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Summary

Mendelian randomization and colocalization are two statistical approaches that can be applied 

to summarized data from genome-wide association studies (GWASs) to understand relationships 

between traits and diseases. However, despite similarities in scope, they are different in their 

objectives, implementation, and interpretation, in part because they were developed to serve 

different scientific communities. Mendelian randomization assesses whether genetic predictors 

of an exposure are associated with the outcome and interprets an association as evidence that 
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the exposure has a causal effect on the outcome, whereas colocalization assesses whether two 

traits are affected by the same or distinct causal variants. When considering genetic variants in a 

single genetic region, both approaches can be performed. While a positive colocalization finding 

typically implies a non-zero Mendelian randomization estimate, the reverse is not generally true: 

there are several scenarios which would lead to a non-zero Mendelian randomization estimate 

but lack evidence for colocalization. These include the existence of distinct but correlated 

causal variants for the exposure and outcome, which would violate the Mendelian randomization 

assumptions, and a lack of strong associations with the outcome. As colocalization was developed 

in the GWAS tradition, typically evidence for colocalization is concluded only when there is 

strong evidence for associations with both traits. In contrast, a non-zero estimate from Mendelian 

randomization can be obtained despite only nominally significant genetic associations with 

the outcome at the locus. In this review, we discuss how the two approaches can provide 

complementary information on potential therapeutic targets.

Introduction

Genome-wide association studies (GWASs) have been fruitful in identifying genetic variants 

that are related to various traits and diseases. They also provide a rich source of data 

that can be leveraged in downstream analyses to better understand biological mechanisms 

linking traits and diseases.1,2 Two statistical approaches routinely used in “post-GWAS” 

analyses are Mendelian randomization and colocalization. Mendelian randomization takes 

an exposure and an outcome and uses genetic variants to provide evidence supporting or 

refuting the hypothesis that the exposure has a causal effect on the outcome. Colocalization 

takes two traits and considers whether their genetic associations at a locus are explained by 

overlapping or distinct variants. Although the two approaches were developed separately in 

different scientific communities, there are similarities between the approaches in both their 

objectives and practice.

In this review, we introduce the two approaches before contrasting them in terms 

of their assumptions, application, and interpretation. We then explain why the two 

approaches may give apparently conflicting results and how this can be resolved through 

understanding the different viewpoints of the methods. We provide some examples 

where the approaches provide complementary information on causal pathways and 

potential therapeutic targets, considering the relationships of low-density lipoprotein 

(LDL) cholesterol with coronary heart disease (CHD) and with Alzheimer’s disease. We 

compare results from polygenic Mendelian randomization analyses to those from Mendelian 

randomization and colocalization for variants in the PCSK9 and APOE regions. Finally, 

we discuss future directions for the methods and offer recommendations on use of the 

approaches in practice to address distinct but related questions.

Mendelian randomization

Conceptual overview

It is well known that “correlation is not causation.” An observational association between 

a risk factor (which we refer to as the exposure) and an outcome may arise for several 
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reasons, including confounding and reverse causation. The ideal way to detect a causal effect 

of an exposure on an outcome is a randomized controlled trial, in which the population 

is randomly divided into groups that are given different treatment regimens—typically, in 

the treatment group there is an intervention on the exposure (such as LDL-cholesterol 

lowering medication if the exposure is LDL cholesterol) and in the control group there is no 

intervention. Provided the groups are otherwise treated identically, any association between 

treatment assignment and the outcome must be attributed to a causal effect of the exposure.3 

In Mendelian randomization, rather than individuals being randomly assigned to different 

regimens by an investigator, we assume that specifically chosen genetic variants behave 

analogously to treatment assignment, dividing the population into subgroups in a way 

that mimics randomization (Figure 1).4,5 In order to obtain valid causal inferences for the 

effect of the exposure, variants must (1) divide the population into subgroups with different 

average levels of the exposure, but (2) not be associated with the outcome via confounding 

pathways, and (3) not influence the outcome directly, but only potentially indirectly via the 

exposure.6 These three assumptions (referred to as relevance, exchangeability, and exclusion 

restriction, respectively) form the definition of an instrumental variable.7

Genetic variants are plausible candidate instrumental variables for several reasons: they 

may regulate a gene that has a specific effect on the exposure of interest; genetic 

variants are inherited at random conditional on parental genotypes (following Mendel’s 

law of independent assortment),8 implying that variants should typically not be associated 

with traits that represent competing risk factors, as has been observed in empirical 

investigations;9,10 and the genotype is generally fixed from conception, meaning that 

it cannot be influenced by environmental confounders, and further providing protection 

against reverse causation.11 However, the primary motivation of Mendelian randomization is 

epidemiological rather than genetic. Genetic variants are tools to assess causal relationships, 

rather than being the primary focus of interest.

Different versions of Mendelian randomization

There are several ways that Mendelian randomization analyses can be implemented, 

depending on the exposure under investigation and the data being analyzed. When the 

technique was first proposed, analyses typically used individual-participant data on the 

genetic variants, exposure, and outcome in the same dataset (“one-sample Mendelian 

randomization”).12 However, the popularity of the approach has risen sharply with 

two innovations: first, methods for performing Mendelian randomization analyses using 

summarized data, namely beta-coefficients representing the estimated marginal genetic 

associations with the exposure and outcome;13 and second, “two-sample Mendelian 

randomization,” in which genetic association estimates are obtained from one dataset for the 

exposure and from a second dataset for the outcome.14 This is often for pragmatic reasons, 

as genetic associations with exposures are typically estimated in cross-sectional studies, 

whereas genetic associations with outcomes are typically estimated in longitudinal or 

case-control studies. These two innovations are regularly applied together when Mendelian 

randomization is implemented using publicly available summarized genetic association data 

from GWAS investigations.15
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A further important distinction is between Mendelian randomization analyses using variants 

from a single gene region (cis-Mendelian randomization) and those using variants from 

multiple gene regions (polygenic Mendelian randomization).16 The former is common when 

analyzing an exposure that is a gene product (such as mRNA expression or circulating 

levels of a protein); the latter is common when the exposure is a complex multifactorial 

trait (such as blood pressure or body mass index). Several methods have been developed for 

polygenic Mendelian randomization that are robust to violations of the instrumental variable 

assumptions for some of the genetic variants.17 However, while some robust approaches 

have been proposed for cis-Mendelian randomization,18,19 they cannot be applied uniformly 

to all analyses. As most drug targets are proteins, Mendelian randomization analyses for 

pharmacological target validation are typically cis-Mendelian randomization analyses.20,21

