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Abstract 
Advances in genomic sequencing have recently offered vast 
opportunities for biological exploration, unraveling the evolution and 
improving our understanding of Earth biodiversity. Due to distinct 
plant species characteristics in terms of genome size, ploidy and 
heterozygosity, transposable elements (TEs) are common 
characteristics of many genomes. TEs are ubiquitous and dispersed 
repetitive DNA sequences that frequently impact the evolution and 
composition of the genome, mainly due to their redundancy and 
rearrangements. For this study, we provided an atlas of TE data by 
employing an easy-to-use portal (APTE website). To our knowledge, 
this is the most extensive and standardized analysis of TEs in plant 
genomes. We evaluated 67 plant genomes assembled at chromosome 
scale, recovering a total of 49,802,023 TE records, representing a total 
of 47,992,091,043 (~47,62%) base pairs (bp) of the total genomic 
space. We observed that new types of TEs were identified and 
annotated compared to other data repositories. By establishing a 
standardized catalog of TE annotation on 67 genomes, new 
hypotheses, exploration of TE data and their influences on the 
genomes may allow a better understanding of their function and 
processes. All original code and an example of how we developed the 
TE annotation strategy is available on GitHub (Extended data).
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Introduction
The growing number of sequenced plant genomes is providing unprecedented opportunities for biological studies,
evolution, and growing of many algal and Viridiplantae species. We estimate more than 13k plant genomes have been
released (NCBI), revealing that plant genomes are faintly explored. High diversity in terms of ploidy, heterozygosity, and
genome size, probably due to a dynamic set of old and recent bursts of transposable elements (TEs), are common
hallmarks of many plant genomes.1 TEs can comprise between 32% to 56% (Utricularia genomes),2,3 to up to 90% in
many plant genomes,4–6 e.g., maize7 and wheat.5,8,9

TEs can be organized into two main classes. Each class is hierarchically organized into orders, superfamilies, families,
and subfamilies. This terminology is primarily associated with the type of their transposition mechanisms.3,10 They are
classified into: (i) retrotransposons (Class I), which are propagated by a “copy-and-paste” mobility mechanism and are
the most redundant TE class in plant genomes; and (ii) DNA transposons (Class II), which are known for the “cut-and-
paste” mechanism that allows them to move to a completely different position. Moreover, both Classes may contain
autonomous members10,11 for which the transposition mechanism depends on an autonomous and cognate type of
TE.11,12

However, despite their significance, in-depth identification and analysis of TEs content in the sequenced plant genomes
remains barely explored.13,14 The lack of concise data available may prevent the enrichment of in silico, functional
genomics research and compromises the appearance of new strategies to investigate TEs. Recently, many computational
models and entire wet-lab efforts have increasingly been helping to understand these sequences.15–18 For example,
Ensembl Plants19 provides high-quality, primary genomic information for 67 plant (in the broad sense, including green
plants, green and red algae) genomes, assembled near or at chromosome scale; however, mobile sequences are poorly
systematized and have a humble coverage.

These observations prompted us to standardize tools and methods aiming to improve TE detection, annotation and
standardization. In this work, we developed a newmethod for systematic annotation of plant TEs, using the 67 genomes
available at Ensembl Plants assembled at chromosome scale as a starting point. Our identification was standardized,
applying the samemethodologies to all genomes and delivering a concise Atlas of TEs annotation in plant genomes.We
also provided an updated analysis of non-coding RNAs (ncRNAs) overlapping TEs. This annotation is accessible on the
Atlas website for exploration and download, which might be relevant to any type of research involving mobile
sequences.

Methods
Data source
All genomes (Supplementary Material 1, Extended data) were downloaded from the Ensembl Plants19 database,
version 41 (57 genomes) and 45 (plus 10 new genomes).

Annotation of transposable elements
We used similarity-based methods and de novo techniques to build a collection of putative transposable elements, based
on the SPTEdb pipeline.21 We refined, extended and increased steps in order to produce a novel annotation (Figure 1).
Our reformulated steps (details in SupplementaryMaterial 2, Extended data) guarantee a comprehensive knowledgebase
of these TEs.

