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A wide range of segmentation approaches assumes that intensity histograms extracted

from magnetic resonance images (MRI) have a distribution for each brain tissue that can

be modeled by a Gaussian distribution or a mixture of them. Nevertheless, intensity

histograms of White Matter and Gray Matter are not symmetric and they exhibit heavy

tails. In this work, we present a hidden Markov random field model with expectation

maximization (EM-HMRF) modeling the components using the α-stable distribution. The

proposedmodel is a generalization of the widely used EM-HMRF algorithmwith Gaussian

distributions. We test the α-stable EM-HMRFmodel in synthetic data and brain MRI data.

The proposed methodology presents two main advantages: Firstly, it is more robust to

outliers. Secondly, we obtain similar results than using Gaussian when the Gaussian

assumption holds. This approach is able to model the spatial dependence between

neighboring voxels in tomographic brain MRI.

Keywords: magnetic resonance image, brain tissue segmentation, graymatter, white matter, α-stable distribution,

hidden Markov random fields

1. INTRODUCTION

The segmentation of brain MRI consist in the parcellation of the brain areas into their main tissue
components: white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). Segmentation
is an important preprocessing step in many brain image applications and it is currently an active
field of research (Ortiz et al., 2012, 2014; Beare et al., 2016; Mulder et al., 2017; Serag et al., 2017).

A wide range of segmentation approaches assumes that the distribution of the histogram of
intensity for each brain tissue can be modeled using a Gaussian distribution or a mixture of
Gaussians (Laidlaw et al., 1998; Ruan et al., 2000). In Leemput et al. (1999) and Zhang et al. (2001),
apart from the Gaussian assumption, spatial information is included in the mathematical model
considering a hidden Markov random field.

Additional works using a Gaussian mixture model for describing the brain tissue histograms
are Ashburner and Friston (2005), Greenspan et al. (2006), Ashburner and Friston (2007), and
Merisaari et al. (2009). da Silva (2009) presents a Markov chain sampling technique for exploring
normal mixture models when the numbers of components are unknown. In that work, a Gaussian
mixture model with more than three components is used to explain the three brain tissues: GM,
WM, and CSF.
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Gaussian assumption and the hidden Markov random field
model are currently being used as a segmentation procedure
for magnetic resonance images (Xia et al., 2016; Liang et al.,
2016; Nguyen et al., 2017; Wang et al., 2017). Nevertheless, this
assumption presents some drawbacks that were pointed out in
Salas-Gonzalez et al. (2013b). Assigning an unique Gaussian
distribution to each brain tissue histogram is not accurate, as
the histogram of white and gray matter exhibits heavy tails
and certain degree of asymmetry. This problem is usually
circumvented assigning more than one Gaussian distribution to
each histogram, but, even using this approach, this procedure has
also two additional drawbacks: Firstly, it is hard to identify the
the boundary between the GM and WM histograms, specially
when two small weighted Gaussian distributions are competing
to explain data in that area. Secondly, a mixture of Gaussians
does not exhibit heavy tails. In this work, we show that α-
stable distributions are suitable to model the brain tissues more
accurately.

A random variable with α-stable distribution fulfill the
following property: a linear combination of two independent
copies of the variable has the same distribution. Furthermore,
the stable distributions are completely described by only four
parameters [the characteristic exponent (α), degree of asymmetry
(β), dispersion (γ ) and location (δ)]. The Gaussian distribution
is a particular case of α-stable distribution and, along with
the Cauchy and Lévy distributions, they are the only α-stables
probability density functions which can be written in closed form
Samorodnitsky and Taqqu (1994). This is the reason why α-stable
probability density functions (pdf) are evaluated numerically.
These properties confer to the stable distribution the ability to
fit asymmetric and heavy tailed data better than the Normal
distribution (Salas-Gonzalez et al., 2009, 2010).

The α-stable distribution has been historically used in many
fields of research (Physics, Economics or Engineering among
others), but only recently it has been used for applications in
brain image processing (Salas-Gonzalez et al., 2013a, 2014, 2015).
In addition, the α-stable finite mixture model has been also used
in the parametrization of GM and WM in MRI (Salas-Gonzalez
et al., 2013b). In that work, it was stated that the α-stable
distribution is able to fit the brain image tissues more accurately
than the Gaussian distribution. Nevertheless, the finite mixture
model performs an analysis of the histogram of intensity values,
and it does not include spatial information in the model. Thus,
that approach can only be used as a thresholding segmentation
method.

