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Introduction

Breast cancer is the commonest malignancy among women 
worldwide, with over 1.3 million new cases diagnosed and 
over 450,000 deaths per annum.1 While the prognosis of breast 
cancer has improved significantly in recent years, its mortality 
remains significant. Despite much research into targeted treat-
ment modalities, treatment remains focused on surgical exci-
sion, chemotherapy, radiotherapy and hormone therapy, with the 
anti-HER2 monoclonal antibody trastuzumab currently the only 
targeted therapy in routine clinical use. As many of these treat-
ment modalities are associated with significant side effects, the 
quest continues to discover biomarkers identifying those likely 
to benefit most from adjuvant treatment, and novel targets for 
development of anti-breast cancer agents with minimal systemic 
side-effects.

Proteins located in tight and adherens junctions are obvious 
candidates for such biomarkers and/or therapeutic targets for a 
number of reasons: first, cellular junctions encourage physical 
cell-cell associations that must theoretically be overcome to allow 
tumor cell shedding and distal metastasis, and second, many of 
the proteins in tight and adherens junctions are also involved in 
pro-proliferative and pro-migratory signaling cascades relevant 
to cancer progression (for review see2). As the majority of breast 
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Tissue barriers play an integral role in the biology and 
pathobiology of mammary ductal epithelium. in normal 
breast physiology, tight and adherens junctions undergo 
dynamic changes in permeability in response to hormonal 
and other stimuli, while several of their proteins are directly 
involved in mammary tumorigenesis. This review describes 
first the structure of mammary ductal epithelial barriers and 
their role in normal mammary development, examining the 
cyclical changes in response to puberty, pregnancy, lactation 
and involution. it then examines the role of adherens and tight 
junctions and the participation of their constituent proteins in 
mammary tumorigenic functions such as migration, invasion 
and metastasis. Finally, it discusses the potential of these 
adhesion proteins as both prognostic biomarkers and potential 
therapeutic targets in breast cancer.
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cancer mortality is due to metastatic disease rather than the pri-
mary tumor, the development of strategies to prevent such distal 
spread is particularly crucial.

This review aims to examine the role of ductal adhesion com-
plexes and their constituent proteins in both the normal and 
diseased breast. We will first discuss their structure and physi-
ology under normal circumstances such as puberty, pregnancy 
and lactation. Next we will examine their role in abnormal 
breast conditions, both inflammatory and neoplastic, but will 
focus on breast cancer as the most significant and best studied 
pathological condition of the breast. We will discuss the role of 
cell junctions and their proteins in such neoplastic behaviors as 
dysregulated proliferation, migration, invasion and metastasis. 
Finally, we will examine the potential use of junctional proteins 
both as breast cancer prognostic biomarkers and as novel thera-
peutic targets.

Structure of Mammary Ductal Epithelium

The mammary gland (Fig. 1) is a modified apocrine sweat gland 
that consists of multiple pyramidal lobes each subdivided into 
several lobules, which in turn consist of multiple acini. These 
drain via a complex network of branching ducts, eventually con-
veying milk to the nipple. The basic functional unit is the ter-
minal duct-lobular unit (TDLU), consisting of a lobule and its 
draining duct, which is supported within a network of fat and 
connective tissue.3

Microscopically, mammary ducts are lined by a single lumi-
nal layer of columnar or cuboidal epithelial cells surrounded by 
a discontinuous layer of contractile myoepithelial cells, in turn 
surrounded by basement membrane.4 Like other epithelial layers, 
mammary ductal epithelial cells are joined at their cell-cell inter-
faces by junctional complexes; which include tight junctions, 
adherens junctions and desmosomes.

The tight junction forms a continuous band around the cell 
at the apical-most surface, effectively dividing it into apical and 
basolateral compartments and regulating the cellular barrier and 
paracellular transport.5 Tight junction proteins can be broadly 
divided into integral transmembrane proteins such as occludin, 
claudins and junctional adhesion molecules (JAMs); peripheral 
or plaque adaptor proteins such as the Zona Occludens (ZO) 
proteins; and regulatory/signaling proteins such as cingulin and 
the Rho-GTPases.2 Adherens junctions are located subjacent 
to tight junctions, forming a band around the cell and attach-
ing the actin cytoskeleton to the plasma membrane.6 Their 
proteins include the armadillo or armadillo-related proteins 
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that any loss of mechanical adhesion could facilitate local inva-
sion of single cells potentially facilitating metastasis. That said, 
mechanically-strong cell-cell attachments might also allow 
multi-cell clusters to move in so-called “Indian files,” a collec-
tive invasion phenomenon characteristic of some breast cancers. 
In support of the former speculation, loss of at least one des-
mosomal protein, desmoplakin, has been implicated in breast 
tumor progression.12 Accordingly, it has been noted that estro-
gen binding to ERα, a hallmark of well-differentiated / less-
invasive breast cancers, promotes adhesion via morphological 
enhancement of desmosome numbers and upregulation of the 
desmosomal proteins desmocollin, γ-catenin, plakophilin and 
desmoplakin.13 Since liganded ERα also promotes transcription 
of the retinoic acid receptor α gene,14 itself a positive regulator 
of cell-matrix adhesion in breast cancer cells,15 this supports a 
model whereby hormone receptor expression, in part by promot-
ing a pro-adhesion state, is associated with favorable differentia-
tion status in breast cancer.

