliferation [64,69,70] and the production of some bioactive
substances [71–73]. The astrocytic ETB receptor was shown to be coupled with Gi-type
proteins. The astrocytic ETB-receptor-mediated Gi signal was reported to be involved in
ET-induced reduction in intercellular communication through gap junctions [74]. Rho
protein-mediated signals can be activated by astrocytic ETB receptors [63]. Activation of the
ETB-receptor-mediated Rho signal in astrocytes involves cytoskeletal reorganization [63,75]
and cell-adhesion-dependent proliferation [64,76]. As astrocytic proliferation and mor-
phological alteration occur with phenotype conversion to reactive astrocytes [3,4], these
signal mechanisms triggered by ETB receptors are thought to underlie the induction of
reactive astrocytes.

2.3. Endothelin Agonists and Antagonists

Due to the potent vasoconstricting action of ET-1, studies on ET receptor agonists
and antagonists have been directed toward application in medications for cardiovascular
diseases [17] (Table 1). BQ123 [77] and FR139317 [78] are peptide-based ETA-selective



Int. J. Mol. Sci. 2021, 22, 4333 4 of 13

antagonists that are generated shortly after the discovery of ET-1. However, these ETA
antagonists are unsuitable for oral administration because of the low gastrointestinal
absorption due to the peptide structure and have not been clinically applied. Conversely,
bosentan (ETA/ETB antagonist) [79], ambrisentan (ETA selective antagonist) [80], and
macisentan (ETA/ETB antagonist) [81], which are orally administered, are approved in
many countries for the treatment of pulmonary arterial hypertension. As an ET receptor
agonist, IRL-1620, which shows high selectivity for the ETB receptor, was developed [82].
IRL-1620 was reported to ameliorate ischemic brain injury and is expected to be a novel
neuroprotective drug [83,84]. BQ788 [85], A192621 [86], and IRL-2500 [87] are selective
ETB receptor antagonists. Nagiri et al. suggested that IRL-2500 acts as an inverse agonist
by analyzing the structure of the IRL-2500/ETB receptor complex [88]. However, to date,
only a few studies have attempted to examine the roles of ETB receptors in the treatment
of diseases.

Table 1. Agonists and antagonists for ET receptors.

Agonist Antagonist

ET receptor non-selective ET-1 Bosentan, Macitentan

ETA selective sarafotoxin 6b

Ambrisentan, Sitaxsentan,
Atrasentan, Clazosentan,

Zibotentan, S-0139,
SB234551, Ro-61-1790

ETB selective sarafotoxin 6c, IRL-1620,
BQ3020, Ala1,3,11,15-ET-1

BQ788, IRL-2500,
A192621, RES-701-1

3. ET System in the Brain

Increases in brain ET-1 have been observed in animal models of nerve injury [18,19,24] and
in patients with stroke, head trauma, and neurodegenerative diseases [20–23,25]. Immuno-
histochemical observations of a damaged brain have shown that ET-1 is produced by brain
microvascular endothelial cells and reactive astrocytes. Factors such as tumor necrosis
factor-α, interleukin-1β and thrombin, as well as hypoxia induce ET-1 production in brain
microvascular endothelial cells [89] and astrocytes [90–92]. ET-1 stimulates astrocytic ET-1
production. We found that the stimulation of ETB receptors in mouse cultured astrocytes
increased prepro-ET-1 mRNA levels [24]. Furthermore, prepro-ET-1 expression in the
mouse TBI model was reduced by the antagonism of ETB receptors [24]. These results
indicate that astrocytic ET-1 production in brain disorders is enhanced by an autocrine
mechanism using ET-1.

Both ETA and ETB receptors are present in the brain with different cellular distri-
butions. Brain ETA receptors are expressed in vascular smooth muscle. The activation
of brain ETA receptors causes vasospasm in several brain disorders, which aggravates
ischemic brain damage [93,94]. In the brain, ETB receptors are highly expressed, especially
in astrocytes. Astrocytic ETB receptors are upregulated and accompanied by the conver-
sion to reactive astrocytes [41,95–97]. Together with an increase in ET-1, the upregulation
of astrocytic ETB receptors suggests that ETB-mediated regulation of astrocytic function
becomes more pronounced in brain disorders.