In this article, we extend the work published in Salas-
Gonzalez et al. (2013b). Specifically, we present a hidden Markov
random field model with expectation maximization modeling
the components using the α-stable distribution. As the Gaussian
model is a particular limiting case of the α-stable distribution,
the proposed model is a generalization of the widely used EM-
HMRF assuming Gaussian distributions in the histogram of each
component. The proposed methodology is tested in two datasets:
synthetic data and a real problem of MRI segmentation of GM
andWM.

This work is organized as follows: section 2 presents the
hidden Markov random field algorithm proposed in this article

along with the T1-weighted MRI database. The results are given
and discussed in sections 3 and 4. Finally, the conclusions are
drawn in section 5.

2. MATERIALS AND METHODS

2.1. Hidden Markov Random Field with
α-Stable Distributions
The goal of the mathematical model is to assign each voxel in
the image to one of the 2 components of the α-stable mixture
model using a maximum a posteriori criterion. A similar model
was presented in Wang (2012) assuming Gaussian distributions:

x̂ = argmax{P(y|x)P(x)}. (1)

y is the 3D MRI image and x is a 3D matrix with same size as y
containing information about the voxel assignment or allocation
( xi = 1 for GM and xi = 2 for WM). In addition, P(y|x) is
the likelihood probability of the observation and P(x) is the prior
probability of the class (GM or WM).

P(y|x) is estimated assuming an α-stable distribution for the
histogram of intensity values. As instance, let consider that a
voxel xi is allocated to GM (assigning xi = 1) or WM (x2 =
2). Thus, the α-stable parameters of the GM histogram, can be
calculated by selecting all the voxels that fulfill the condition
xi = 1 and performing likelihood estimation of the α-stable
parameters (Nolan, 1997), obtaining θ1 = {α1,β1, γ1, δ1}. The
same procedure is used for the estimation of the α-stable
parameters of the WM histogram, which we denote as θ2 =
{α2,β2, γ2, δ2}. The likelihood probability of the observation
P(y|x) can be estimated straightforwardly. As instance, for a given
intensity value yi from the MRI brain image y, the likelihood
is P(yi|θ1) and P(yi|θ2). P(1|1) denotes the α-stable probability
density function which is estimated numerically.

Under a Markov random field framework, these two
probabilities are derived from:

P(x) = 1

Z
exp(−U(x)) (2)

and

P(y|x) = 1

Z
exp(−U(y|x)), (3)

where Z is a normalization constant (the partition function) and
U denotes the energy function.

In this framework, we introduce spatial information in the
model by means of the prior energy function U(X):

U(X) =
∑

c∈C
Vc(X); (4)

where Vc(X) is the clique potential and C is the set of all possible
cliques (the 6 nearest voxels in the 3D space). The clique potential
is defined on pairs of neighbors as:

Vc(xi, xj) = βC(1− Ixi ,xj ), (5)
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with

Ixi ,xj =
{

0 if xi 6= xj

1 if xi = xj
. (6)

βC is a coefficient which models the contribution of the prior
energyU(X) in the posterior energy term.We choose βC = 0.5 as
we obtain a good performance for the applications studied in this
work using this value. Increasing this βC parameter we increase
the contribution of the neighboring voxels in the estimation of
the class of a given voxel. In addition, the contribution of the pdf
used for modeling the histogram data decreases when we increase
the βC parameter. Therefore, we would obtain the same accuracy
values in the segmentation of images regardless of the chosen pdf,
as only U(X) would contribute in the calculation of the posterior
energy U(X|Y). On the other hand, in the limiting case when
βC = 0 the HMRF model transforms in the finite mixture model
studied in Salas-Gonzalez et al. (2013b). We set VC = 0 if a
neighbor voxel belongs to a different tissue type andVC = 1 if the
class type of the voxels xi and xj are the same. This summation is
taken over all 6 couples of voxels that are nearest neighbors in the
image grid.

The joint likelihood of the model is

P(y|x) =
N

∏

i= 1

fαi ,βi (yi|γi,µi) (7)

where fαi ,βi (yi|γi,µi) denotes an α-stable pdf which can be
evaluated numerically. Parameter values depend on the allocation
of variable xi. Therefore, we could also write: αi = αxi , βi = βxi ,
γi = αxi , δi = δxi . In addition, as Z is a constant normalization
term, the log-likelihood of the model is related to the likelihood
energy

log P(x|y) ∝ −U(x|y), (8)

and, therefore, the maximum a posteriori estimation of the
parameters is equivalent to the minimization of the posterior
energy function.