As detailed below, several of the above adhesion structures are 
modulated dynamically in time with the normal reproductive 

(β-catenin, plakoglobin, p120); cytoskeletal adaptor proteins 
like α-catenin; and the cadherins (E-cadherin in normal epi-
thelial cells, N-cadherin in mesenchymal cells).6-8 Desmosomes 
appear as patches subjacent to adherens junctions. They anchor 
keratinous intermediate filaments to the plasma membrane, 
while their proteins include cadherins (desmogleins, desmocol-
lins), armadillo proteins (plakoglobin, plakophilins) and des-
moplakin.8 The majority of this review will concentrate on the 
contribution of tight and adherens junction proteins to breast 
physiology and pathophysiology, principally because compara-
tively little has been published about breast desmosomal com-
plexes. Nonetheless, desmosomal loss has recently been shown 
to be important for branching morphogenesis, the mammary 
remodeling process which ultimately permits lactation.9 In fact 
desmosomal cadherins participate in epithelial-myoepithelial 
interactions in the normal mouse mammary gland, and selec-
tive desmosomal loss during the secretory phase of mammary 
development10 likely underlies the development of myoepithelial 
discontinuities in lactating rat mammary glands.11 The contri-
bution of desmosomal alterations to pathologies such as can-
cer is also relatively understudied, though one might speculate 

Figure 1. Normal physiology of the human breast.
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of a rodent.21 The reverse approach has utilized injection of radio-
labeled sucrose or fluorescent albumin directly into mammary 
ducts followed by periodic blood sampling in order to determine 
apical-basal tight junction permeability during hormonal events 
such as the lactogenic switch.22 It is, however, unclear how spe-
cific permeability coefficients in such models might relate to 
those in the human setting, due to an absence of comprehensive 
studies on substance accumulation in the breastmilk of lactating 
human females.

Aside from macromolecular permeability measurements, bar-
rier function and ion transport characteristics of epithelial tis-
sues (particularly intestine, skin and lung) have been classically 
assessed via electrical measurements in Ussing chambers.23 Both 
semi-permeable filters (usually polycarbonate or polyester)24,25 
and collagen gels26 have been successfully demonstrated as appro-
priate physical matrices for subsequent electrical measurements 
in primary or immortalized mammary cells. However it is inter-
esting to note that mammary cells appear particularly sensitive 
to the culture microenvironment in terms of their ability to form 
tight, electrically-sealed barriers; as exemplified by a recent report 
that the non-transformed normal-like breast cell line MCF-10A 
can only develop measurable transepithelial electrical resistance 
in the absence of the adenylyl cyclase activator cholera toxin.27 
Our own unpublished observations have noted that these cells 
require a long period of “conditioning” to the cholera toxin-free 
environment (approximately one month) before a high resistance 
monolayer can be formed (Kieran Brennan, personal communi-
cation). These findings illustrate at least two essential points – 
first the complex crosstalk between electrical resistance and ion 
transport (via established chloride-secretory second messengers 
such as adenylyl cyclase), and second the importance of exercising 
caution in interpreting barrier function results from endocrine 
tissues such as the breast, whose very structure and function is 
heavily dependent on hormonal status and developmental stage.

Biology of Mammary Ductal Barriers

The physical structure of the mammary ductal epithelial barrier 
is almost identical to that of other epithelia, with the exception 
that intact epithelial monolayers lie on a bed of contractile myo-
epithelial cells (Fig. 2) instead of being in direct contact with the 
basal lamina. The myoepithelial monolayer predominantly func-
tions as a physiological tool to expel milk into the ducts during 
lactation, while in pathophysiological terms myoepithelial loss is 
an early hallmark of ductal carcinoma in situ. However it is in its 
biology, particularly the dynamic alteration of mammary barrier 
function in response to hormonal changes, that the mammary 
epithelium is unique. More than most organ systems, the breast 
undergoes frequent changes in response to puberty, the menstrual 
cycle, pregnancy, lactation and menopause; and many of these are 
modulated via alterations in ductal junctional complexes or junc-
tional proteins directly. Signaling via the canonical Wnt path-
way involving the adherens junction protein and transcription 
factor β-catenin has been implicated in virtually every stage of 
this cycle.28 Wnt/ β-catenin signaling is vital for the formation of 
the embryonic mammary placode in mice29 and β-catenin target 

and hormonal cycle, in addition to being altered in many patho-
logical processes.

Models for Mammary Epithelial Research

As in most cell biology, research on mammary epithelial biology 
relies largely on in vivo and in vitro models. In vitro cell culture 
models, predominantly using commercially available epithelial 
cell lines, are the most common vehicle for researching mammary 
epithelial barriers. These offer the advantages of cost effective, 
readily available, uniform cell populations that are genetically 
well-characterized and grow readily and predictably in vitro. 
However, there are a small number of cell lines available, with 
only three lines (MCF 7, MDA-MB 231, T-47D) accounting for 
over two thirds of all abstracts reporting work on breast cancer 
derived cell lines appearing on Medline.16 Given the reliance of 
a huge number of researchers on a small number of cell lines, 
cross-contamination between cell lines is an important problem, 
with one study suggesting 18% of cell lines may be affected.17 
Furthermore, an immortalized cell line selects only the clonal 
population that exhibits most proliferation under a given set of 
artificial conditions, most commonly derived from a metastatic 
cancer, and is thus inherently different from both the primary 
tumor and normal epithelium. Indeed, the in vitro environment, 
which usually consists of a clonal cell population adherent to a 
flat plastic surface, bathed in nutrient-rich, antibiotic-containing 
media; is quite different to the natural physiological milieu in 
which polyclonal cells proliferate in three dimensions, interacting 
both with other epithelial cells and with a complex supporting 
stroma.