Colocalization

Conceptual overview

Neighboring genetic variants tend to be inherited together and hence are typically correlated, 

a phenomenon known as linkage disequilibrium. Given the hundreds of thousands of genetic 

associations identified to date, one concern is that two traits may be causally influenced by 

distinct variants that happen to be correlated with each other. This could lead to violation 

of the Mendelian randomization assumption of exchangeability by providing a pathway 

between a genetic variant and the outcome that does not pass through the exposure. For 

instance, a genetic predictor of the exposure could be in linkage disequilibrium with another 

variant that independently influences the outcome, either directly or via an alternative risk 

factor. Separately from the development of Mendelian randomization by epidemiologists, 

researchers in GWASs were concerned that associations between variants and disease 

endpoints had limited mechanistic interpretation, and so developed colocalization methods 

to assess whether disease endpoints and potential biological mediators might share one or 

more causal variants.22–24

We define a causal variant as a genetic polymorphism for which variation in the genotype 

directly impacts molecular mechanisms that have a consequent effect on the trait of interest. 

Changing the genotype at this position (for instance, using gene editing technology25) would 

lead to changes in downstream variables. This is in contrast to a tagging variant, which 

is correlated with a causal variant through linkage disequilibrium, though it has no direct 

effects on the trait of interest. Colocalization attempts to discern between two possible 

underlying situations at a genetic region (Figure 2, top row): distinct causal variants, 

possibly in linkage disequilibrium, or a single shared signal (colocalization). Colocalization 

can be viewed as an extension of fine-mapping to multiple traits. The goal of fine-mapping 

is to detect the causal variants for a single trait, with the subsequent aim to understand the 

biological relevance of such variants.26 Colocalization considers the overlap between causal 

variants for two (or more27,28) traits.

Colocalization is increasingly being used as part of Mendelian randomization investigations 

to assess the instrumental variable assumptions for a given genetic region. If there is strong 

evidence that the exposure and outcome are influenced by distinct causal variants, then it is 

implausible that variants in that region are valid instrumental variables for the exposure.
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Different versions of colocalization

Two families of methodological approaches that have been developed for colocalization are 

proportional colocalization and enumeration colocalization. In proportional colocalization, 

the null hypothesis is proportionality of the genetic associations with the two traits.22 If there 

is colocalization, we would expect marginal genetic associations with the two traits to be 

proportional provided that either there is a single causal variant (in which case the genetic 

associations would be determined by their correlation with the causal variant) or the traits 

are on the same causal pathway and all variants primarily influence the same upstream trait 

(which may be one of the traits under analysis, or an unmeasured trait). If there is evidence 

against the statistical model that the genetic associations are proportional, then we conclude 

that there is lack of colocalization. Otherwise, we conclude that there is colocalization.

In enumeration colocalization, the analyst compares evidence for different hypotheses in a 

Bayesian framework. An example of a method in this family is the coloc method.24 For 

simplicity, we suppose there are two traits and work under the assumption that there is at 

most one causal variant per trait. The hypotheses are: ℍ0, no association with either trait; 

ℍ1: association with trait 1 but not trait 2; ℍ2, association with trait 2 but not trait 1; 

ℍ3, association with both traits but at separate causal variants; and ℍ4, association with 

both traits at a shared causal variant.24 Of these, hypotheses ℍ3 and ℍ4 are of the most 

interest, with ℍ4 corresponding to colocalization. The posterior probability for each of these 

hypotheses can be calculated from the prior probability (which is set by the investigator) 

and summarized genetic association data, which are used to compute approximate Bayes 

factors that represent the contribution from the likelihood.29 A conceptual advantage of 

enumeration colocalization is that the method only concludes that there is colocalization 

in the presence of positive evidence supporting colocalization. In the absence of evidence, 

posterior probabilities will approximate the prior probabilities, which can therefore be set to 

avoid spurious results.

Other colocalization methods align broadly with one or other of these families of 

approaches. For example, the heterogeneity in dependent instruments (HEIDI) test30 

assesses heterogeneity in genetic associations, and so falls into the proportional 

colocalization family. The expression quantitative trait locus (eQTL) Causal Variant 

Identification in Associated Regions (eCAVIAR) method31 performs fine-mapping for two 

traits simultaneously allowing the possibility of multiple causal variants per trait, and thus 

falls in the enumeration family of methods. However, the eCAVIAR method provides 

findings on a variant level rather than a regional level, and so results from this method are 

less directly comparable to those from Mendelian randomization; hence we do not consider 

this method further in this review.

While findings from coloc are fairly robust to violations of the assumption of a single 

causal variant,24 enumeration colocalization methods have been developed that relax this 

assumption. The original solution was to perform stepwise regression on each trait and to 

perform colocalization for each of the pairs of signals.24 However, given the high degree 

of correlation between genetic variants, stepwise regression can fail to identify the true 

causal variants.32 Various Bayesian fine-mapping methods have been developed for GWAS 

summary statistics which outperform stepwise regression. In the context of colocalization, 
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the coloc-Sum of Single Effects (SuSiE) method first performs fine-mapping for each 

trait using the SuSiE method to decompose genetic associations into a sum of single 

causal variant summary statistics, each of which are then analyzed in parallel using the 

coloc method.33 The SuSiE method fits a sparse model for each trait in terms of the 

genetic variants as a sum of vectors, each of which has only one non-zero component.34,35 

The colocalization and fine-mapping in the presence of allelic heterogeneity (CAFEH) 

method fits a hierarchical Bayesian model that implements colocalization by performing 

simultaneous fine-mapping for multiple traits.36 Both approaches should provide more 

reliable colocalization inferences when there are multiple causal variants in one genetic 

region, including the potential scenario that colocalization is detected for one causal 

variant, but not at another (Figure 2, bottom row). In such a scenario, enumeration 

colocalization methods that assume a single causal variant would typically conclude in favor 

of colocalization, whereas proportional colocalization methods would typically conclude 

that there is a failure to colocalize.