4. ETB-receptors-mediated Astrocytic Activation

Phenotypic conversion of resting astrocytes to reactive astrocytes is commonly ob-
served in various brain disorders. Since reactive astrocytes affect brain damage and/or
the recovery of the damaged nervous system, mechanisms to induce reactive phenotype
conversion have been investigated. Administration of ETB agonists into the rat brain
increased the number of GFAP-positive hypertrophic astrocytes without neuronal degener-
ation or microglial activation [39]. In animal models of stab wound injury [40] and brain
ischemia [41], the induction of activated astrocytes was reduced by administration of the
ETB antagonist BQ788. With the conversion of the activated phenotype, astrocytes become
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hypertrophic and proliferative [3,4]. Stimulation of ETB receptors in cultured astrocytes
causes morphological alterations accompanied by cytoskeletal actin reorganization [63,98]
and stimulated cellular proliferation [64,69,70], which is consistent with the action of ETB
receptors in vivo. These findings indicate that the activation of astrocytic ETB receptors
promotes their conversion to activated astrocytes. The conversion to reactive astrocytes is
induced by several signaling factors in the damaged nerve tissues [3]. Among these factors,
the ETB-receptor-mediated mechanism is characterized by maintaining or enhancing the
activated state of astrocytes through the autocrine mechanism of ET-1, suggesting a pivotal
role for ETB-mediated induction of reactive astrocytes.

Stat3, a transcription factor, is activated in response to brain injury, where reactive
astrocytes have high levels of activated Stat3 [99–101]. Increased production of GFAP,
which underlies the hypertrophy of activated astrocytes, is stimulated by gene transcrip-
tion through Stat3. In addition, cyclin D1 and S-phase-regulated kinase-2, which are
proteins that promote cell cycle G1/S phase transition and are upregulated in activated
astrocytes [102–104], have a Stat3 binding site on their gene promoter. Studies have shown
that the inhibition of Stat3 prevents the induction and proliferation of reactive astrocytes
in animal models of brain injury [105,106]. We showed that the activation of ETB recep-
tors in cultured astrocytes activated Stat3 and stimulated the transcription of cyclin D1
and Skp2 [69]. Administration of BQ788 reduced the activated form of Stat3 in a mouse
model of TBI [69]. This result indicates that the generation of activated astrocytes by
ETB receptor stimulation is Stat3-mediated. LeComte et al. showed that the transcription
of ETB receptors was promoted by Stat3, suggesting that this mechanism underlies the
upregulation of astrocytic ETB receptors in brain ischemia [95]. Thus, it can be concluded
that ETB-receptor-mediated Stat3 activation is an intracellular signal involved not only in
astrocyte phenotype conversion but also in the positive feedback mechanism due to ETB
receptor upregulation (Figure 2).

Figure 2. Positive feedback mechanism of the astrocytic ETB receptor signal through activation
of Stat3. Activation of astrocytic ETB receptors stimulates the transcription of cyclin D1, S-phase
kinase-associated protein 2 (Skp2), and GFAP through Stat3. Increases in cyclin D1, skp2m, and
GFAP proteins are involved in proliferation and hypertrophy associated with phenotype conversion
to reactive astrocytes. Activated Stat3 also promotes transcription of ETB receptors. The upregulation
of ETB receptors results in enhancement in Stat3-mediated gene expression in astrocytes.

5. Roles of Astrocytic ETB Receptors in Brain Disorders

As reactive astrocytes are involved in the pathogenesis of many brain disorders,
examinations have been conducted to improve brain disorders by controlling the astrocytic
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functions. Studies using animal models of brain disorders suggest that ETB-receptor-
mediated alterations of astrocytic functions have a beneficial effect on AD, brain ischemia,
neuropathic pain, and TBI.