2.1.1. Expectation-Maximization Algorithm

The expectation-maximization approach is an iterative
procedure for obtaining the unknown parameters of the
model. This approach is performed in two differentiate steps.
Firstly, we initialize the parameters of the data θ (0), and then:

1) Expectation
Let θ(t) be the current parameter values. We calculate the
likelihood distribution for each of all possible labels (in this work
j = 1, 2).

N
∏

i= 1

wjfαj ,βj (yi|γj, δj) (9)

In addition, we estimate the weights of the model wj as the
proportion of the voxels allocated to component j.

FIGURE 1 | Montage showing the 20 slices with dimension 20 × 20 of the

synthetic 3D source image.

FIGURE 2 | Montage showing the 20 slices with dimension 20 × 20 of the

preliminar source image including the α-stable random noise.

2) Maximization
We maximize the conditional expectation in order to update the
parameter values:

θ (t+1) = argmax

[

N
∏

i= 1

wjfαj ,βj (yi|γj, δj)
]

(10)

Using the current values of the parameters, we calculate the
allocation of variables x̂ via a maximum a posteriori estimation.

x̂ = argmin{U(y|x)+ U(x)}. (11)

Then, we set θ (t+1) ← θ (t) and repeat steps 1 and 2 until
convergence.

2.2. MRI Database
The set of 18 images used in this article were obtained from
the Internet Brain Segmentation Repository1 (IBSR) which
providesmanually-guided expert segmentation results alongwith
magnetic resonance brain image data.

1http://www.cma.mgh.harvard.edu/ibsr
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The MRI image acquisition, according to the information
provided by the Internet Brain Segmentation Repository
documentation, follows this procedure: The coronal three-
dimensional T1-weighted spoiled gradient echo MRI scans were
performed on two different imaging systems. Ten FLASH scans

FIGURE 3 | Montage showing the 20 slices with dimension 20 × 20 with the

results of the segmentation.

on four males and six females were performed on a 1.5 tesla
Siemens Magnetom MR System (Iselin, NJ) with the following
parameters: TR = 40 ms, TE = 8 ms, flip angle = 50◦, field of
view= 30 cm, slice thickness= contiguous 3.1 mm,matrix= 256
× 256, and averages= 1. Ten 3D-CAPRY scans on six males and
four females were performed on a 1.5 tesla General Electric Signa
MR System (Milwaukee, WI), with the following parameters: TR
= 50 ms, TE = 9 ms, flip angle = 50◦, field of view = 24 cm,
slice thickness = contiguous 3.0 mm, matrix = 256 × 256, and
averages= 1.

Initially, we selected only the WM and GM voxels in the
images. We studied the improvement of the hidden Markov
random field model with α-stable distributions over the HMRF
assuming Gaussian which is usually considered in the literature.
Specifically, the goal of this study is to evaluate how this
distribution assumption affects the segmentation in the boundary
between GM andWM.

The HMRF model used for segmentation purposes requires
the existence of a segmented image for the initialization of the
algorithm. This initial segmented image is updated iteratively by
the EM and the maximum a posteriori estimation steps using
the hidden Markov random field algorithm presented in section
2.1. In this work, the initial segmented brain image x is built
from the dataset using a leave-one-out procedure. As instance,
for the image number i, we select the manually segmented

FIGURE 4 | Sum of Log-Likelihood U in each iteration.
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images available in the IBSR dataset for all the images but the
current image i. Then, we perform the affine registration of these
segmented images to the current source image i. Finally, using
the remaining 17 brain images, we build a tissue probability map
in the spatial space of the image i. It is considered that a voxel
initially belongs to a given tissue if allocation probability to this
tissue is the maximum.

3. RESULTS

3.1. Synthetic Data
We test the hidden Markov random field model to perform the
segmentation of a synthetic 3D image with impulsive α-stable
noise. This image is built as an empty sphere centered in a three-
dimensional box with dimension 20 × 20 × 20 = 8,000 voxels.
The background and inner sphere are built by a stable random
distribution with parameters θ1 = {α1,β1, γ1, δ1} = 1.41100.
The rest of the image is built using a random variable with θ2 =
{1.801020}. The transaxial slices showing the preliminar position
of the first and second component regions are plotted in Figure 1.
In addition, Figure 2 shows a montage with all the slices of the
source image, but, in that case the synthetic 3Dimage includes
α-stable random noise. This synthetic data is very impulsive, as
instance, their values range from −180 to 3,480. For the sake
of clarity, we choose a grayscale colormap with −50 and 50 for
white and black, respectively. Although there are 10 voxels with

intensity values lower than −50 and 269 with intensity values
greater than 50.

