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Medical domain knowledge in domain-agnostic generative AI
Jakob Nikolas Kather1,2,3,4✉, Narmin Ghaffari Laleh1, Sebastian Foersch5 and Daniel Truhn6

The text-guided diffusion model GLIDE (Guided Language to Image Diffusion for Generation and Editing) is the state of the art in
text-to-image generative artificial intelligence (AI). GLIDE has rich representations, but medical applications of this model have not
been systematically explored. If GLIDE had useful medical knowledge, it could be used for medical image analysis tasks, a domain in
which AI systems are still highly engineered towards a single use-case. Here we show that the publicly available GLIDE model has
reasonably strong representations of key topics in cancer research and oncology, in particular the general style of histopathology
images and multiple facets of diseases, pathological processes and laboratory assays. However, GLIDE seems to lack useful
representations of the style and content of radiology data. Our findings demonstrate that domain-agnostic generative AI models
can learn relevant medical concepts without explicit training. Thus, GLIDE and similar models might be useful for medical image
processing tasks in the future - particularly with additional domain-specific fine-tuning.
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GENERATIVE MODELS: FROM GANS TO GLIDE
Generative artificial intelligence (AI) models can create synthetic
images which are very close to or indistinguishable from real
images. Broadly used techniques in this field are generative
adversarial networks (GANs)1 and variational autoencoders
(VAEs)2, of which many variants exist. These generative models
can create synthetic images, in an unconditional way or
conditional to a defined set of classes. Both approaches require
dedicated training to a specific domain, for example x-ray images.
In this domain, conditional generative models can be trained on
large datasets with multiple disease categories, enabling them to
synthesize images in any of these categories. Recently, generative
AI approaches have been extended by coupling language
processing models and image processing models3. These multi-
modal models can be used for image generation from text
prompts4. Trained on millions of image-text pairs, such algorithms
build rich internal representations of many facets of our world.
Thus, these models can be used for zero-shot image generation,
i.e., synthesizing images of categories which were not explicitly
represented in the training set4. The state of the art in multimodal
generative AI is the text-guided diffusion model GLIDE5, which
recently outperformed another recent generative model, DALL-E4.
GLIDE can generate realistic and complex images across many
domains and has demonstrated the capability of logical reasoning.
Potential medical applications of these models have not been
systematically explored.

GENERATIVE MODELS IN MEDICINE
In medical applications of AI, generative models have been used
in multiple data types6, including radiology7, histopathology8,9

and endoscopy10. Synthetic data generated by such AI systems is
hailed as a promising approach for data augmentation, data
sharing and explainability in medical AI6. However, an important
limitation of generative AI in medicine is the limited scope of such
specialized systems which often need to be laboriously trained to

generate images in a single narrow domain11. This problem could
be addressed by a domain-agnostic approach such as GLIDE: If
training on vast amounts of unselected text-image pairs were
sufficient to generate useful synthetic medical images, this could
massively improve the adoption of such models in medical
applications. However, it is unclear if training a large AI model on
unselected text-image pairs scraped from the internet also
conveys useful medical knowledge. Currently, the reality in
medical AI is that AI systems focus on a narrow niche with a
single type of data and be validated thoroughly in this particular
niche11. Although these narrow AI systems have shown perfor-
mance on par with experts and are very valuable in their specific
domain, they fail to generalize or to adapt to slight changes in the
inputs. E.g. an algorithm detecting cancer in radiological or
histological images might fail to uphold its performance if a
population is examined that is different from the distribution of
images that the algorithm was trained on. Similar shortcomings
have been discussed for example by Kleppe et al. and others11. We
speculate that more general models which are less strictly
associated with a specific task can overcome this limitation if
they are able to apply abstracted underlying concepts. Also, it
might be impossible to create and validate AI systems for every
conceivable niche application in medicine.

HOW MUCH MEDICAL DOMAIN KNOWLEDGE IS ENCODED IN
GLIDE?
We experimentally investigated if GLIDE has plausible representa-
tions on medical styles and medical concepts with a focus on
cancer research and oncology (Fig. 1). We use the publicly
available, somewhat restricted version of GLIDE, which was
released in December 2021 and showed comparable performance
to the previous state-of-the-art model, DALL-E, which was released
in early 2021. A limitation of the public GLIDE model is that
photographs of people were removed from the training dataset.
However, the general concept of diseases or representations of
medical image data is not necessarily negatively affected by such
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filtering. Using medicine-related text prompts for GLIDE, we found
that images of high photographic quality were generated, but
observed some striking confusions: For example, the term “Grave’s
disease” resulted in a photograph of a gravestone (Fig. 2A). Also,

the text prompt “A histopathological image of the brain” resulted
in a macroscopic cross-section of the brain shown in the style of a
histopathology image (Fig. 2A). Furthermore, many images,
especially illustrations had illegible text in the image, pointing to

Fig. 1 Example images by target category and modality. All images were generated with a CLIP-conditioned GLIDE. One example was
chosen from eight instances per category.
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limitations in the available model which presumably did not learn
robust typesetting during training. In general, the model seemed
to have understood some key concepts, but combined them in
ways that were sometimes surprising, such as a heart made of
blood vessels, an X-ray image of a tree-like structure in the brain
(Fig. 1). Obvious confusions were more prevalent in images
generated without CLIP guidance (Fig. 2B, C), but also present in
some images generated with CLIP guidance (Fig. 2D). This is in
contrast to findings made in the original publication of GLIDE by
Nichol et al.5, which demonstrated that GLIDE without CLIP
guidance results in higher quality images. Indeed, we subjectively
reproduced Nichol et al.’s finding for non-medical text prompts, in
which the subjective photographic quality was higher for GLIDE
without CLIP guidance (Fig. 2E). We conclude that although GLIDE
without CLIP guidance seems to be superior for non-medical text
prompts, CLIP guidance improves the results. In addition, we
compared short text prompts (Suppl. Figure 1B) with detailed text
prompts (Suppl. Figure 1B) and found that detailed prompts
generally improved style and content.