In the in vivo setting, recent years have seen an explosion in 
the number and diversity of mouse mammary models of cancer, 
ranging from genetically-modified animals to mammary fat-
pad injectible tumor models to patient-derived xenograft stud-
ies in the emerging era of semi-personalized medicine (reviewed 
in18). Enhanced by the recent adoption of non-invasive fluores-
cent tumor imaging technologies, these have collectively proven 
invaluable for unraveling aspects of the complex biology of breast 
cancer. For example, the human HER2 gene, whose amplifica-
tion is linked with certain aggressive breast cancers, was originally 
identified as the pro-tumorigenic murine oncogene neu19; and in 
fact murine models still represent the gold standard pre-clinical 
approach for testing potential anti-cancer drugs. Interestingly 
however, there has been a relative scarcity of models for studying 
the fundamental physiology (rather than pathophysiology) of the 
mammary epithelial barrier. This may relate in part to techni-
cal difficulties in experimentally manipulating mammary tissue; 
although the economic importance of estimating (for example) 
drug accumulation in the colostrum of lactating animals has 
been an agricultural issue for decades. Nonetheless, important 
work in rodent mammary barriers has revealed several use-
ful model systems for physiological assessment of permeability. 
These include measuring the relative recovery of drugs in serum 
vs. breast milk following oral gavage of compounds of interest 
in lactating rats,20 or the assessment of basal-apical transport of 
radiolabeled albumin following its injection into the bloodstream 
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Mammary epithelial tight junctions are altered by several hor-
mones including glucocorticoids,43 prolactin,44 serotonin45 and 
progesterone, and it is the sharp fall in the latter at parturition 
that allows tight junction closure to provide a leak-proof duct and 
restore trans-epithelial resistance, thus facilitating lactation.22 
Glucocorticoids such as cortisol are raised throughout pregnancy, 
and decline during lactation.46,47 There is evidence that glucocor-
ticoid treatment reduces mammary tight junction permeability 
in both bovine43,44 and rat48,49 in vitro models, via downregula-
tion of the small GTPase RhoA50 and phosphorylation of GSK3 
by Akt.51 Glucocorticoid treatment has been shown to prevent 
rat mammary involution in vivo.52 An in vivo study on ovariecto-
mized mice showed that although progesterone withdrawal was 
the primary trigger for mammary epithelial tight junction clo-
sure in late pregnancy (as demonstrated by progesterone antago-
nism), low to moderate levels of both cortisol and either placental 
lactogen or prolactin were required for this to happen.22 Unlike 
progesterone and glucocorticoids, prolactin does not appear to 
prevent involution in mice,52 although several authors report that 
prolactin maintains mammary epithelial impermeability in late 
lactation in rabbits, largely indirectly by preventing apoptosis.53-55 
Interestingly, neutrophils are able to pass through these intercel-
lular junctions to reach the lumen if necessary, with complete 
reconstitution of tight junctions occurring afterwards.56

genes are upregulated in murine embryonic ductal morphogen-
esis.30 Murine in vivo studies have yielded indirect evidence of 
low level Wnt/ β-catenin signaling occurring during mammary 
development at puberty, with enrichment of Wnt5a and Wnt7b 
mRNAs in terminal end buds and that of Wnt2 in mammary 
stroma.28,31-33 During pregnancy, progesterone-induced changes 
such as increased ductal branching are modulated via β-catenin 
signaling in a mouse model.34

Most of our understanding of the effects of pregnancy and 
lactation on mammary junctions comes from the agricultural 
and dairy industry, with minimal research interest in human lac-
tation. Pregnancy is characterized by increased leakiness of the 
mammary ductal tight junctions in particular, with numerous 
studies on both dairy goats35,36 and mice37 showing extravasa-
tion of large molecules from the pregnant duct, although to a 
greater extent in alveolar than ductal epithelium. This is reflected 
in the loss of trans-epithelial electrical resistance in the mam-
mary epithelium of pregnant goats and mice37,38 and the altered 
composition of milk pre-partum in both humans and dairy ani-
mals, with higher concentrations of the interstitial ions sodium 
and chloride, as well as proteins.35,39,40 In addition, morphological 
alterations in tight junctions have been observed in mammary 
epithelium derived from pregnant sheep, with lower numbers of 
strands and less branching complexity exhibited.41,42

Figure 2. Cell-cell adhesion complexes in the breast epithelial barrier.
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as an important regulator of tight junction formation, its overex-
pression delaying tight junction formation in MDCK cells, the 
canine kidney cell line classically used as a highly-differentiated 
epithelium with well-developed junctional structures.67 Forced 
expression of CRB3 in MCF10A cells, a mammary epithelial cell 
line that expresses little CRB3 and does not form true tight junc-
tions in culture, has been shown to promote recruitment of ZO1, 
occludin and claudin-1 to sites of cell-cell contact and to induce 
the formation of true tight junctions.68 PATJ stabilizes the CRB 
complex, having been demonstrated as vital for the proper local-
ization of CRB3, as well as claudin-1, ZO-1, ZO-3, occludin and 
atypical PKC in mammalian epithelial tight junctions.69-71

The PAR complex consists of Par3, Par6, atypical PKC 
(aPKC) and Cdc42/Rac1. Par3 interacts with JAM-A72 and 
PTEN,73 which in turn allows it to interact with TIAM-1, sta-
bilizing the junction.74 Further binding of Cdc42/Rac1 recruits 
aPKC to the apical surface, maintaining the integrity of the api-
cal cellular region.75

The basolateral Scribble complex consists of the proteins 
Scribble, lethal giant larvae homolog (LGL) and discs large 
homolog (DLG).76,77 Scribble has been shown to co-localize with 
both the tight junction protein ZO-178 and with E-cadherin and 
DLG at adherens junctions,79 suggesting its importance in the 
formation of both these junctions. Loss of Scribble function in 
Drosophila disrupts the localization of adherens junctions and 
apical proteins80 while its knockdown in MDCK cells disrupts 
adhesion, delaying tight junction formation and allowing more 
rapid migration without impairing cell polarity.81