Comparison between Mendelian randomization and colocalization

Similarity of statistical analysis model

While there are many methods for both Mendelian randomization and colocalization, the 

inverse-variance weighted (IVW) method that is typically used as the primary analysis 

method for Mendelian randomization and the proportional colocalization method have 

several similarities. We index genetic variants by j, denoting the estimated genetic 

association with the exposure for variant j as βXj and its standard error as se βXj , and 

the estimated genetic association with the outcome as βY j and its standard error as se βY j . 

The IVW method is equivalent to fitting the following regression model:

βY j = θ βXj + εj, εj ∼ N 0, se βY j
2 , (Equation 1)

where θ is the causal parameter.37 The regression model is a straight line through the 

origin with slope θ. The variance of the error term εj is potentially different for each 

genetic variant, depending on the precision of the genetic association with the outcome, 

which in turn depends on the sample size and minor allele frequency for that variant. A 

random-effects version of the IVW method can be obtained by additionally estimating a 

heterogeneity parameter φ, which represents the residual standard error in the regression 

model:

βY j = θβXj + εj, εj ∼ N 0, φ2se βY j
2 . (Equation 2)

This parameter is allowed to take values 1 or more. Larger values represent overdispersion, 

meaning that the βY j estimates are more variable than would be expected due to chance 

alone.38 Values of φ below one would represent underdispersion, meaning less variability 

than expected by chance alone, which is not logically plausible. If genetic variants are 

correlated, then the separate error terms εj should be replaced by an error vector that takes a 
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multivariable normal distribution, requiring generalized weighted linear regression to obtain 

the IVW estimate.37

Proportional colocalization fits an equivalent model under the null hypothesis (using the 

same notation) that there exists a parameter θ such that βYj = θβXj for all j, where the 

absence of hats indicates these are the genetic associations, not their estimates. However, 

rather than focusing on the slope parameter θ, colocalization treats this as a nuisance 

parameter and focuses on the distribution of the error terms. Wallace et al.39 showed that 

a valid test statistic (equivalent to the test statistic of Plagnol et al.22) can be calculated 

by taking the vectors of estimated associations βX and βY, which are assumed to follow 

multivariate normal distributions:

βX ∼ N βX , V X , βY ∼ N βY , V Y , (Equation 3)

where bold face denotes a vector, cov βX , βY = 0 (equivalent to a two-sample assumption 

in Mendelian randomization), and the variance-covariance matrices VX and VY are assumed 

to be known. Then, if we define u = βX − 1
θ βY and V = V X + 1

θ2V Y , the test statistic:

T (θ) = uT V −1 u (Equation 4)

has a chi-squared distribution on p degrees of freedom under the null hypothesis, where 

p is the number of genetic variants. As the slope parameter θ is unknown, its maximum 

likelihood estimate can be substituted to obtain a test statistic T (θ ) on p – 1 degrees of 

freedom. This test statistic is similar to Cochran’s Q heterogeneity statistic to compare 

the variant-specific estimates (i.e., 
βY j
βXj

 for each variant j) that is estimated in Mendelian 

randomization analyses,40 and the HEIDI test statistic. The major difference is that 

Cochran’s Q heterogeneity statistic typically uses the IVW estimate for the slope parameter, 

not its maximum likelihood estimate.

Hence, although the approaches of Mendelian randomization and colocalization are 

different, they can be implemented using the same statistical model, but Mendelian 

randomization focuses on the slope whereas proportional colocalization focuses on the 

variability of errors in the model. The goal of proportional colocalization is to establish 

whether a line anchored at the origin can be drawn through the genetic associations, whereas 

Mendelian randomization estimates the slope of the line assuming that such a line exists.

While these similarities are instructive to compare the Mendelian randomization and 

colocalization approaches, proportional colocalization has fallen out of use due to a number 

of practical problems. One is that the null hypothesis is the presence of colocalization. This 

means that the analyst is searching for evidence against colocalization, and concludes that 

there is colocalization in the absence of evidence to the contrary. If there is little information 

in the data, it may be difficult to detect evidence against colocalization. A related problem is 

that of selecting variants for the test. Genetic regions contain hundreds of variants, of which 

only a subset will truly causal affect either trait, and therefore be informative. If we use all 
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variants in the region, the test will have limited power. If we select some subset at random, 

we are likely to limit power by discarding informative variants. If instead we select a subset 

based on strength of association with one or both traits, the association estimates are biased 

because they have been selected on the basis of their extreme values, and so the type 1 error 

control of the test is lost, perhaps spectacularly.23 Mendelian randomization estimates are 

also affected by this selection bias, known as winner’s curse,41 which is closely related to 

weak instrument bias.42 Such bias is typically minimal when genetic variants are associated 

with the exposure at a genome-wide level of significance, and type 1 error inflation can only 

occur when genetic associations with the exposure and outcome are estimated in overlapping 

samples.43

Given these difficulties, in the remainder of this review we will focus on the more widely 

used enumeration colocalization approach, which does not require selection of genetic 

variants for a given region of interest.

Conceptual and practical differences

While there are clear similarities between Mendelian randomization and colocalization (both 

approaches use genetic variants to elucidate the nature of the relationship between traits), 

there are also conceptual and practical differences.

The motivation for Mendelian randomization is the existence of an exposure variable that is 

a candidate causal risk factor, and the objective is to assess evidence for a potential causal 

effect of the exposure on an outcome. Hence the choice of genetic variants in the analysis 

is determined by their associations with the exposure. As the analysis assesses whether 

the variants are associated with the outcome or not, variants are included in the analysis 

regardless of their association with the outcome. The motivation for a colocalization analysis 

is a section of the genome, usually a gene region, where there are probable signals for 

association with both of the traits of interest, and the objective is to determine whether these 

signals are driven by the same variants.

