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Sufficient uptake and whole body distribution of vitamin C (ascorbate) is essential for 
many biochemical processes, including some that are vital for tumor growth and spread. 
Uptake of ascorbate into cancer cells is modulated by availability, tumor blood flow, tissue 
diffusion parameters, and ascorbate transport proteins. Uptake into cells is mediated by 
two families of transport proteins, namely, the solute carrier gene family 23, consisting 
of sodium-dependent vitamin C transporters (SVCTs) 1 and 2, and the SLC2 family of 
glucose transporters (GLUTs). GLUTs transport the oxidized form of the vitamin, dehy-
droascorbate (DHA), which is present at negligible to low physiological levels. SVCT1 
and 2 are capable of accumulating ascorbate against a concentration gradient from 
micromolar concentrations outside to millimolar levels inside of cells. Investigating the 
expression and regulation of SVCTs in cancer has only recently started to be included in 
studies focused on the role of ascorbate in tumor formation, progression, and response 
to therapy. This review gives an overview of the current, limited knowledge of ascorbate 
transport across membranes, as well as tissue distribution, gene expression, and the 
relevance of SVCTs in cancer. As tumor ascorbate accumulation may play a role in the 
anticancer activity of high dose ascorbate treatment, further research into ascorbate 
transport in cancer tissue is vital.

Keywords: ascorbate, sodium-dependent vitamin C transporter 1, sodium-dependent vitamin C transporter 2, 
tumor, expression

ASCORBATe AnD CAnCeR

The role of vitamin C (ascorbate) in cancer risk, progression, and therapy is not resolved (1–3), 
but cancer patients are frequently ascorbate deficient (4, 5). Ascorbate’s role is likely to involve a 
combination of several of the following proposed functions: (a) by acting as an electron donor it is a 
potent antioxidant (6), and has thus been proposed to interfere with some chemotherapy regimes (7); 
(b) ascorbate has prooxidant properties via its ability to reduce redox-active metals (8), and thus is 
proposed to directly act as a cytotoxin (9); and (c) ascorbate serves as a cofactor for a large family of 
Fe(II) and 2-oxoglutarate-dependent dioxygenases, which includes the collagen prolyl hydroxylases 
required for the formation of the tertiary structure of collagen, regulation of hypoxia-inducible 
transcription (HIF) factors required for tumor angiogenesis, treatment evasion and metastasis, and 

Abbreviations: 5-FU, 5-fluorouracil; CLL, chronic lymphocytic leukemia; SLC23, solute carrier gene family 23; SLC2, solute 
carrier gene family 2; SVCT, sodium-dependent vitamin C transporter; DHA, dehydroascorbate; GLUTs, glucose transporters; 
Gulo, l-gulonolactone oxidase; SNP, single nucleotide polymorphism.
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FiGURe 1 | Ascorbate levels in normal tissue are not associated with 
ascorbate levels in tumors from endometrial and colorectal cancer 
patients. Tissue samples from patients with endometrial (n = 50) and 
colorectal cancer (n = 50) were processed, and ascorbate levels (nanomoles 
per microgram DNA) were measured using HPLC-EC [data from  
Ref. (17, 18)]. From each patient, samples were obtained from tumor and 
adjacent normal tissue. There was no association between ascorbate content 
in tumor vs. normal tissue in individual patients with endometrial or colorectal 
cancer (Pearson correlation: R2 = 0.001, p = 0.81, and R2 = 0.022, p = 0.30, 
respectively). Hence, whole body ascorbate status may not predict tumor 
ascorbate status.
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nucleotide hydroxylases involved in DNA demethylation, which 
affects global gene expression (10).