RepeatScout was performed separately; the output was unified in a library to be labeled by PASTEClassifier32 and
later combined into a final annotation. To automate the pipeline, an in-house framework in Perl language was
developed for each software output to be uniformized, described in steps 1 to 4. A main script in Bash starts the process
of automatization using Perl scripts. All steps were supervised by researchers, carefully checked, and the output was
manually verified at each step for each genome. Records classified as low complexity, simple repeat and other
nomenclature not related to Class I or Class II TEs were discarded.

Due to the extensive genome sizes of Triticum aestivum (14,5 Gb), Triticum dicoccum (10,4 Gb) and Triticum turgidum
(10,4 Gb), we adapted our pipeline for their analysis, based on the approach of Jamilloux et al.24 For these species, we
applied our pipeline on chromosome 1 (which is the longest pseudomolecule), as the large genomes were eventually
duplicated into new copies, increasing the number of these same repeats in the genome, and did not significantly impact
discoveries related to new or different TEs families.24
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TE evidence score

To test the reliability of our TE annotation pipeline, we scored sequences that had duplicated annotation in the same loci
(Figure 2). We developed a statistical metric (labeled as TE-Score, shown in each record as the ninth column for each
genome annotation file) that identify and ponder sequences types that have been identified by the programs. The
TE-Score is a metric (0 to 1) that is given by

TE�Score¼QIP
QP

Figure 1. Steps in transposable elements identification. Dataset: Genome assemblies were downloaded from
Ensembl Plants. Identification: 1A) RepeatScout was used to search for putative repetitive sequences and further
classification by PASTEClassifier, resulting in a library. 1B) RepeatModeler was also used to find a consensus of
TEs sequences. 2) RepeatMasker was run with Repbase library and libraries from RepeatModeler and RepeatScout.
3) For Class II - Subclass 2 TEs, we also used HelitronScanner and MITE-Hunter. 4) In order to find LTR and Non-LTR
retrotransposons, we used LTR_retriever and MGEScan-non-LTR, respectively. Filter: A cut-off filter was applied to
remove low complexities, simple repeats and other nomenclatures that were not classified into TEs. Annotation: In
result of the pipeline, we have a Transposable Element annotation for each genome analyzed.

Figure 2. The TE Score: the average amount of sequence identification made by programs in all genomes.
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whereQIP =Quantity of identification by program andQP =Quantity of programs. To illustrate an average of the amount
sequences annotation by programs, see Figure 2.

Correlation analysis
To test for correlations between genome size and transposable elements percentage by genome in base pairs, we first
normalized using log10, and then we applied the Pearson Correlation Coefficient in SPSS version 25.

Web implementation
APTE is hosted at the Universidade Tecnológica Federal do Paraná (Cornélio Procópio, PR, Brazil). It uses Debian 11 as
operating system, Apache 2 as web server, PHP 5.6 as web programming language. We also used Zend Framework
2, which implements model, view, controller (MVC), a methodology for web development that can be expanded for any
future additional functionality. On the front-end, we used HyperText Markup Language 5 (HTML5), Cascading Style
Sheet 3 (CSS3) and JavaScript to perform dynamic functions that provide user-friendly navigation. A built-in genome
browser (JBrowse, version 1.14.1) is available to visualize and download the data as well.

Computational resources
To run the pipeline described in Figure 1, we used three platforms: (i) to runRepeatModeler,25,26 RepeatScout,26,27

RepeatMasker,27 LTR_retriever,28 MITE-Hunter29 and HelitronScanner30; (ii) to perform MGEScan-non-LTR31 and
PASTEClassifier32; and (iii) to unify and filter outputs to themain annotation. The hardware utilized were (i) Xeon E7540
2.00 GHz 256GB memory, Xeon E5-2620v3 2.40 GHz 64GB memory, 2x Intel i7-3820 3.60Ghz 32GB memory and
Intel i7-3820 3.60Ghz 64GBmemory, (ii) Intel i7-3820 3.60Ghz 64GBmemory, and (iii) Intel Core 2 Duo 2.4 GHz 8GB
memory, a total of 30 physical cores and 456 GB of memory. In order to present a scale of time elapsed to measure, filter
and standardize the results, we estimate that for the A. thaliana genome, the time needed to get the final annotation was
~18 hours, using all resources mentioned, including post-processing scripts (detailed on our website).