In a polygenic Mendelian randomization analysis, it is typical to include one variant in 

the analysis per genetic region, although precision of the estimate can be improved if 

there are multiple variants in the genetic region that explain independent variance in the 

exposure (i.e., conditionally independent hits).37 However, it is uncommon to find more than 

a few variants per region that explain a substantial fraction of variance in the exposure. 

Additionally, when using robust methods for Mendelian randomization, it may be preferable 

to include one variant per region to ensure that the analysis is not too dependent on the 

validity of genetic variants from a single region.16 A cis-Mendelian randomization analysis 

can be performed using a single variant or multiple variants in the same genetic region that 

are conditionally independent predictors of the exposure. A colocalization analysis typically 

includes as many variants as are available in the genetic region surrounding the lead variant. 

This is because the method assumes that the causal variant is within the set of variants 

studied, though because of linkage disequilibrium the method is fairly robust as long as 

a dense map of variants is available. In contrast, it is not necessary for variants used in 

Mendelian randomization to be causal variants for the exposure, as all that is needed is 

for the variants to divide the population into subgroups with different average levels of the 
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exposure. This is because the method assesses the causal nature of the exposure, not of the 

genetic variants. However, non-causal “tagging” variants may be more likely to violate the 

exclusion restriction assumption due to pleiotropic effects on other causal pathways.

In Mendelian randomization, one of the traits is the exposure trait and the other is 

the outcome trait, whereas in colocalization the traits are treated symmetrically in the 

analysis. Mendelian randomization analyses can be performed in two directions (known 

as bidirectional Mendelian randomization); considering whether genetic predictors of the 

exposure are associated with the outcome, and considering whether genetic predictors 

of the outcome are associated with the exposure (representing causation in the opposite 

direction44).

Genetic variants used in a Mendelian randomization analysis are assumed to follow the 

assumptions of an instrumental variable. In particular, they are assumed to be specifically 

related with the exposure and not associated with any other traits unless those traits are 

downstream consequences of the exposure. These assumptions imply that an association of 

the variant with the outcome can only arise due to a causal effect of the exposure on the 

outcome.6 In contrast, no such assumption is made in colocalization.

The output from a Mendelian randomization analysis is an estimate, representing the 

association of genetically predicted levels of the exposure with the outcome.45 This provides 

evidence on the strength of the causal effect of the exposure on the outcome, as well as 

its direction. Under the assumption that differences in the exposure between genetically 

defined subgroups of the population can be replicated by a clinical intervention on the 

exposure, as well as technical assumptions such as linearity of the causal effect of the 

exposure on the outcome,46 the Mendelian randomization estimate represents the causal 

effect of the exposure on the outcome. However, there are many reasons why genetic 

differences in the exposure qualitatively differ from clinical interventions on an exposure 

in practice.47,48 For example, genetic differences are typically small but life-long, whereas 

clinical interventions are typically larger in magnitude of change in the exposure, but applied 

later in life. Hence, some authors have advocated either not presenting causal estimates, or 

the primary interpretation of a causal estimate being a test of a causal hypothesis, rather than 

an estimate of a causal effect.45,49,50 The output from an enumeration colocalization analysis 

is a set of Bayesian posterior probabilities, with different posterior probabilities representing 

the strength of evidence for the competing hypotheses.

Differences in interpretation of results

There are also differences between the approaches in their interpretation of results. 

Compared with GWAS investigations, cis-Mendelian randomization analyses have a 

relatively low evidential threshold for providing a non-zero estimate; they can provide a non-

zero estimate even if none of the variants are strongly associated with the outcome. This is 

justified by a strong prior belief that the genetic variant(s) in the analysis can be interpreted 

as proxies for intervention on the exposure. In a polygenic Mendelian randomization 

analysis, primary evidence for a non-zero estimate is less important than consistency of 

the evidence across genetic variants, which can be assessed using robust methods. A causal 

claim is more reasonable if genetic variants across different gene regions are concordantly 
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associated with the outcome.51 In contrast, while colocalization analyses would typically not 

be attempted unless there was some statistical evidence for an association with the at least 

one trait in the genetic region, strong evidence of associations with both traits are required to 

support colocalization.

As an example of plausible causal evidence from a Mendelian randomization investigation 

despite only nominal statistical significance, Gill and Burgess investigated a rare genetic 

variant (minor allele frequency 0.3%) in the F10 gene52 that has previously been shown to 

associate with plasma activated factor X (FXa) levels at a genome-wide level of statistical 

significance.53 FXa inhibitors, such as rivaroxaban and apixaban, have been shown to be 

effective at reducing the risk of venous thromboembolism in randomized trials54 and have 

been used in its treatment for more than 10 years. In this analysis, the variant was associated 

with lower risk of pulmonary embolism (p = 0.0006) and deep vein thrombosis (p = 0.051); 

pulmonary embolism and deep vein thrombosis are subtypes of venous thromboembolism. 

The variant was also associated with increased risk of subarachnoid hemorrhage (p = 0.031); 

bleeding is a known adverse effect of FXa inhibition. Due to our previous understanding of 

this mechanism and its impact in clinical practice, the genetic evidence that FXa inhibition 

increases the risk of subarachnoid hemorrhage is convincing despite the moderate strength 

of the statistical association.

The output from a Mendelian randomization analysis is typically interpreted in a causal 

framework as evidence of whether the exposure has a causal effect on the outcome. 

However, we underscore that any statistical method that makes causal claims does so on 

the basis of assumptions. To state that a Mendelian randomization analysis enables the 

analyst to make a causal claim is a circular argument; a causal conclusion is only possible 

if the analyst has made sufficient assumptions to justify a causal claim. Authors should 

therefore be cautious not to overstate any causal claims, particularly from cis-Mendelian 

randomization analyses, as all the evidence in such an analysis comes from a single genetic 

region.55 In contrast, colocalization analyses are agnostic to the model relating the traits. 

Colocalization could be inferred either if trait 1 had a causal effect on trait 2, if trait 2 had a 

causal effect on trait 1, or if both traits were influenced by a common cause.