Loss of cell polarity is a crucial step in epithelial-mesenchymal 
transformation (EMT), the process whereby epithelial-derived 
cancers, including breast, progressively develop an invasive mes-
enchymal signature and phenotype.82 Many proteins involved in 
cell polarity are dysregulated in breast cancer. The transcription 
factor ZEB1, which is upregulated in some breast cancers and is 
implicated in EMT, inhibits the expression of CRB3 and PATJ.83 
Overexpression of Par6 in breast epithelial cells induces increased 
proliferation while maintaining cell polarity,84 and activation of 
ErbB2 (the gene encoding HER2, the oncogenic receptor tyro-
sine kinase overexpressed in a population of aggressive breast 
cancers) disrupts apical-basal polarity by associating with Par6 
and aPKC.85 Scribble expression in invasive lobular carcinoma 
specimens has been shown to be quantitatively reduced,79 while 
it is redistributed from the membrane to the cytoplasm in several 
invasive ductal carcinoma lines.86 In addition, its loss in mam-
mary epithelial cells results in abnormal morphogenesis both in 
vivo and in vitro and inhibits c-myc-induced apoptosis in vitro.86

It is tempting to speculate that alterations in the expression 
levels of tight junction proteins, or indeed their inappropriate 
localization, may also play a role in breast cellular dedifferentia-
tion. Histological observations of deficits in the strict polarization 
of the breast ducts are frequently one of the earliest indicators of 
malignancy. Occludin is downregulated in breast cancer, and its 
forced expression promotes senescence in murine mammary car-
cinoma cells,87 while expression of its interacting protein ZO-1 
is reduced in poorly differentiated breast cancer specimens.88 
JAM-A plays an important role in regulating cell morphology 

The neurotransmitter serotonin (5-HT) is an important regu-
lator of lactation. It is locally synthesized in mouse mammary 
glands.57 In vitro work on human mammary epithelial mono-
layers has demonstrated that serotonin influences transepithe-
lial resistance only when added at the basolateral membrane,58 
and directly decreases expression of ZO-1 and ZO-2.27 It exerts 
biphasic effects on the mammary tight junction, promoting tight 
junction integrity at low concentrations via protein kinase A; 
while sustained exposure to higher concentrations of serotonin 
disrupts tight junctions via p38 MAP kinase signaling, encour-
aging mammary involution.45,58 In addition, serotonin indirectly 
affects mammary tight junctions by stimulating prolactin secre-
tion,59 and is itself influenced by a prolactin-induced positive 
feedback mechanism.57

Pathobiology of Mammary Ductal Barriers – 
Inflammation

As in many other organ systems, inflammation affecting the 
breast (mastitis), which most commonly occurs in the lactating 
gland, causes increased permeability of the ductal epithelium. 
This is evidenced by increased sodium and chloride content in 
the milk, as well as loss of transepithelial electrical resistance.39,60 
While this may in part be due to direct epithelial injury, it has 
been shown in a variety of human and animal tissues that tight 
junction permeability is also increased as part of the inflam-
matory response, mediated by inflammatory cytokines such as 
tumor necrosis factor (TNF),61,62 histamine63,64 and interferon-γ 
in rat intestine.65,66 While these mechanisms have yet to be dem-
onstrated in mammary tissue, it is quite likely that they are also 
involved in this process and may represent an important adaptive 
response to allow access by immune cells.

Pathobiology of Mammary Ductal Barriers – Breast 
Cancer

While some of the roles of ductal barriers in normal breast physi-
ology and benign conditions have been described above, it is the 
role of mammary epithelial junctions and their proteins in the 
pathophysiology of breast cancer that has attracted by far the 
most attention. We will discuss below the role of ductal barriers 
and their constituent proteins in the pathophysiology of breast 
cancer, with particular focus on core markers of neoplastic behav-
ior such as dedifferentiation, proliferation, migration, invasion 
and metastasis; before discussing the potential roles of junctional 
proteins as tumor biomarkers and drug targets.

Cell Polarity and Dedifferentiation

Tight junctions are vital to maintaining polarity of epithe-
lial cells, delimiting their apical and basolateral aspects via the 
assembly of three complexes that maintain cell polarity: CRB, 
PAR and Scribble.

The CRB complex, the most apically-located, includes the 
proteins CRB3, PALS1 and PATJ and defines the apical region of 
polarized epithelial cells. CRB3 (Crumbs3) has been recognized 
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epidermal growth factor (EGF) receptor to modulate prolifera-
tion by suppressing pro-proliferative tyrosine kinase signaling.116 
E-cadherin also binds and sequesters β-catenin in adherens 
junctions, thus its downregulation frees β-catenin to enter the 
nucleus and participate in pro-proliferative canonical Wnt signal-
ing. Increased levels of cytosolic and nuclear β-catenin have been 
reported in up to 68% of breast cancer patient specimens (77% 
of invasive lobular carcinoma, 64% of invasive ductal carci-
noma), and implies a poor prognosis.117-120 In addition, upregula-
tion of other β-catenin signaling promoters such as Disheveled,121 
LRP 6122 and a mutant LRP5,123 as well as downregulation of 
the β-catenin inhibitor Wnt5a,124 are commonly seen in breast 
cancer specimens. Several alternative pathways known to increase 
β-catenin expression are activated in breast cancer, including the 
NF-κB pathway in ER-negative, HER2-positive tumors125; Pin1 
upregulation in breast cancer patient specimens is proportional to 
increasing tumor grade and associated with increased β-catenin 
expression126,127; while loss of PTEN activates Akt and β-catenin 
resulting in increased proliferation in breast cells.128,129