Results and discussion
Overview of TE portion
We retrieved a total of 49,802,023 TE records from 67 plant genomes, representing a total of 47,992,091,043 (~47,62%)
base pairs (bp) of the total genomic space. This information is distributed in ~57,36% (28,565,034) TEs organized into

Figure 3. Class, order and superfamilies identified among the 67 plant genomes used in this study.
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class, order and superfamily. In addition, ~42,64% (21,236,989) elements could not be assigned to any type of known
TE and they were labelled as unknown. They likely represent chimeric and/or partial elements for which we were not
able to perform the full classification. For known TEs, we identified that ~62,85% were retrotransposons, and ~37,15%
were DNA transposons. All assigned classifications of TEs identified along the 67 genomes are shown in Figure 3.
The distribution of TEs in the analyzed genomes are somewhat similar (Figure 4), especially in genomes that have a
shorter phylogenetic distance (e.g.,Oryza spp, Triticum spp). However, even close-related genomes exhibit uneven TEs
distribution (e.g., Arabidopsis spp). Two main hypotheses might explain the variation of TE content: (a) different
evolutionary stories, since the two major genome duplication events are shared by all seed plants (epsilon) and flowering
plants (gamma), followed by the lineage-specific duplication events,20 and (b) specific pressures to maintain, expand and
purge TEs in each lineage.

We have noted that our approach permitted better TE annotations in genomes assembled at chromosome scale, and we
also observed that the amount of TEs is generally related to the genome size, since larger genomes have higher
occurrences of TEs (Figure 5). However, for incompletely and draft-assembled genomes, it tends to decrease the number
of TEs, once the assembly into small parts (scaffolds or contigs) may impact the genome assembly quality, collapsing
repeated contigs (mostly TE- derived) and interfering with the proper identification of these TEs.

Figure 4. Overview of Class I and Class II composition of TEs in each genome organized in a phylogenetic tree.
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TE database comparison
To compare the results of the identification performed and to ensure the reliability (details in Supplementary Material 1,
Extended data) of our approach, we used SPTEdb21 annotation data of the genome Populus trichocarpa (black
cottonwood), which is explored in Table 1. The second comparison of TE annotations was performed for the Glycine
max (soybean) genome, in which we used SoyTEdb22 to compare the amount vs. type of TEs, shown in Table 1. A third
comparison used data from GrTEdb23 to explore the amount of TEs in Gossypium raimondii (cotton), available in
Table 1.

Figure 5. Correlation between genome size and TE content. On the left, the bar chart in blue, the genome size
(in Gb), and, in green, the transposable elements distribution in analyzed genomes (in percentage). On the right, we
normalized, in base pair, genome size and TE using log(10) and then we correlated (Pearson) the genome size by
transposable elements. r and p-value are shown in the top-left of each chart. A) Using all the 67 annotated genomes;
B) For all genomes with recent WGD (Whole Genome Duplication) events, blue circles; C) Excluding genomes that
experienced recent WGD, red circles.
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Table 1. Transposable elements amount annotated in Populus trichopoda, Glycine max and Gossypium
raimondii by class, order and superfamily compared to other databases which have their own annotation.