Departures from proportionality in the genetic association estimates, referred to in 

Mendelian randomization as heterogeneity in the variant-specific estimates,38 are interpreted 

differently by the two approaches. In Mendelian randomization, if a random-effect 

analysis method is used, heterogeneity leads to wider confidence intervals for the causal 

estimate. However, it is still possible that the confidence interval for the causal estimate 

excludes the null. In contrast, heterogeneity in colocalization is interpreted as evidence 

against colocalization. For a polygenic Mendelian randomization analysis with a non-

zero causal estimate, some degree of heterogeneity may be expected, as variants in 

different genetic regions that influence the exposure via different mechanisms may have 

different proportional associations with the outcome. Heterogeneity can also be interpreted 

as evidence for invalidity of the instrumental variable assumptions for some variants, 

particularly if heterogeneity is substantial or is attributable to a small number of outlying 

variants.56
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A summary of these differences between the two approaches is provided as Table 1.

Conflicting findings from Mendelian randomization and colocalization

Mendelian randomization and colocalization can give results that appear to be in conflict. 

If the exposure and outcome traits colocalize at a particular locus, then a Mendelian 

randomization analysis using variants from that locus will generally provide a non-zero 

estimate. An exception is the implausible case that some genetic predictors of the exposure 

are positively associated with the outcome and others are negatively associated with the 

outcome, leading to an overall zero Mendelian randomization estimate. However, this is very 

unlikely to happen in practice.

More often, a non-zero Mendelian randomization estimate is found without evidence for 

colocalization. One reason why the methods may provide conflicting answers is that the 

exposure and outcome have distinct causal variants that are in linkage disequilibrium, 

meaning that the Mendelian randomization assumptions are violated. In this case, using 

notation from the coloc method, we might expect a colocalization analysis to support the 

ℍ3 hypothesis, that of distinct causal variants. Alternatively, colocalization might indicate 

insufficient evidence for association with one or both traits in the given data. In this 

case, we might expect colocalization to support one of the hypotheses ℍ0, ℍ1, or ℍ2. 

Having been developed in the GWAS context, where the analyst must consider all other 

hypotheses that could be proposed across the genome, colocalization typically requires 

stronger evidence of association to support the ℍ3 or ℍ4 hypothesis than is required in 

a Mendelian randomization analysis to produce a non-zero estimate. We illustrate these 

scenarios in analyses below.

Finally, colocalization analyses may be difficult to interpret due to an underlying complexity 

of the genetic region, such as the presence of allelic heterogeneity.57 Difficulties may arise 

when one of the traits is complex, and hence it may be affected by multiple biological 

mechanisms, or for a molecular trait, as it is more likely that several distinct causal 

variants can be detected. This should be investigated using colocalization methods that can 

incorporate multiple causal variants.33,36 There may be instances where there are separate 

causal variants related to distinct effects of the same gene (either its expression or function) 

that differentially influence different outcomes. One plausible such example is GLP1R, 
where there are distinct genome-wide significant signals for type 2 diabetes58 and BMI;59 

a colocalization analysis at this locus provided evidence of distinct causal variants for these 

traits (probability of ℍ4 < 1%). This genetic evidence supports the notion that GLP1R 

perturbation affects glycemic control and body weight through different mechanisms.60 

Generally speaking, colocalization results can be sensitive to the choice of traits in the 

analysis, and in particular analyses using mRNA expression can be sensitive to the choice 

of tissue. In contrast, Mendelian randomization analyses are more sensitive to the choice of 

genetic variants rather than the choice of the exposure, as Mendelian randomization findings 

chiefly depend on genetic associations with the outcome.
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Perspectives and applications

While both Mendelian randomization and colocalization have been used for a variety of 

different subject areas, Mendelian randomization has generally been used for diseases that 

have recognized risk factors, such as cardiometabolic diseases,61 whereas applications of 

colocalization have been more common for auto-immune diseases.39,62 This reflects an 

attempt to understand pleiotropy in genetic associations with auto-immune diseases.63 Most 

exposures used in Mendelian randomization analyses are clinical biomarkers or phenotypic 

traits, although the approach has been applied to consider other molecular exposures, 

including mRNA expression and protein levels.64,65 In contrast, most applications of 

colocalization have considered molecular traits and/or disease outcomes.

As discussed above, colocalization is increasingly being used as a sensitivity analysis 

for Mendelian randomization.66–69 For example, Zheng et al. performed a phenome-wide 

Mendelian randomization investigation considering circulating levels of various proteins 

as exposures.70 Out of the 413 protein-outcome pairs with supporting evidence for 

causation from Mendelian randomization, 283 (68.5%) were supported by evidence from 

colocalization, defined as a posterior probability for ℍ4 above 80%. Out of the 1,002 

proteins considered, 153 had multiple conditionally distinct predictors in their relevant gene 

region. The authors addressed this by first identifying conditionally independent signals 

using the GCTA-COJO package, and then performing pairwise colocalization analyses for 

these signals. For a substantial number of the protein-outcome pairs, strong evidence for 

colocalization was detected only after applying this approach (23 out of 283, 8.1%). These 

analyses preceded the development of the coloc-SuSiE33 and CAFEH methods,36 which 

facilitate enumeration colocalization analyses with multiple causal variants. While in some 

cases, failure to colocalize was due to lack of strong associations with the exposure and/or 

outcome, in other cases, strong evidence was observed supporting the ℍ3 hypothesis of 

distinct causal variants.

Illustrative examples: LDL cholesterol, coronary heart disease, and 

Alzheimer disease

We illustrate these points by performing Mendelian randomization and colocalization 

analyses using summarized genetic associations with LDL cholesterol estimated in up to 

188,577 individuals of European ancestries from the Global Lipid Genetics Consortium 

(GLGC) 2013 data release,71 CHD risk in up to 60,801 affected individuals and 123,504 

control individuals from the multi-ethnic CARDIoGRAMplusC4D Consortium,72 and 

Alzheimer disease in up to 17,008 affected individuals and 37,154 control subjects of 

European ancestries (discovery phase only) from the International Genomics of Alzheimer’s 

Project (IGAP) consortium.73 We also consider colocalization using genetic associations 

with protein levels from plasma of proprotein convertase subtilisin/kexin type 9 (PCSK9) 

estimated in 35,559 Icelanders.74

Genetic associations for 75 variants associated with LDL cholesterol at a genome-wide level 

of statistical significance (p < 5 x 10–8) in the 2013 GLGC analysis75 are displayed in Figure 

3 (left, CHD; right, Alzheimer disease). For CHD, a polygenic Mendelian randomization 
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analysis based on these variants suggests a causal effect of higher LDL cholesterol on CHD. 