5.1. Alzheimer’s Disease

Reactive astrocytes are observed in the brains of patients with AD and contribute
to the pathology of AD [14]. In AD, the accumulation of amyloid-β proteins in the brain
is the cause of nerve cell degeneration and cognitive impairment. In addition, ischemic
neurodegeneration associated with decreased cerebral blood flow is involved in the pro-
gression of cognitive injury due to AD. In the brains of AD patients, ET-1 content and ECE-2
expression were increased [26]. Hung et al. showed that astrocyte-specific overexpression
of ET-1 promoted amyloid-β production [107]. Conversely, in cultured neurons, amyloid-β
proteins increase ECE expression and ET-1 production [108]. These observations suggest
that ET-1 and amyloid-β proteins promote their expression and aggravate AD pathology.
It has been suggested that ECE also cleaves amyloid-β proteins and removes them from
the brain [109]. Therefore, further investigation into the pathological significance of in-
creased ECE expression in AD is necessary. It was shown that the dysfunction of brain
blood vessels and reduction in cerebral blood flow are observed in the brains of patients
with AD. Since reduction in cerebral blood flow correlates with the degree of cognitive
symptoms, it is considered a factor aggravating AD pathology. In addition to direct action
on neuronal cells, the accumulation of amyloid-β proteins causes cerebrovascular injury
and reduction in cerebral blood flow. Elesber et al. showed that the non-selective ET
receptor antagonist bosentan improves cerebrovascular dysfunction in AD model mice
overexpressing amyloid precursor protein [110]. In the pathological brain, ET-1 production
occurs in activated astrocytes, which causes a decrease in cerebral blood flow. Therefore,
suppression of astrocyte activation in the AD brain is expected to produce beneficial effects
by improving cerebral blood flow and by reducing amyloid-β production.

5.2. Brain Ischemia

Due to its potent vasoconstricting action, the role of brain ET-1 was examined in rela-
tion to the vasospasm observed during cerebral ischemia. Since ETA receptors mediate the
vasoconstricting action of ET-1, the effects of ETA antagonists on nerve damage in animal
models of brain ischemia have been examined [93,94]. Although these animal experiments
indicate the protective effect of ETA antagonists, these drugs have not been clinically ap-
plied for cerebral ischemic injury at the time of writing. In contrast, Leonard et al. reported
that the ETB receptor agonist IRL-1620 had a neuroprotective effect and promoted the
recovery of nerve function in a rat brain ischemia model using middle cerebral artery oc-
clusion [84]. IRL-1620 administration was accompanied by angiogenesis and neurogenesis,
which in turn were accompanied by increased vascular endothelial growth factor (VEGF)
and nerve growth factor (NGF) production [83]. Activation of astrocytic ETB receptors stim-
ulates the production of several growth factors to induce angiogenesis and neurogenesis,
including brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic
factor (GDNF), VEGF, and NGF (Figure 3) [72,111–113]. Although it was not examined if
the protective action of IRL-1620 against cerebral ischemia is caused by astrocyte-derived
growth factors, these observations suggest that the activation of astrocytic ETB receptors is
beneficial in promoting the recovery of nerve functions after brain ischemia.

5.3. Neuropathic Pain

ET-1 is known to modulate nociceptive pain by affecting neurotransmission in the
ascending pain pathway [114]. In the spinal cord, ET-1 induces hyperalgesia via the
activation of ETA receptors. ET-1 also has an anti-nociceptive effect, which was reported
to be mediated through ETB receptors [114]. The modulation of transmission in the pain
pathway by ET-1 is mediated by the regulation of ion channel activity and neurotransmitter
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release in the spinal cord and brain. Neuropathic pain is an intractable pain that occurs
without tissue damage.

Figure 3. Roles of ETB receptor-mediated bioactive factor production from reactive astrocytes. In-
creased ET-1 in brain disorders activates astrocytic ETB receptors and induces reactive astrocytes.
Reactive astrocytes release various types of bioactive factors. These include factors that increase the
permeability of brain microvessels to promote blood–brain barrier (BBB) disruption and neuroinflam-
mation, and factors that promote nerve protection and neurogenesis.