We have performed the segmentation of this synthetic
image in Figure 2 using the EM-HMRF model with α-stable
distributions. Figure 3 shows the segmentation results after 20
iterations. The sum of the Log-Likelihood in each iteration when
the α-stable model is used is depicted in Figure 4. As we can
notice, convergency is reached after 7 iterations. The histogram
of the voxel intensity values is also depicted in Figure 5 where
the predicted α-stable density is plotted. The components of the
mixture are very mixed and the overall histogram of intensity
values seems clearly unimodal. Despite of that fact, predicted
densities fit very accurately the truth distributions of the two
regions .

We have performed the same analysis and segmentation
procedure but considering a EM-HMRF with Gaussian
distributions. Figure 6 shows the results when the Gaussian
model is considered. In that case, Gaussian assumption does
not lead to satisfactory results due to the presence of outliers in
the model. Specifically, one component tries to fit the bulk of
the distribution modeling most of the voxels in the image, while
the second component, which has a very large variance, tries to
model the outliers in the image. In addition, we obtain 96% of
accuracy when the α-stable EM-HMRF is used and 85% with the
Gaussian. Mainly, the Gaussian model fails in the segmentation
of the inner part of region 1. This behavior is highlighted in

FIGURE 5 | Histogram of voxel intensity values. Black continuous lines: predicted α-stable densities. Red dashed line, distribution of the estimated first α-stable

component. Blue dotted line, distribution of the estimated second α-stable component.
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Figure 7, where the predicted 2-mixture Gaussians densities are
plotted.

One of the main advantages of the α-stable distribution
upon the Gaussian is that the later is a particular case of stable
distribution. Therefore, the approach presented in this paper can

FIGURE 6 | Montage showing the 20 slices with dimension 20 × 20 with the

results of the segmentation when the 2-component EM-HMRF with Gaussian

distributions is used.

be viewed as a generalization of the EM-HMRF with Gaussian
distributions. In order to test the flexibility of this proposed
model and its ability to work in Gaussian noise environments,
we have tested the performance of our method by segmenting
synthetic data with additive Gaussian noise. For that reason, we
repeat the previous analysis but using a synthetic 3D image with
Gaussian noise. Again, the image is an empty 3D sphere centered

FIGURE 8 | Montage showing the 20 slices with dimension 20 × 20 of the

synthetic source image including the Gaussian random noise.

FIGURE 7 | Histogram of voxel intensity values. Black continuous lines, predicted Gaussian densities. Red dashed line, distribution of the estimated first Gaussian

component. Blue dotted line, distribution of the estimated second Gaussian component.
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FIGURE 9 | Histogram of voxel intensity values. Black continuous lines, predicted α-stable densities. Red dashed line, distribution of the estimated first α-stable

component. Blue dotted line, distribution of the estimated second α-stable component.

in a box with dimension 203 = 8,000 voxels. The outer and inner
region is built by a Gaussian random variable with µ1 = 0 and
σ1 = 14.14 while the region number two is randomly sampled
from a Gaussian with values µ2 = 20 and σ2 = 14.14. Figure 8
shows a montage with all the slices of the source image. The
distribution of this synthetic image is formed by a mixture of
two Gaussian components and their values range from −49.4 to
67.1.

We obtained the same accuracy in the segmentation results
(95.4% of voxels correctly identified) using the α-stable or
Gaussian model. Specifically, we got the following parameter
values for the distribution of the first and second region: θ1 =
{2,−9.62,−0.15} and θ2 = {2,−9.60, 20.8}. As a result of this
experiment, we have proved that Gaussian parameter values
were estimated accurately, as the α-stable dispersion parameter
and the Gaussian standard deviation σ are related with the
formula σ =

√
2γ . The β parameter is undefined when

α = 2.
Histogram of voxel intensity values and the predicted

density are plotted in Figure 9. Again, as in the
first example, the two original components are quite
mixed.

3.2. MRI Data
Recently, we have published a study of the histogram of
GM and WM intensity values (Salas-Gonzalez et al., 2013b).

There, we restricted our study to the global analysis of
histograms and we did not include any spatial information
in the model. In this work, we show how the HMRF
can be used to enhance this previous work. Thus, the
proposed α-stable methodology is used to include spatial
information in the model by means of the neighboring relations
between voxels. This information can be used to perform
the segmentation of gray matter and white matter tissues in
brain magnetic resonance images. We test the EM-HMRF
α-stable algorithm in a dataset of 18 magnetic resonance
images from the Internet Brain Segmentation Repository and
compare the proposed methodology with respect to the Gaussian
assumption.