In cancer, ascorbate’s function as cofactor for the HIF 
hydroxylases is currently the most plausible, with several lines of 
evidence. Studies have shown that (a) in cultured cells, increas-
ing intracellular ascorbate decreased HIF-1 activation (11–13),  
(b) in ascorbate-dependent mouse models, increasing circulating 
ascorbate via dietary intervention or ascorbate injections reduced 
tumor growth and hypoxia, and dampened HIF-1 activity (14–16), 
and (c) in tumor tissue from cancer patients with endometrial 
and colorectal cancer, increased ascorbate levels were associated 
with reduced HIF-1 pathway activity (17, 18). Importantly, tumor 
levels of ascorbate were associated with improved disease-free 
survival in colorectal cancer patients (18).

ASCORBATe UPTAKe inTO TUMORS

Uptake of ascorbate into cancer cells is modulated by availability, 
tumor blood flow, tissue diffusion parameters, and ascorbate 
transport proteins. Potential limiting factors to ascorbate uptake 
into solid tumors include (1) tissue characteristics, such as high 
interstitial fluid pressure and high cell density, (2) suboptimal 
vascular function, which includes avascular regions, immature 
and dysfunctional vessels, and varied blood flow, and (3) trans-
porter concentration, location, and function. Data derived from 
a three-dimensional cellular diffusion model have suggested 
that ascorbate penetration into a poorly vascularized tumor may 
require higher than normal plasma concentrations (19). A recent 
pharmacokinetic study in mice has shown that in response to a 
single administration of high dose ascorbate, there was a pro-
longed presence of the vitamin in the tumor compared to plasma 
and liver, where ascorbate levels reduced rapidly (16), indicating 
that tumor accumulation may be different from normal tissue.

In patients with colorectal or endometrial cancer, where 
ascorbate levels of both tumor and uninvolved adjacent normal 
tissue were measured, no association between ascorbate levels in 
tumor tissue and matched normal tissue was apparent (Figure 1)  
(17, 18), indicating differences in tumor uptake. Transporter 
status of these clinical samples was not reported.

ASCORBATe TRAnSPORT AnD 
eLiMinATiOn

Maintenance of whole body ascorbate levels and distribution to 
different compartments is mediated by two families of transport 
proteins (20). While ascorbate is taken up into cells via sodium-
dependent vitamin C transporters (SVCTs), its oxidized form, 
dehydroascorbate (DHA), is accumulated through facilitated dif-
fusion via glucose transporters (GLUTs) (21, 22). A small propor-
tion of ascorbate and DHA can also pass the plasma membrane 
via passive diffusion (23, 24).

Increased formation of DHA in the tumor microenvironment 
through oxidative stress (25) or via parenteral administration of 
high doses of DHA (26) has been proposed to enable the accumu-
lation of ascorbate in cancer cells via GLUTs, but this has not been 
measured or proven. GLUT1 overexpression is associated with 
KRAS or BRAF mutations in colorectal tumors, thus potentially 

increasing DHA uptake in this important subset of patients (25). 
Here, KRAS-mutant colorectal cancer cells in culture preferen-
tially took up DHA rather than ascorbate and were selectively 
sensitive to and killed by DHA (25). Yet, in a different study using 
a range of KRAS-mutant colorectal cell lines, ascorbate transport, 
and sensitivity was reliant on SVCT2, not GLUTs (27). Due to 
very low or undetectable physiological DHA concentrations in 
plasma (<10% of total ascorbate) (28, 29), its uptake is likely to 
be of minor importance in vivo, and DHA transport is therefore 
not discussed further in this review.

How ascorbate exits cells is not fully understood. Different 
mechanisms have been suggested, including volume-sensitive and 
Ca2+-dependent anion channels, gap-junction hemi-channels, 
exocytosis of secretory vesicles containing ascorbate, and homo- 
and hetero-exchange systems at the plasma membrane (30–33). 
Ascorbate efflux from, as opposed to uptake into cancer cells, and 
tumors as a whole, has not been studied.