SYSTEMATIC EVALUATION OF STYLE AND CONTENT IN GLIDE-
GENERATED IMAGES
How good is GLIDE in generating a correct style and correct
content for medicine-related text prompts? To quantitatively

analyze this, we generated hundreds of images with GLIDE (with
CLIP guidance) and asked three medical experts to classify the
correctness of style and content shown on these images (Suppl.
Table 1). Style and content were interpreted by a pathologist in
training, a radiologist and an internist on an ordinal rating scale
from 0 to 4 (0=completely wrong,1=hints of correct, 2=clear
signs of correct, 3=mainly correct, 4=perfectly correct) in a
blinded way. Each expert was presented with 274 prompts and
four randomly generated images for each prompt. They then
rated the best style and content in these images (Suppl. Figure 2).
Specifically, we generated images in multiple styles: microscopy,
histology, X-ray, MRI, CT, photograph, poster and illustration. Using
this approach, we found that GLIDE reached a high median score
of 3 out of 4 for generating the style of histopathology images,
scientific posters and scientific illustrations (Suppl. Figure 3A).
Regarding the content in the synthetic images, GLIDE reached a
moderate median score of 2 out of 4 for microscopy, histopathol-
ogy, photography and illustrations (Suppl. Figure 3B). The style
and content of radiology images (X-ray, magnetic resonance [MR]
and computed tomography [CT] images) was poor and scored
significantly (p < 0.05, using Kruskal–Wallis H-test for independent
samples) lower than all other categories (Suppl. Figure 3C, D).
Together, these data demonstrate that GLIDE was able to

synthesize realistic scientific posters and illustrations with
plausible content, which is not surprising given that these types

Fig. 2 Common confusions of the model. A Example images of common confusions observed in our study, B–E Generated images without
and with CLIP guidance for four text prompts. For each prompt, eight random images are shown and these images are not cherry-picked.
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of data were presumably part of the training dataset. More
interesting, however, is the observation that GLIDE was able to
generate histopathology images with convincing style and some-
times even with partly accurate content. These results demon-
strate that domain-agnostic generative AI models such as GLIDE
could potentially be used for generation of histopathology images
for research purposes. For radiology applications, however, GLIDE
falls markedly short of the quality of specialized generative AI
models7, but could potentially be used after domain-specific fine-
tuning. Indeed, with the present generalist GLIDE model, all
readers agreed that most of the generated images can almost
trivially be differentiated from real images. This is understandable
as GLIDE has not been specifically trained in the medical image
domain and since the number of medical images it has been
presented is most likely too low to allow for a realistic
synthesization of complex medical images. In general, text-to-
image generative models such as GLIDE and subsequent
improved model architectures could in the future be used in
medical image analysis applications, solving the problem of
researchers having to train generative models on every single
niche domain.

CHALLENGES AND OUTLOOK
GLIDE and CLIP are very large models. Training them from scratch
requires much more computing power and data than most
researchers have access to. Our experiments show that the
publicly available models already have useful medical information
in their latent representations. Thus, researchers could use these
models without modifications or fine-tune on specific tasks. A
potential option for broad re-training on a large set of tasks in a
medical field (e.g., histopathology) would be to couple GLIDE/CLIP
with automated data mining strategies as recently suggested by
Schaumberg et al.12. However, re-training on specific tasks
negates the benefit of having broadly applicable models with
zero-shot classification and generation capabilities. Future studies
should investigate the nature of a potential tradeoff between
domain specificity and zero-shot performance in medicine. In
general, such models could be used for a plethora of tasks,
including education and training, data anonymization, data
augmentation and discovery of new morphological associations
and potentially of biological mechanisms. This could be achieved
by having sensible outputs for prompts like “A histology image of
a patient who benefits from immunotherapy” or “An MRI image of
a patient who should be treated with a statin” and then by
gradually escalating the text prompts towards more difficult tasks.
An important area for future research will be optimal prompt
engineering, i.e., identifying text (or image) prompts for optimal
synthetic images for the desired application. These prompts might
differ by use case. For example, for education and training
purposes, an exaggeration of characteristic details might be
desirable. On the other hand, for some data anonymization and
augmentation purposes, it might be wise to avoid characteristic
features in the model output. Furthermore, a broader validation of
the generated data by various domain experts is crucial. Even
though classical generative AI architectures are capable of
generating realistic images, they are confined to the specific
categories which were present in the training dataset. The zero-
shot capabilities of GLIDE and similar models could make it
possible to use massive unlabeled datasets for medical knowledge
generation. Potentially, medical-domain-specific CLIP guidance
could further improve image content substantially. All this could
conceivably expand the applicability and usefulness of generative
AI in medicine in the future. It is thus likely that models with a
capability of general reasoning such as GLIDE and potential
successors will have a profound impact on the course of machine
learning in medicine and we expect that the medical research

community will put considerable effort into their investigation in
the near future.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
All data are available in https://github.com/KatherLab/synth-user-study.

CODE AVAILABILITY
All source codes are available in https://github.com/KatherLab/synth-user-study.
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