Populus
trichopoda

Glycine max Gossypium
raimondii

Our
work

SPTEdb Our
work

SoyTEdb Our
work

GrTEdb

Class Order Superfamily Quantity

Class I LTR Cassandra 17 - 1,126 - 157 -

Caulimovirus 469 6 574 - 1,479 -

Copia 28,259 1,557 60,399 13,318 50,543 2,929

Gypsy 57,505 5,587 92,396 19,052 161,281 10,368

LARD 142 - 6,804 - 2,832 -

TRIM 1,164 - 3,698 - 2,239 -

Pao - 140 - - - -

Unknown 38,146 - 22,978 - 42,814 -

LINE CR1 84 - - - - -

CRE - - 1 - - -

I 173 - 168 - - -

L1 3,472 87 11,897 - 13,018 299

L2 695 - 177 - 215 -

RTE 362 - 3,927 - 78 -

TEX 2 - 2 - 1 -

Unknown 4,484 - 6,119 182 3,572 -

rRNA 174 - 193 - 509 -

tRNA 18,775 - 2,784 850 -

snRNA - - 64 - - -

Unknown 12,922 - 4,152 - 4,485 -

NGARO - - 6 - - - -

PLE Penelope - - 14 - 4 -

DIRS - 3 5 2 - 1 -

Class II TIR CMC-EnSpm 7,031 3 26,395 - 1,547 -

Crypton - - 535 - - -

Dada - - - - 58 -

EnSpm-CACTA 3,590 - 4,596 65 1,419 275

Harbinger 584 - 1,182 - 1,036 -

hAT 3,383 17 3,348 65 4,837 -

hAT-Ac 3,301 - 9,676 - 22,333 -

hAT-Charlie - - 180 - 134 -

hAT-Tag1 11,022 - 4,612 - 4,650 -

hAT-Tip100 935 - 2,805 - 7,733 -

Maverick - - - - 115 -

MuDR 2,246 - 15,920 2,373 9,933 12

MuLE-MuDR 2,712 6 27,566 - 11,207 -

Novosib 74 - 577 - 55 -

PIF-Harbinger 6,430 3 8,157 90 4,342 435
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Conclusion
Our analysis brought an exhaustive, systematic and comprehensive genome identification in plant genomes, using seven
programs to annotate TEs in plant genomes. In both TE classes, several orders and superfamilies were found ubiquitously
in all genomes. Additionally, 21,236,989 out of 49,802,023 mapped TE sequences could not be classified into any of the
nomenclatures known for TEs, and were labeled as “Unknown” in GFF3, a standard file format for gene annotation.

For plant species whose TE complement may be quite well-annotated, i.e.,Arabidopsis thaliana, we yielded an increased
number of identified TEs. In species with less curated annotation in Ensembl, we were able to deliver a more detailed
identification of TEs. For example, in three particular genomes, i.e., Populus trichocarpa (black cottonwood), Glycine
max (soybean) and Gossypium raimondii (cotton), we increased the TE identification levels by 2,295%, 900% and
2,643%, respectively. We observe that for several other genomes, new types of TEs were identified and annotated; this
ensures that our pipeline delivers not only the same TE identification, but also new ones, making the annotation process
possible to use for any species.

In this study, we contributed to expand the knowledge on TEs, by providing a large-scale, organized and standardized TE
Atlas. We integrated all annotations to make it available to download in each genome separately from the Atlas of Plant
Transposable Elements (APTE) website. An example how our pipeline works using the A. thaliana genome, software
dependencies, and in-house scripts developed, which can be downloaded, used and changed freely, are available from
https://github.com/alerpaschoal/apte_pipeline/.

Data availability
Underlying data
All data underlying the Plant TE Atlas is available in the portal http://apte.cp.utfpr.edu.br/.

Extended data
Zenodo: Datasets from An Atlas of Plant Transposable Elements, https://doi.org/10.5281/zenodo.5672122.33

This project contains the following extended data:

- SuppMat_1.xlsx (the gen ome assembly reference access from Ensembl Plants species used)

- SuppMat_2.docx (a brief transposable elements annotation steps used in this work)

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public
domain dedication).

Table 1. Continued

Populus
trichopoda

Glycine max Gossypium
raimondii

Our
work

SPTEdb Our
work

SoyTEdb Our
work

GrTEdb

Class Order Superfamily Quantity

Pong - - - 12 - -

Sola1 5 - 128 - 61 -

Tc1-Mariner 623 - 472 9 868

TcMar-Pogo 333 - 78 - - -

TcMar-
Stowaway

- - 2,920 - - -

Unknown 5,379 2,770 5,664 - 7,451 -

MITE - 1,426 78 9,355 3,333 11,661 -

Helitron - 51,532 1,340 5,860 82 5,307 14

Unknown - - 232,104 - 619,524 - 618,413 -
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Analysis code available at: https://github.com/alerpaschoal/apte_pipeline/

Archived code at time of publication: https://doi.org/10.5281/zenodo.5672122

License: CC0
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Pedro et al., presented an atlas of transposable elements from 67 well-assembled plant genomes. 
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Page 6: “evolutionary stories”. I believe “evolutionary histories” would be more appropriate. 
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Concerning the TE classification. In Figure 3, I suggest some modifications to become more 
accurate regarding the TE classification (according to Wicker et al.;20071):
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1. 
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