Sodium-dependent vitamin C transporters are members of 
the solute carrier gene family 23 (SLC23), and each protein is 
comprised of 12 transmembrane domains (34). Currently, three 
isoforms have been identified, SVCT1 and 2 transport ascorbate, 
and the orphan receptor SVCT3 has still unknown function 
(35). SVCT1 and SVCT2 exert the cotransport of sodium and 
ascorbate in a ratio of 2:1 down an electrochemical sodium 
gradient, which is maintained by K/Na+ exchange mechanisms 
(36). This transport is sensitive to changes in temperature and pH 
with an optimum at pH 7.5 (37, 38). SVCT2 also relies on Ca2+ 
and Mg2+ for its activity (36). Expression of the different SVCT 
transport proteins is tissue and cell type specific and is controlled 
by transcriptional regulation of SLC23 genes (29, 35) and post-
translational regulation of the transporters (39). However, the 
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exact regulation mechanisms of ascorbate transport proteins are 
still not fully understood.

The characteristics of SVCT1 and SVCT2, and their known 
relevance to cancer, are described in the next sections.

SODiUM-DePenDenT viTAMin C 
TRAnSPORTeR 1

Distribution in normal and Tumor 
Tissues
Sodium-dependent vitamin C transporter 1 (SLC23A1) is 
expressed in the epithelial tissue of kidney, intestine, liver, lung, 
and skin. In the kidney, SVCT1 is situated in the brush-border 
membrane of the proximal tubule where it mediates reuptake of 
ascorbate, thereby playing a major role in maintenance of whole 
body ascorbate levels (40). SVCT1 transports ascorbate with low 
affinity with a Km in the range of 65–237  µM, which makes it 
capable of high capacity uptake of ascorbate from the diet (36, 
41). Only one study has measured SVCT1 protein and ascorbate 
levels in mouse tumors and reported low SVCT1 levels with little 
variation following ascorbate administration (16). Tissue distribu-
tion of SVCT1 in cancer patients has not been described.

SLC23A1 Polymorphisms and Cancer Risk
The gene (SLC23A1) is located on chromosome 5 and contains 
binding sites for the hepatocyte nuclear factor 1 transcription 
factor in its promoter region (42). In humans, no loss of SLC23A1 
has been described to date. However, different single nucleotide 
polymorphisms (SNPs) in the coding region have been identi-
fied impairing ascorbate transport and reducing plasma levels  
(29, 41, 43). Studies focusing on the association of SLC23A1 
variants and cancer risk gave conflicting results (29, 43–45). 
SNPs have been linked to increased risk of follicular lymphoma 
(rs6596473 G>C) (44), with no influence on gastric cancer 
(43) or advanced colorectal adenoma (45). However, plasma 
ascorbate levels were not measured in these reports, and further 
investigations are needed, to evaluate the link of SLC23A1 poly-
morphisms with disease risk.

Control of Gene expression
Gene and protein expression studies of SVCT1 in cancer have 
not been widely reported. Svct1 mRNA levels were upregulated 
by bile acids in rat hepatoma cells (46), whereas glutathione 
depletion resulted in decreased Svct1 mRNA, protein levels and 
ascorbate transport (47). Human hepatoma cells, which unlike 
rat are incapable of synthesizing ascorbate, were unaffected by 
glutathione depletion (47). Inconsistent results were reported 
for colorectal cancer cells. In human colon carcinoma cells, high 
concentrations of ascorbate downregulated SVCT1 expression 
in vitro (48), while no difference in SVCT1 protein expression was 
observed in human colon adenocarcinoma samples compared to 
normal colon mucosa (49).

Posttranslational Modification
Ascorbate transport is not only regulated at the level of gene expres-
sion of SLC23A1 (42) but also via posttranscriptional regulation, 

and glycosylation and phosphorylation regulate SVCT1 activity 
(39). Translocation of SVCT1 carriers from the cytosol to the 
cell membrane was detected in human keratinocytes upon UVB 
irradiation, without changes in mRNA expression, indicating that 
cellular localization of SVCTs may be an important determinant 
of the ascorbate uptake rate (50). Yet, studies in cancer cells have 
not been conducted.