Placental (P-) cadherin, a junctional protein usually expressed 
by mammary myoepithelial cells, is expressed in approx 30% of 
breast cancer cell lines97 and up to 50% of invasive ductal carci-
noma specimens.130 It is strongly expressed in the basal (classically 
ER, PR and HER2 triple negative) and HER2-overexpressing 
subtypes of breast cancer on patient tissue microarrays,131 and has 
been suggested as a routine biomarker for basal-like cancers.132,133 
It is associated with increased proliferation, a reduction in ER-α 
signaling, increased p53 and HER2 expression; and a poorer 
prognosis.131 The cadherin switch from E- to P- expression is 
described in embryonic development,133 with little evidence of its 
occurrence in breast carcinoma, where P-cadherin is more com-
monly co-expressed with E-cadherin in both human and murine 
studies.134,135

Although the bulk of mechanistic work implicating dysregu-
lated adherens junction signaling in cancer has been performed 
in cell line models, concordance between cell line and animal 
data appears to be high and thus valuable insights from a wealth 
of genetic ablation studies in non-breast tissues must not be over-
looked. While conventional knockout animals featuring germline 
loss of specific adherens junction proteins are often embryonic-
lethal, recent advances in tissue-targeted loss of components 
such as p120-catenin136,137 have revealed interesting tendencies 
toward an increased risk of cancer. The precise contribution of 
altered adhesion vs. altered signaling to such tumorigenic events 
remains elusive, however contrived separation of these two func-
tions may be unphysiological and unrealistic. As a comprehensive 
discussion of genetic models of adherens junction perturbation is 
beyond the scope of this article, interested readers are directed to 
a recent review on the topic.138

Migration and Invasion

A further hallmark of malignancy that facilitates tumor spread 
and thus survival is dysregulated migration and invasion. Broadly 
speaking, cell migration consists of five cyclical steps, reviewed 
in ref. 139. It begins with the formation of protrusions known as 

by modulating activity of the integrin-activating small GTPase 
Rap1.89 Despite initial conflicts between reports of its expres-
sional correlation with the malignant breast phenotype,90,91 the 
balance of evidence from our laboratory and others now favors 
a model whereby JAM-A overexpression in breast cancer associ-
ates with poor prognosis.91-94 This will be further discussed in the 
Migration and Invasion section.

The cadherin switch is an important precursor of EMT in 
breast cancer. It involves a progressive dedifferentiation, switch-
ing from expression primarily of epithelial markers such as 
E-cadherin and cytokeratins to mesenchymal markers such as 
N-cadherin, vimentin and fibronectin.95 This may be a normal 
component of processes such as wound healing and development 
of structures such as tubules,96 however it occurs in a dysregulated 
fashion in cancer. E-cadherin is underexpressed in a number of 
breast cancer cell lines including the highly-invasive triple nega-
tive MDA-MB 231, although E- and N-cadherin status is not 
fully predictive of invasiveness.97 Immunohistochemical stain-
ing of breast cancer specimens suggests that E-cadherin is lost 
in the majority of lobular, but not ductal, breast carcinoma,98-100 
and occurs as early as the in situ stage in lobular carcinoma.101 
Numerous mechanisms can result in the loss or downregulation 
of E-cadherin, of which loss of heterozygosity and mutations in 
the CDH1 gene which encodes it are commonly seen in lobular 
carcinoma.102,103

A number of transcription factors can coordinate the shift 
from E- to N-cadherin expression, largely controlled by the 
transcription suppressor Snail. The latter protein activates Zeb1, 
which binds to the E-cadherin promoter and blocks transcription 
of E-cadherin.104,105 Further repressors that have been implicated 
include Slug, Twist, Zeb2, E12/47, SIP1 and δEF1, in addition to 
hypermethylation of E-cadherin promoters.106-109 Furthermore, 
E-cadherin can be targeted for endocytosis and degradation 
secondary to the actions of tyrosine kinases such as Src, EGFR, 
FGF receptor, c-Met and IGF-1R in epithelial cells110; and can be 
directly degraded by matrix metalloproteinases.95

The protein Twist, itself regulated by canonical Wnt1 sig-
naling,111 downregulates E-cadherin expression, concurrently 
upregulates N-cadherin expression and can induce EMT. Twist 
overexpression is associated with dysregulated cell growth in 
murine mammary tumors,111 and with multi drug resistance in 
human breast cancer cells.112,113 N-cadherin promotes fibroblast 
growth factor (FGF) signaling in breast cancer cells by binding to 
and preventing the internalization of its receptor, thus sustaining 
its pro-migratory and invasive effects via MAP kinase activation 
and matrix metalloproteinase 9 secretion.114