The induction of neuropathic pain is caused by hyperexcitation of neural networks
in the spinal pain pathway. Although the mechanisms underlying hyperexcitation in the
pain pathway have not been fully clarified, previous studies showed the involvement
of reactive astrocytes in the spinal cord. Increased numbers of reactive astrocytes were
observed in the spinal cord of experimental animals with neuropathic pain [115]. Tsuda
et al. showed that administration of a Stat3 inhibitor to a rat neuropathic pain model
resulted in the suppression of the development of reactive astrocytes in the spinal cord and
recovery from the established hyperalgesia [116]. Yamasaki et al. found that, in neuropathic
pain induced by allergic inflammation, astrocytic ETB receptors were upregulated with
the induction of reactive astrocytes in the spinal cord [117]. The suppression of reactive
astrocytes by BQ788 also reduced hyperalgesia [117]. These observations suggest that the
ETB-receptor-mediated induction of reactive astrocytes causes neuropathic pain.

5.4. Traumatic Brain Injury (TBI)

TBI is often caused by a physical blow to the brain in a traffic accident or a fall. In
the acute phase of TBI, disruption of the blood–brain barrier (BBB) occurs around the
impact core region. Disruption of the BBB allows entry of blood components and blood
cells into the brain parenchyma, which causes brain edema and neuroinflammation that
aggravates brain damage due to TBI. Therefore, BBB protection in the acute phase is critical
for the recovery of patients with TBI. A large part of the BBB is formed between the brain
microvascular endothelial cells and astrocytes. The permeability of brain microvessels is not
static and is not regulated by various factors produced by astrocytes (Figure 3) [118]. In the
acute phase of TBI, reactive astrocytes release excessive amounts of vascular permeability
regulators, such as VEGF and matrix metalloproteinases (MMPs), to brain microvessels
and disrupt the barrier function [13]. In a mouse fluid percussion injury (FPI)-induced
TBI model, we found that BQ788 ameliorated the disruption of BBB and brain edema
accompanied by a decrease in reactive astrocytes [36]. Amelioration of BBB disruption
was also achieved by the administration of bosentan (ETA/ETB antagonist) after FPI to
the mouse brain [24]. These findings indicate that ETB antagonism is effective in reducing
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TBI-induced BBB disruption. Activation of astrocytic ETB receptors stimulates VEGF
and MMP9 production, while decreasing angiopoietin-1, a factor that stabilizes the BBB
(Table 2) [119,120]. In the mouse TBI model, BQ788 normalized the altered expressions
of VEGF, MMP9, and angiopoietin-1 in the injured region [42,121]. The actions of these
vascular permeability regulators are thought to underlie protection of the BBB by ETB
receptor antagonism. BBB disruption by TBI involves several factors that are produced
by reactive astrocytes. The antagonism of ETB receptors simultaneously improves the
production of these factors by reducing astrocytic activation, which suggests that ETB
antagonists effectively protect BBB function in the acute phase of TBI.

Table 2. Regulations of astrocytic bioactive factors by ETB receptors.

Neurotrophic Factors Vascular Permeability Regulators Others

Up-regulation
GDNF [72],
BDNF [111],
NGF [112]

VEGF [119],
MMP2 [120],
MMP3 [73],

MMP9 [71,120]
ET-1 [24]

CCL2/MCP-1 [122],
CXCL1/CINC-1 [122]

Down-regulation angiopoietin-1 [119,121]
sonic hedgehog [123]

CX3CL1/fractalkine [122],
ephrin-A2, -A4, -B2, -B3 [124]

GDNF, glial cell line-derived neurotrophic factor; BDNF, brain-derived neurotrophic factor; NGF, nerve growth factor; VEGF, vascular
endothelial growth factor; MMP, matrix metalloproteinases; ET-1, endothelin-1; MCP-1, monocyte chemotactic protein-1; CINC-1, cytokine-
induced neutrophil chemoattractant-1.

6. Conclusions

As the pathological roles of astrocytes have been clarified, therapeutic strategies tar-
geting reactive astrocytes are being studied in several brain disorders. Astrocytic activation
is triggered by the release of several signaling molecules from damaged nerve tissues
(Table 2). Among these factors, the ET-1/ETB receptor system maintains and enhances
the activated state of astrocytes through the autocrine pathway of ET-1 and upregulation
of ETB receptor expression. This positive feedback mechanism indicates a pivotal role
of the ET-1/ETB receptor system in the functional regulation of reactive astrocytes. In
addition, many ET receptor agonists and antagonists have been developed, some of which
are clinically applied. In the future, ET receptor agonists and antagonists are expected to
be clinically applied in the treatment of several brain disorders.
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