SODiUM-DePenDenT viTAMin C 
TRAnSPORTeR 2

Distribution in normal and Tumor Tissues
Sodium-dependent vitamin C transporter 2 is expressed in almost 
every tissue and cell in the body (29). It has been characterized 
as a low capacity, high affinity transporter with a transport Km of 
~20 μM and can thus take up lower concentrations of ascorbate 
than SVCT1 (36). The SVCT2 transporter is highly expressed in 
the brain where it is essential for maintaining the high ascorbate 
levels needed for brain function and development (51, 52). In 
human bronchial epithelium, SVCT2 protein expression inversely 
correlated with ascorbate concentration in the respiratory tract 
lining fluid (53). SVCT2 protein was readily detected in Lewis 
lung tumors grown in ascorbate-dependent mice, and SVCT2 
protein levels varied over time following a single high dose 
ascorbate injection, but their association with tumor ascorbate 
levels was complex (16). No other studies have measured SVCT2 
in tumor tissue.

SLC23A2 Polymorphisms and Cancer Risk
Sodium-dependent vitamin C transporter 2 is encoded by the 
SLC23A2 gene located on chromosome 20. A short isoform of 
SVCT2, naturally occurring in humans through alternative 
splicing, is unable to transport ascorbate (54). It has been shown 
to negatively regulate the function of the full length transporter 
by changing its affinity constant via hetero-oligomerization in 
human embryonic kidney 239T cells and mouse neuronal cells 
(54). This isoform also had the ability to partially inhibit SVCT1 
(54, 55).

Several studies have focused on SLC23A2 gene polymor-
phisms related to ascorbate levels and disease risks. Two SNPs 
located in the intron region of SLC23A2 (rs6133175, rs1776948) 
were associated with risk of chronic lymphocytic leukemia (CLL) 
in a case–control study (n = 1,691) (56). However, no relationship 
between CLL risk and dietary ascorbate intake, as determined via 
questionnaires, was detected, and ascorbate was not measured 
(56). Another SNP (rs12479919) was inversely correlated with 
gastric cancer risk in a Polish study cohort (n = 693) (57). Similarly, 
in a European study (n =  365 cases, 1,284 controls), SLC23A2 
SNPs (rs6053005, rs6133175) were predictive of plasma ascorbate 
levels, and haplotype variants were associated with risk of gastric 
cancer (43). In Japanese patients with esophageal squamous cell 
carcinoma (n  =  49), two SNPs (rs268116, rs13037458) tended 
to associate with clinical response and long-term survival after 
5-fluorouracil (5-FU)/cisplatin-based chemoradiotherapy, and 
two SNPs (rs4987219, rs1110277) correlated with chemotherapy-
induced toxicity (58). Although several SLC23A family members 
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have been reported to transport nucleobases, such as 5-FU, 
human SVCT1 and 2 reportedly do not possess this activity (59). 
Interestingly, SVCT2 mRNA levels also correlated with sensitivity 
to 5-FU in human esophageal cancer cell lines (60). Analysis of 
another polymorphism (rs4987219) revealed no association with 
cancer risk in squamous cell carcinoma of the head and neck in 
a Brazilian study (n = 165, 230 controls) (61). In neither study, 
ascorbate was measured.

Control of Gene expression
Similar to Svct1, mRNA expression of Svct2 was upregulated by 
bile acids in rat hepatoma cells in vitro (46), while glutathione 
depleted cells had decreased Svct2 mRNA and protein levels 
(47). In human hepatoma cells, however, neither bile acids 
nor glutathione depletion had an effect on SVCT2 expression  
(46, 47). In human breast cancer cells, SVCT2 mRNA levels dif-
fered significantly between cell lines (62).

Subcellular Localization of SvCT2
The localization of SVCT2 within the cell may determine its 
transport activity, although data are conflicting. SVCT2 protein 
can be retained within intracellular compartments or transport 
vesicles and may have different kinetic properties depending on 
its localization (63), but data in cancer cells are limited. In neurons 
in culture, SVCT2 translocated to the plasma membrane upon 
increased extracellular ascorbate concentration (64). In a murine 
model of Huntington’s disease, impaired membrane transloca-
tion of SVCT2 led to insufficient accumulation of ascorbate in 
neurons (64).