Dysregulation of Proliferation

Cancer can essentially be considered a disease of dysregulated cell 
growth and proliferation. A crucial point is the loss of regulation 
of the cell cycle, resulting in uncontrolled cell division and abnor-
mal growth.115 Loss of E-cadherin expression, in addition to facil-
itating cell detachment through its mechanical effect at adherens 
junctions, directly induces a number of pro-proliferative signal-
ing pathways in breast cancer. E-cadherin interacts with the 
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Another key family of tight junction molecules is the 
27-member claudin family of membrane tetra-spanning proteins 
(reviewed in147). Although originally best known for ultrastruc-
turally driving tight junction strand formation and consequently 
exerting differential control over charge selectivity through vari-
ous epithelia (reviewed in148), claudins have recently also been 
implicated in the control of cell migration and reported to be up- 
or downregulated in a variety of cancers. Claudin-4 appears to 
regulate migration in both normal and malignant breast cells,149 
and its expression correlates with higher grade and worse progno-
sis in breast cancer specimens.150 Similarly, claudin-5 expression 
in breast tumor specimens correlates with worse survival and its 
forced expression increases breast cancer cell motility in vitro.151 
In contrast, forced overexpression of claudins -6152 and -16153 have 
been shown to decrease breast cancer cell migration and invasion 
in vitro, and loss of claudin-6 conversely promotes anchorage-
independent survival of MCF 7 breast cancer cells.154 Claudin 1 
under-expression has been demonstrated in breast cancer speci-
mens,155 while conversely high levels in breast cancers have been 
shown to correlate with the aggressive basal-like phenotype.156 
Interestingly, a new molecular subtype of breast cancer, claudin 
low, has been recently described, in which tumors are character-
ized by low gene expression of claudins-3, -4 and -7 in conjunc-
tion with an aggressive, basal-like phenotype.157 However there 
is a paucity of information on potential cross-talk mechanisms 
between claudins and established drivers of tumorigenicity. 
Intriguing recent data have demonstrated a physical interaction 
between claudin-7 and the potential oncogene EpCAM in vari-
ous gastrointestinal cells, tissues and tumors,158,159 while emerging 
evidence suggests that EpCAM regulates the lysosomal degrada-
tion of claudin-7 in addition to its localization.160 It is likely that 
pursuit of knowledge regarding the mechanistic involvement of 
various claudins in cancer cell migration and tumor metastasis 
will be a lucrative area of research in coming years.

Adherens junctional proteins are also strongly implicated 
in breast cancer migration and invasion. The cadherin switch 
to expression of mesenchymal cadherins most likely facilitates 
migration and invasion both by increasing tumor cells’ ability 
to detach from their normal surrounding epithelial cells, and by 
inducing inappropriate pro-motility signaling.161 Transfection 
of N-cadherin into E-cadherin-expressing breast cancer cells 
induces invasion and motility,97 while transfection of E-cadherin 
into highly invasive mesenchymal-like MDA-MB 231 cells 
reduces invasion and migration.162

Metastasis

Migration and invasion are particularly important for the sys-
temic spread of tumors, acting as a key early step in the multi-
step cascade known as metastasis. Accordingly, cell junctions 
and their proteins have been reported to play an intrinsic role 
in preventing breast cancer metastasis. The primary event in 
metastasis involves detachment of cells from the primary tumor 
and invasion into the bloodstream, followed by extravasation at 
the site of metastasis. This is somewhat similar to extravasation 
of leukocytes in the immune response and consists primarily of 

pseudopodia at the leading edge, driven by actin polymerization 
controlled by the Rho GTPase Cdc42 and several downstream 
effectors. Small transient adhesions to extracellular matrix near 
the leading edge are formed by β1, β2 and α2β1 integrins and 
other adaptor and signaling proteins, interacting with actin; and 
these adhesions further develop in response to tension applied by 
stress fibers. Proteinases are recruited to these focal adhesions, 
which then cleave extracellular matrix barriers.140,141 The cell body 
translocates forward driven by myosin bundles sliding along actin 
filaments in an energy-dependent process.139 Release of adhesions 
at the rear of the cell and retraction of the rear complete the 
cycle.142 Normal epithelium and well-differentiated carcinomas 
tend to exhibit collective migration and invasion, whereby cell-
cell interactions are retained and migration occurs in single sheets 
or strands.143 In contrast, inflammatory cells, mesenchymally-
derived tumor cells and poorly-differentiated carcinomas with 
loss of strong cell-cell contacts tend to migrate individually.144

The tight junctional protein JAM-A, a Type I transmembrane 
protein belonging to the immunoglobulin superfamily and a 
known regulator of cell adhesion and cell migration (reviewed 
in145), has a somewhat controversial role in breast cancer. While 
early evidence suggested that low JAM-A expression correlated 
with a less migratory and invasive breast cancer phenotype,90 an 
increasing body of evidence from our group and others would sug-
gest otherwise. Specifically, JAM-A overexpression in breast can-
cer specimens correlates with poorer patient prognosis,91 and its 
expression has been shown to correlate with HER2 expression,92 
ER negativity, higher grade, and aggressive luminal B, HER2 
and basal subtypes of breast cancer. Knockdown or antagonism 
of JAM-A reduces migration and invasion in JAM-A-expressing 
breast cancer cells,146 and JAM-A has been shown to act as an 
upstream regulator of various signaling pathways relevant to the 
promotion of migratory behavior. One such pathway has revealed 
a direct relationship between JAM-A expression and that of the 
migratory protein β1-integrin in both colonic89 and breast91,146 
epithelial cells, and accordingly JAM-A dimerization signaling 
has been shown to regulate expression levels and activation status 
of the β1-integrin-activating small GTPase Rap1.89,91,146 A second 
emerging pathway implicates JAM-A as a novel regulator of the 
expression levels (and therefore signaling potential) of oncogenic 
HER2 in breast cancer cell lines, via a mechanism regulating 
the proteasomal stability of HER2.92 It is tempting to speculate 
that JAM-A might also regulate the signaling functions of other 
oncogenes or receptor tyrosine kinases by influencing their pro-
teasomal stability, but as yet this field of investigation is in its 
infancy. Regarding the initial controversy over whether or not 
JAM-A expression levels have a positive or a negative correlation 
with aggressive and migratory tumor behavior,90,91 the balance of 
studies supports the notion of JAM-A as a positive regulator of 
cancer progression at least in the breast.94 Nonetheless it is pos-
sible that seemingly contradictory effects could be explained by 
JAM-A under-expression impairing cell adhesion and polarity, 
favoring early malignant change; while its overexpression in later 
stages of cancer might favor tumor progression via (among oth-
ers) integrin-mediated pro-migratory signaling.2
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Lipid Rafts and Adhesion Proteins