The random-effects IVW estimate, representing the average association with the outcome 

for a standard deviation increase in genetically predicted LDL cholesterol, is an odds ratio 

(OR) of 1.53 (95% confidence interval [CI]: 1.40, 1.67). This is despite a Cochran’s Q 

heterogeneity test statistic, which represents heterogeneity in the variant-specific estimates, 

of 282.1 (p < 0.001). However, the majority of points in the scatter-plot are distributed 

around the IVW estimate (Figure 3, left), suggesting that this may be due to heterogeneity 

in causal estimates rather than pleiotropy. A similar positive estimate of OR 1.32 (95% 

CI: 1.12, 1.56) was observed from a cis-Mendelian randomization restricted to variants 

in the PCSK9 gene region,76 which encodes an established drug target for preventing 

cardiovascular disease.77

For Alzheimer disease, a polygenic Mendelian randomization analysis gives a random-

effects IVW estimate of OR 1.27 (95% CI: 1.04, 1.55). However, it is clear from visual 

inspection of the scatter plot that two variants are outliers (Figure 3, right; outliers are 

marked as triangles). These variants (rs634869 and rs12525163) are both in the APOE 
gene region, a locus known to be a strong predictor of Alzheimer disease. Excluding 

these variants from the analysis, the IVW estimate is OR 1.02 (95% CI: 0.93, 1.12), 

and Cochran’s Q heterogeneity test statistic, which represents heterogeneity in the variant-

specific estimates, reduces from 516.1 (p < 0.001) to 92.9 (p = 0.06). This suggests that any 

Mendelian randomization evidence for a causal effect of LDL cholesterol on Alzheimer 

disease risk is dependent on the variants in the APOE gene region. A cis-Mendelian 

randomization analysis based on these two variants in the APOE gene region suggests a 

positive effect of LDL cholesterol of OR 4.33 (95% CI: 3.56, 5.26) that is not evidenced by 

the remainder of the genetic variants.

Although polygenic Mendelian randomization analyses excluding variants from the APOE 
gene region have consistently given null results,78 a previous cis-Mendelian randomization 

analysis for LDL cholesterol and Alzheimer disease based solely on variants in the PCSK9 
gene region gave an inverse estimate of OR 0.69 (95% CI: 0.59, 0.81) per standard deviation 

increase in genetically predicted LDL cholesterol, suggesting that lowering LDL cholesterol 

via PCSK9 inhibition may increase risk of Alzheimer disease.79

We next perform colocalization analyses with these traits. First, we consider LDL 

cholesterol and CHD for the genetic region 100 kilobasepairs either side of the PCSK9 gene 

region (chr1:55,505,221–55,530,525 on hg19 by Ensembl), We implement colocalization 

using the coloc method of Giambartolomei et al.24 with priors set at p1 = p2 = 10–4 and 

p12 = 10–5, where p1 represents the probability of each variant being the causal variant for 

trait 1, p2 represents the probability of each variant being the causal variant for trait 2, and 

p12 represents the probability of each variant being the causal variant for both traits. These 

priors were originally recommended for the analysis of eQTL data;80 we use them here as 

they are most commonly employed in applied practice. We find a posterior probability for 

ℍ4 of >99.9%, supporting a shared causal variant for these two traits at the locus. Regional 

association plots show well-defined peaks in the genetic associations for both traits (Figure 

4). This suggests that the signals colocalize, which is consistent with LDL cholesterol being 

the causal risk factor for CHD at this locus.
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Colocalization of protein levels of PCSK9 and CHD risk using the coloc method showed 

convincing but weaker evidence of colocalization (posterior probability for ℍ4 of 82.4%). 

Results were sensitive to the choice of prior for p12, as indicated by running the sensitivity() 

function in the coloc package (Figure S1). However, there was some evidence of multiple 

causal variants for PCSK9, as there were near-independent variants (r2 < 0.1) with low p 

values.

We attempted to repeat analyses using coloc-SuSiE, which allows for the existence of 

multiple causal variants. However, any fine-mapping approach using GWAS summary 

statistics requires an estimate of the sample linkage disequilibrium matrix, and the accuracy 

of inference from these methods is very sensitive to the accuracy of this matrix.35,81 

We were unable to find publicly available data to estimate linkage disequilibrium in an 

Icelandic population. Instead, we estimated the linkage disequilibrium matrix using 367,703 

unrelated participants of European ancestries from UK Biobank, following quality control 

steps described in Astle et al.82 SuSiE found evidence of 9 causal variants for PCSK9 

(posterior probability > 95%). However, the marginal p values for some of these variants 

were close to 1, which is implausible. A diagnostic plot indicated disagreement between the 

genetic associations and the correlation matrix, likely due to different linkage disequilibrium 

patterns between the Icelandic population and European ancestry individuals from UK 

Biobank; this is implemented using the kriging_rss() function in the susieR package.35 

This highlights a practical limitation of methods for fine-mapping, and by implication 

colocalization, that allow for multiple causal variants.

Performing colocalization for Alzheimer disease using the same gene region and settings 

as above, we found a posterior probability of a shared causal variant (ℍ4) of only 1.0%. 

Instead, the model favored ℍ1, with a 97.1% posterior probability of the region containing 

a causal variant for LDL cholesterol but not Alzheimer disease. This is because none of 

the variants at the locus were strongly associated with Alzheimer disease (p > 0.001 for 

all variants, Figure 4), and hence the power to detect colocalization was low. This finding 

represents the greater a priori skepticism of the colocalization priors; if the causal variant for 

LDL cholesterol does affect Alzheimer disease risk, the association does not have sufficient 

strength in these data to outweigh our prior skepticism. The probability of ℍ4 divided by 

the sum of the probabilities of ℍ3 and ℍ4
P (ℍ4)

P (ℍ3) + P (ℍ4) , which represents the probability 

of colocalization conditional on the presence of a causal variant for Alzheimer disease, is 

34.5%, which again suggests no strong evidence for colocalization, although this calculation 

is strongly dependent on the choice of prior parameter p12. A visual check of the regional 

association plot suggests no strong evidence of an association with Alzheimer disease at the 

locus, with an absence of the well-defined peak that typically characterizes a true genetic 

association (Figure 4).