Mitochondrial SVCT2 has been proposed to function as a low-
affinity transporter due to differences in intracellular sodium and 
potassium concentrations (65). Lower sodium and higher potas-
sium concentration inside embryonic kidney cells increased the 
transport Km from 20 µM to over 600 µM in mitochondria, and 
this was proposed to make transport more responsive to varia-
tions in intracellular ascorbate levels, and enabling transport into 
intracellular organelles (65). A transporter with a Km of 20 µM or 
less, as it is the case for SVCT2 in the plasma membrane, would 
function at maximal velocity at 200  µM ascorbate and not be 
able to respond to millimolar intracellular concentrations (65). 
In contrast, in U937 human myeloid leukemia cells, SVCT2 had 
similar kinetic characteristics at both locations (66). It was thus 
concluded that the transporter might function with different 
affinities in different cell types.

SvCT2 Activity
Data in mice showed increased radioactive ascorbate uptake in 
adrenal glands, compared to adrenocortical or adrenal medulla 
tumors, and adrenal uptake was sensitive to the ascorbate 
transport blocking agent sulfinpyrazone (67). In a mouse neu-
roblastoma cell line, SVCT2 was found to have two different 
transport kinetics (Km of 13 and 105 µM), and transport could be 
inhibited with flavonoids (68). Expression of SVCT2 in human 
neuroblastoma tissue was confirmed by immunofluorescence 
(68) but activity is unknown. SVCT2 protein levels in breast 
cancer cells were predictive of ascorbate uptake and cellular 
sensitivity to ascorbate cytotoxicity, and this was confirmed via 

overexpression and gene knockdown in vitro (69). Furthermore, 
in vivo tumor response to ascorbate administration (1 g/kg/day) 
correlated with increased SVCT2 protein levels in xenografts 
(69), although tumor levels of ascorbate were not assessed. 
Western blot (n = 20) and immunohistochemistry (n = 92) in 
breast cancer patients indicated an inverse relationship between 
SVCT2 protein levels in tumor tissue and hormone receptor sta-
tus, with low SVCT2 levels in normal tissue (69), again without 
ascorbate measurements.

The monoclonal antibody cetuximab, used for the treat-
ment of several types of metastatic cancer, inhibits the human 
epidermal growth factor receptor, and KRAS-mutant tumors 
are resistant to cetuximab (70). SVCT2 expression sensitized 
KRAS-mutant human colon cancer cells to combined admin-
istration of ascorbate and cetuximab in vitro (27). Combination 
treatment also reduced tumor growth in KRAS-mutant 
xenograft tumors dependent on SVCT2 levels; intracellular or 
tumor ascorbate levels have again not been measured (27). In 
a recent study, ascorbate was also shown to act synergistically 
with the multikinase inhibitor sorafenib through dysregulation 
of calcium homeostasis, in addition to H2O2 production, in a 
hepatocellular carcinoma cell line (71). Elucidating the role of 
vitamin C transporters in this setting might further clarify the 
mechanism of action of ascorbate in modulating the cytotoxicity 
of chemotherapeutics.

COnCLUDinG ReMARKS AnD FUTURe 
DiReCTiOnS

Ascorbate is critical for many enzymatic reactions in the body 
and needs to be sufficiently taken up from the diet and distributed 
into different body compartments. Blood ascorbate levels in can-
cer patients are measured infrequently, and data are inconsistent 
in different studies. Importantly, tumor tissue levels in cancer 
patients have only been analyzed in two studies to date (17, 18). 
How ascorbate transport proteins are regulated at both the tran-
scriptional and posttranslational level is still not fully understood. 
There are only three studies that report SVCT protein status in 
human cancer tissue and none of these report associated ascor-
bate levels (49, 68, 69). Further research is needed to evaluate if 
expression and localization of ascorbate transporters in tumors 
could predict ascorbate uptake, and thus serve as biomarkers 
for potential therapeutic effect in patients undergoing high dose 
ascorbate infusion.
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