While the classical model of the plasma membrane describes the 
membrane as a liquid-disordered phospholipid bilayer with mol-
ecules such as proteins and cholesterol randomly interspersed,185 
this model is now viewed as an oversimplification. Specifically 
it has been recognized that cholesterol and several proteins 
involved in dynamic cellular processes are non-randomly seg-
regated into liquid-ordered membrane microdomains known as 
lipid rafts, which form as a consequence of tight spatial packing 
of membrane domains predominantly composed of sphingolip-
ids, as opposed to phospholipids. This was initially postulated 
based on such observations as the ability of differing phases to 
co-exist in lipid bilayers186,187; differential distribution and clus-
tering of membrane lipids188-190; and the presence of sphingo-
lipid-enriched detergent-resistant regions of cell membranes.191 
Simons et al. were among the first to define the concept of lipid 
rafts,192 which have been defined as “small (10–200 nm), het-
erogeneous, highly dynamic, sterol- and sphingolipid-enriched 
domains that compartmentalize cellular processes”193.

Several adhesion proteins have been described to be associ-
ated with lipid raft domains, and it has even been suggested that 
tight junctions themselves constitute a subtype of raft domain.194 
Biochemical enrichment of occludin and ZO-1 have been dem-
onstrated in detergent-resistant domains in human194,195 intestinal 
cells, while claudins 1, 3, 4, 5, 7, 8195-197 and JAM-A197 have been 
retrieved from detergent-resistant domains in various epithelial 
cells. Cholesterol depletion with methyl β cyclodextrin has been 
shown to redistribute claudins 3, 4 and 7, JAM-A and occludin, 
but not claudin 1, out of these domains in intestinal epithelial 
cells.197 The tyrosine kinases Src and EGFR both localize in 
breast cancer cell lipid rafts198-200; both regulate cadherin/catenin 
interactions,201,202 and both have been strongly implicated in 
pro-malignant signaling in breast cancer.202,203 An inhibitor spe-
cifically targeting raft-associated Src has been shown to inhibit 
cell cycle progression and cell adhesion in breast cancer cells, 
while the absence of a raft-targeting sequence in the inhibitor 
eliminated these effects.200 Pharmacological disruption of lipid 
rafts using lovastatin to interfere with cholesterol biosynthesis 
increases the growth inhibitory effects of the EGFR inhibitor 
gefitinib in breast cancer cell lines that normally are resistant to 
this agent.199 In addition, components of the Wnt signaling path-
way may be lipid raft associated.204,205 It has been suggested that 
cholesterol in lipid rafts stabilizes the protein complexes in tight 
junction strands.197

While junctions play an important role in cell migration, it has 
also been shown via a pharmacological raft-disruption approach 
that lipid rafts modulate front-rear polarity in migrating MCF7 
breast cancer cells.206 Work from our group has revealed shut-
tling of the hyaluronan receptor CD44 in and out of intact lipid 
raft domains of breast epithelial cells according to migratory 
status,207 and recent site-directed mutagenesis work has revealed 
that genetic targeting of biochemical motifs which drive raft 
affiliation of CD44 is sufficient to force an EMT-like state in 
breast cancer cells (Babina, Donatello, Hill and Hopkins, manu-
script under review). Similarly, unpublished work from our group 

three steps; first loose attachment and rolling on the endothelial 
surface, second tighter attachment of the tumor cells to the endo-
thelium, and third transmigration through the endothelium. The 
latter can occur either by the transcellular or paracellular route. 
While the loose attachment, rolling and tighter attachment steps 
in tumor cells are similar to leukocytes, transmigration of tumor 
cells differs from that of leukocytes (termed diapedesis) in that it 
permanently alters endothelial morphology,163 resulting in retrac-
tion of endothelial cells and in some cases apoptosis, possibly due 
to loss of cell-cell contacts.164-166 N-cadherin interactions between 
tumor and vascular endothelial cells appear to partly mediate 
tumor cell-endothelial attachment and extravasation.167,168

Claudin-2 expression has been shown to be increased in breast 
cancers that metastasize to the liver. Its ability to mediate tumor 
cell- hepatocyte interaction is thought to facilitate arrest in this 
organ.169,170 A further study in mice has reported downregulation 
of claudin 4, claudin 7 and γ-catenin in liver metastases originat-
ing from breast cell lines, in conjunction with altered γ-catenin 
cellular localization. Interestingly, claudin 7 was also expressed 
by macrophage-like cells surrounding the liver metastases, and 
was re-expressed in large tumors, suggesting a possible interac-
tion of with the microenvironment to promote metastasis.171

Breast cancer commonly metastasizes to brain, with a preva-
lence of approximately 30% at autopsy.172,173 Risk factors include 
high grade and stage, young age, estrogen receptor negativity and 
HER2 overexpression.174,175 Brain metastasis requires breach of 
the blood brain barrier (BBB), a unique non-fenestrated endothe-
lial structure that prevents passage of large molecules and cells. 
Tight and adherens junctions are integral to the barrier function 
of brain microvascular endothelial cells (BMECs).176,177 BMECs 
display higher transepithelial electrical resistance and lower sol-
ute permeability than other endothelial cells, while their tight 
junctions are more complex and passage of polar solutes via the 
paracellular pathway is greatly reduced. The basement mem-
brane is relatively thicker, and the underlying astrocytes regulate 
flow across the barrier. Among the proteins implicated in sus-
ceptibility to brain metastasis, loss of claudins 3 and 5 is associ-
ated with increased leakiness of the BBB in vivo.178,179 Stromal 
cell derived factor-1α (SDF-1 α) is a chemokine expressed by 
several organs including the CNS, and expression of its recep-
tor CXCR4 in breast cancer cells may facilitate BBB penetration. 
SDF-1 α treatment increases permeability of BMEC monolayers 
to breast tumor cell invasion, activating the PI-3K/AKT signal-
ing pathway and causing endothelial cell retraction.180 HER2/
Neu has been shown to upregulate CXCR4 expression.181 Matrix 
metalloproteinases also play a role in breast to brain metastasis; 
with MMP-2 and -3 activity increased in vivo182,183; and that of 
MMP-1 and -9 increased in vitro.184