Finally, we consider colocalization of LDL cholesterol and Alzheimer disease risk at 

the genetic region 100 kiloba-sepairs either side of the APOE gene (chr19:45,409,011–

45,412,650 on hg19 by Ensembl) where cis-Mendelian randomization suggests a causal 

relationship. Performing colocalization using the same settings gives a posterior probability 

for ℍ3 of >99.9%, providing genetic evidence to support separate causal variants underlying 
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the associations at this locus (Figure 5). This suggests that the positive estimate in the 

polygenic Mendelian randomization analysis including the APOE variants arises from 

violation of the instrumental variable assumptions due to linkage disequilibrium. This 

emphasizes the importance of checking for outliers in polygenic Mendelian randomization 

analyses and using colocalization to test the Mendelian randomization assumptions at a 

particular locus.

Extensions and future directions

There are several extensions to Mendelian randomization, including network Mendelian 

randomization, which assesses mediation of the causal effect of an exposure via a mediating 

trait;83 non-linear Mendelian randomization, which assesses the shape of the causal 

relationship between an exposure and an outcome;84 factorial Mendelian randomization, 

which assesses whether there are interactions between exposures (or interventions) in their 

effects on an outcome;85 and bidirectional Mendelian randomization, which assesses the 

causal effects of the exposure on the outcome and of the outcome on the exposure using 

different sets of genetic variants.44 Equally, there are extensions to colocalization, such as 

methods for colocalization with cross-population data.86,87 We here focus on an extension to 

Mendelian randomization that has a parallel in colocalization: the analysis of multiple traits.

Multivariable Mendelian randomization assesses whether genetically predicted levels of 

multiple exposures are associated with an outcome in a multivariable model.88 It is typically 

used in two contexts: first, to assess the effect of an exposure when genetic variants 

associated with the exposure of interest may have pleiotropic effects on the outcome 

via other measured risk factors;89 and secondly, to assess the relative contribution of 

causal pathways from the exposure to the outcome via other risk factors.90 Estimates 

from multivariable Mendelian randomization can be interpreted as the direct effect of an 

exposure; that is, the component of the causal effect of an exposure that does not pass 

via other risk factors included in the analysis.91 While typically multivariable Mendelian 

randomization analyses are polygenic, as it is necessary to include some genetic variants 

in the analysis that have relatively stronger associations with each exposure, a recent 

methodological development considered cis-multivariable Mendelian randomization.92 This 

approach was applied to disentangle the causal effects of three related proteins associated 

with variants at the chemokine receptor gene cluster.

The analogous colocalization method is multiple-trait colocalization, which assesses 

colocalization between several traits in a single analysis. Such methods include multiple-

trait colocalization (moloc)27 and hypothesis prioritization for multi-trait colocalization 

(HyPrColoc),28 which both make the single causal variant assumption. While moloc is 

typically computationally intractable with 5 or more traits, HyPrColoc can be rapidly 

implemented with hundreds of traits. The CAFEH method extends on these methods 

by relaxing the single causal variant assumption, thereby allowing different patterns of 

colocalization to be detected for multiple traits at each causal variant.36

Although both extensions consider relationships between multiple traits, the aims of the 

methods are in some ways opposing. Multivariable Mendelian randomization aims to 
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disentangle related traits, in order to distinguish which is the causal exposure for a given 

outcome.93 As such, if suitable genetic variants are available, it can model complex 

networks of relationships between traits. In contrast, multiple-trait colocalization aims to 

find clusters of traits with shared genetic predictors.

A potential future direction for Mendelian randomization and colocalization is to consider 

how the two approaches can be used in an integrative way. Developments in this 

direction include the Mendelian randomization (MR)-link method, which accounts for 

potential pleiotropy at a given locus using ridge regression to discount the effect of 

invalid instruments; where a variant that is considered invalid is one that would lead to 

proportional colocalization to fail.94 Another related method is MRLocus, which combines 

a colocalization step and a Mendelian randomization slope fitting step in a Bayesian 

hierarchical model, allowing for multiple causal variants and allelic heterogeneity.95

Discussion

Mendelian randomization and colocalization have related goals but were developed to 

serve different scientific communities. This is reflected in their implementation and the 

interpretation of their results. When considering an exposure with several genetic predictors 

in different regions, the robustness of Mendelian randomization findings can be assessed 

by a range of statistical methods. In such a case, Mendelian randomization is distinct 

from colocalization, as colocalization only considers associations at a single genetic region. 

When considering genetic predictors of an exposure in a single region, both Mendelian 

randomization and colocalization can be performed. However, even though robust methods 

cannot generally be applied in cis-Mendelian randomization investigations, analysts may 

still require only nominal significance to claim evidence of a causal effect, whereas 

colocalization typically adopts priors that reflect the GWAS community’s high bar for 

evidence of colocalization. This may be reasonable if the Mendelian randomization analysis 

is performed using a biologically justified choice of genetic variants to test a specific causal 

hypothesis, whereas GWASs are typically exploratory “hypothesis-free” investigations, and 

so correction for multiple testing is essential.

Generally speaking, Mendelian randomization prioritizes the detection of evidence for a 

causal relationship, whereas colocalization is more conservative. Mendelian randomization 

simply tests whether there is any average genetic association with the outcome among the 

genetic predictors of the exposure, whereas colocalization tests for overlap in the genetic 

variants driving the associations with the traits. As such, colocalization is an important 

complementary analysis for a cis-Mendelian randomization investigation to assess the 

validity of the instrumental variable assumptions. Without this, cis-Mendelian randomization 

analyses can provide false positive findings similarly to candidate gene studies, which have 

now largely been abandoned due to providing findings that failed to replicate.96

An example of this is found in the contrasting results for LDL cholesterol and coronary heart 

disease at the PCSK9 gene region and those for LDL cholesterol and Alzheimer disease at 

the APOE gene region. In the first case, a positive cis-Mendelian randomization estimate 

is strongly supported by colocalization, whereas in the second case the cis-Mendelian 
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randomization result is challenged by colocalization, which finds evidence that the traits 

are influenced by distinct causal variants. The colocalization results are supported by the 

patterns of association genome-wide, where consistent associations of LDL cholesterol 

increasing variants with Alzheimer disease are not found.

We therefore strongly recommend that positive cis-Mendelian randomization analyses be 

accompanied by a corresponding colocalization analysis, as is becoming more common in 

the literature. We acknowledge that this has not always been our own practice over the 

past years, and will seek to follow this advice more closely in this regard. We note that a 

negative colocalization finding does not necessarily imply that the target is not valid, but it 

should prompt the analyst to investigate further why there is a lack of colocalization (for 

example, whether data sources and the exposure trait have been appropriately selected). If 

a mitigating reason is not found, this should lessen enthusiasm in the finding, particularly 

if there is evidence for distinct causal variants and hence separate mechanisms influencing 

the exposure and outcome. A further note is that this will lead to colocalization analyses that 

would not otherwise have been performed because of the absence of a strong association 

with the outcome at the locus. Care should be taken to distinguish findings indicating lack 

of evidence for association from those where there is strong evidence for distinct causal 

variants—these scenarios are represented by separate hypotheses in output from the coloc 

method. While performing colocalization analyses may lead to apparent conflict between 

results from Mendelian randomization and colocalization, any additional caution arising 

from this disagreement is often appropriate.
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Figure 1. Schematic diagram illustrating analogy between Mendelian randomization and 
randomized trial
Adapted from Hingorani and Humphries.4

Zuber et al. Page 24

Am J Hum Genet. Author manuscript; available in PMC 2022 May 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2. Schematic diagrams illustrating colocalization in five scenarios
(A) Two traits with distinct causal variants in linkage disequilibrium.

(B) Two unrelated traits with a shared causal variant.

(C) Two traits with a shared causal variant where the first trait influences the second trait.

(D and E) One shared causal variant and one distinct causal variant for trait 2.

Scenarios (B) and (C) are examples of colocalization. For scenarios (D) and (E), there is 

colocalization at the shared variant, but not at the distinct variant. Colocalization is unable 

to distinguish between the scenarios in which trait 1 and trait 2 are causally unrelated 

(scenarios B and D), and in which trait 1 has a causal effect on trait 2 (scenarios C and E). 

Illustrative regional association plots for each scenario represent the negative log10 p values 

for associations of variants with each trait (blue for trait 1, red for trait 2) plotted against 

chromosomal position.
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Figure 3. Scatter plots of genetic associations with LDL cholesterol, coronary heart disease, and 
Alzheimer disease
Genetic associations with LDL cholesterol (horizontal axis, standard deviation units) against 

genetic associations with (A) coronary heart disease and (B) Alzheimer disease (vertical 

axis, odds ratios) for 75 genetic variants associated with LDL cholesterol. Error bars 

represent 95% confidence intervals for the genetic associations; dashed line represents 

inverse-variance weighted estimate (dotted lines represent 95% confidence intervals for 

this estimate). In the right-hand plot, variants in the APOE gene region are marked with 

triangles.
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Figure 4. Regional association plots for the PCSK9 gene region
Genetic associations (negative log10 p values) plotted against chromosome position 

(megabases, Mb) for variants around the PCSK9 gene region with LDL cholesterol, 

coronary heart disease risk, and Alzheimer disease risk. Note the well-defined peak around 

the lead variant for both LDL cholesterol and coronary heart disease (marked in red), 

and the absence of a well-defined peak around any lead variant for Alzheimer disease. 

Colocalization suggests that LDL cholesterol and coronary heart disease have a shared 

causal variant, which is this lead variant, and no evidence that there is a causal variant 
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for Alzheimer disease at this locus. Figures were made using the karyoploteR package: 

http://bioconductor.org/packages/release/bioc/html/karyoploteR.html.
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Figure 5. Regional association plots for the APOE gene region
Genetic associations (negative log10 p values) plotted against chromosome position 

(megabases, Mb) for variants around the APOE gene region with LDL cholesterol and 

Alzheimer disease risk. Note the well-defined peak around the lead variant for both traits 

(marked in green for LDL cholesterol, and blue for Alzheimer disease). However, in this 

case, colocalization suggests the peaks have distinct causal variants.
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Table 1
Summary of differences between Mendelian randomization and colocalization

Mendelian randomization Colocalization

Motivation is to investigate evidence for the causal effect of an exposure on 
an outcome

Motivation is to understand the relationship between genetic 
signals at a locus

Asymmetric in the traits: one trait is the exposure, the other is the outcome Symmetric in the traits: the traits are treated equivalently in the 
analysis

Can focus on a single genetic region, but often polygenic Focuses on a single genetic region

Choice of genetic region is driven by association with the exposure Choice of genetic region is motivated by overlapping signals at 
a locus

Often one variant per genetic region (and rarely more than a few) Dense coverage of variants in the genetic region is required

Does not have to include causal variants Assumes causal variant is measured

Assumes that genetic variants used satisfy instrumental variable assumptions No assumption about the genetic variants

Output is an estimate that can be interpreted as a hypothesis test statistic Output is a set of posterior probabilities for different hypotheses 
(for enumeration colocalization)

Results are typically interpreted through the lens of causality Results are agnostic to the causal model between the traits

Generally more liberal (higher probability of false positive). Mendelian 
randomization methods assume that the genetic variant(s) can be interpreted 
as proxies for intervention on the exposure, and hence even a weak 
association between the variants and the outcome may be indicative of a 
causal effect.

Generally more conservative. Enumeration colocalization 
methods employ sceptical priors in accordance with genome-
wide testing practice; they generally require strong statistical 
evidence of associations with traits to conclude there is 
colocalization.
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