Having discussed many of the functional neoplastic processes 
relevant to breast cancer progression involving junctions, we will 
now examine some of the many proteins and membrane domains 
that have been implicated in junction-based signaling in breast 
cancer. As an exhaustive examination of all implicated proteins 
and domains would be beyond the scope of this short review, we 
will focus on a select few relevant to our own research.



www.landesbioscience.com Tissue Barriers e25933-9

Another exciting potential target is JAM-A, given the posi-
tive association between its overexpression and poor prognosis 
in breast cancer patients91,92,94 and following a recent publication 
demonstrating anti-proliferative efficacy of a function-blocking 
JAM-A antibody in xenograft murine models of breast cancer.221 
Unpublished work from our group has also shown promising in 
vitro and pre-clinical in vivo efficacy of a novel small molecule 
inhibitor of JAM-A, which we speculate could be particularly 
valuable in aggressive breast cancers concomitantly overexpress-
ing HER2 and JAM-A.

ADH-1, an anti-N cadherin protein, has shown efficacy 
against pancreatic and prostate cancer in preclinical studies,222,223 
in addition to promising effects on disease stabilization in early 
clinical trials.224 However, it has yet to be evaluated in breast 
cancer.

While the targeting of junctional proteins in breast cancer is 
still in its infancy, the expanding roles of these proteins in driving 
malignant signaling processes suggest many exciting targets for 
future research.

Conclusion

It is clear that breast ductal adhesion complexes and their 
constituent proteins play vital roles in breast physiology and 
pathology, not just by influencing mechanical adhesion and 
stability but also by influencing key cell signaling and gene 
transcription events. While modulation of the physical prop-
erties of breast ductal barriers is essential for cyclical changes 
in lactation and engorgement, we have also discussed the role 
of junctional proteins in changes such as ductal development 
in embryogenesis and puberty. We have further examined how 
alterations in junctional integrity could potentially contribute 
to pathologies including breast inflammation and breast can-
cer invasion/metastasis. We have particularly focused upon the 
role of junctional proteins in dysregulated signal transduction 
and gene transcription events that are associated with neoplas-
tic phenomena such as proliferation, dedifferentiation, invasion 
and metastasis. Finally, we have explored some of the many 
exciting prospects for junctional proteins as both prognostic 
biomarkers and as therapeutic targets. It is the latter function of 
junctional proteins that is currently the focus of much research, 
and that may yield meaningful contributions to patient care in 
the future.
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suggests shuttling of Na+ K+ ATPase in and out of raft domains in 
breast cancer cells lines, in a hormone receptor status-dependent 
manner, in response to treatment with anti-proliferative doses 
of the potential anti-cancer drugs cardiac glycosides (Owens 
and Hopkins, manuscript in preparation). It is intriguing to 
speculate that similar changes may occur in breast cancer with 
raft-associated junctional proteins in response to such junction-
dependent processes as cell migration. However it is advisable 
to interpret the collective literature on lipid rafts in physiologi-
cal/pathophysiological processes with caution due to a relative 
over-dependence on the pharmacological lipid raft disrupting 
tool, methyl-β-cyclodextrin, which has recognized limitations in 
terms of specificity.208

Clinical Application of Adhesion Molecules  
in Breast Cancer

A number of tight and adherens junction proteins have been sug-
gested or investigated as potential biomarkers in breast cancer. 
As discussed above, claudin expression in breast cancer has been 
closely examined, and the aggressive claudin-low subtype is now 
recognized, defined by low gene expression of claudins 3, 4 and 
7.157 Thus, claudin characterization will likely become a routine 
part of breast cancer diagnostic and prognostic workup.

P-cadherin has been identified as a cancer stem cell marker 
for basal-type breast cancer,133,209 and has been shown to be an 
independent marker for disease-free, but not overall, survival.210 
While the prominent role of E-cadherin downregulation in EMT 
would make it a tempting proposition as a prognostic indica-
tor (and in fact E-cadherin loss has diagnostic value in lobular 
carcinomas), used alone its correlation with prognosis has been 
variable.211-216 One study found a reduction in one of E-cadherin, 
β-catenin, α-catenin and plakoglobin in tumor specimens to cor-
relate significantly with breast cancer metastasis,217 and a recent 
paper has indicated a combination of E-cadherin and carcinoem-
bryonic antigen as a useful predictor of relapse.216 As E-cadherin 
sequestration of β-catenin in adherens junctions prevents the lat-
ter partaking in pro-neoplastic canonical Wnt signaling, it would 
be logical that a measure of β-catenin distribution might be of 
prognostic benefit. One study found that a novel scoring system 
of membrane minus cytoplasmic β-catenin correlated with worse 
outcome in breast cancer.218

Despite the obvious theoretical promise of cell junctions and 
their proteins as anti-metastatic therapeutic targets, junction-
directed therapies are still an exciting and under-explored area. 
Perhaps the greatest potential lies with targeting Claudins 3 and 
4, which have been recognized as the receptors for the permea-
bility-enhancing lytic toxin Clostridium perfringens enterotoxin 
(CPE).219 CPE may be a useful therapy in breast cancers over-
expressing these proteins, as it has been shown to induce lysis of 
claudin 3- and 4- overexpressing breast cancer cell lines.220
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