Table 1 shows the accuracy segmentation results obtained
using the EM-HMRF α-stable model. We compare these results
with the assumption of a Gaussian distribution for the GM and
WM histograms (Zhang et al., 2001).

Figure 10 shows a box plot with the accuracy results and

the Dice similarity coefficient in Table 1. As usual, the central

mark is the median, and the edges of the box are the 25th
and 75th percentiles. The bars extend to the most extreme
data points. This plot shows that the HMRF α-stable algorithm
performs better than Gaussian version of the algorithm.
Specifically, the following median accuracy values are obtained:
0.9141 (α-stable EM-HMRF) and 0.8936 (Gaussian EM-
HMRF).
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Figure 11 shows the manual segmentation (Manual)
considered the ground truth and the segmentation results
(Stable) in a transaxial slice for each of the 18 brain images from
the IBSR dataset. This figure allows us to visually inspect the
performance of the heavy tailed HMRF segmentation method.

TABLE 1 | MRI accuracy segmentation results and Dice similarity coefficient.

Accuracy

α-stable

Accuracy

Gaussian

GM Dice

α-stable

GM Dice

Gaussian

WM Dice

α-stable

WM Dice

Gaussian

0.9010 0.8926 0.8472 0.8287 0.9266 0.9263

0.9168 0.9195 0.8988 0.8931 0.9202 0.9281

0.8945 0.8936 0.8318 0.8299 0.9287 0.9287

0.9161 0.9125 0.8713 0.8613 0.9386 0.9396

0.9003 0.8901 0.8461 0.8217 0.9242 0.9266

0.9155 0.8658 0.8694 0.7812 0.9300 0.9261

0.9196 0.9140 0.8697 0.8543 0.9393 0.9430

0.9141 0.8809 0.8401 0.7886 0.9443 0.9342

0.8934 0.8905 0.8273 0.8216 0.9295 0.9297

0.9186 0.9004 0.8451 0.8125 0.9462 0.9441

0.9119 0.8993 0.8539 0.8332 0.9416 0.9386

0.9154 0.8932 0.8380 0.8014 0.9471 0.9408

0.8903 0.8899 0.8136 0.8120 0.9285 0.9291

0.9253 0.9260 0.9029 0.9019 0.9324 0.9339

0.9185 0.9233 0.9179 0.9133 0.9140 0.9243

0.8788 0.8811 0.8435 0.8525 0.8987 0.8960

0.9104 0.9085 0.8876 0.8975 0.9185 0.9096

0.8733 0.8728 0.8581 0.8586 0.8795 0.8777

Stable, proposed EM-HMRF α-stable mixture model. Gaussian, EM-HMRF model with

Gaussian distributions. Bold: Best accuracy results.

4. DISCUSSION

The method presented in this work, along with the previous
work in parameterization of the brain tissues can be used
to develop novel brain image processing methods under a
heavy-tailed assumption. Let note that, in this paper, we do
not focus on building a complete segmentation methods with
several different preprocessing steps or parameters to calibrate.
Instead of that, we study and isolate one common assumption
which is made by many segmentation approaches in the
literature, as instance: the Gaussian distribution can be used
to fit the histogram of intensity values of the GM and WM
tissue in MRI. We showed in this work that Some advantages
of the α-stable EM-HMRF method can be summarized as
follows:

• It allows us tomodel each histogram of brain tissues using only
one distribution.
• It allows us to deal with heavy-tailed data.
• It allows to fit asymmetric distribution in a parsimonious

way.
• As the Gaussian is a limiting case of the α-stable distribution,

we expect to obtain the same results when the Gaussian
assumption is correct. This was found to be the case
when we applied the α-stable EM-HMRF to synthetic
data.

4.1. Future Work
• The α-stable HMRF approach opens a potential direction to

develop novel applications in neuroimage in the future. As
instante, the applications of themathematical model presented
here is not limited to the segmentation of magnetic resonance

FIGURE 10 | Segmentation results: accuracy and Dice similarity coefficient.
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FIGURE 11 | A selected transaxial slice displaying the ground truth segmentation (Manual) and the Stable segmentation.

images. Other image modalities with heavy-tailed distribution
can also benefit from the algorithm presented here, as instance
FP-CIT SPECT images used for Parkinson’s disease diagnosis
were found to present also heavy tails (Salas-Gonzalez et al.,
2013a).
• An additional step will be to extend the algorithm in

order to include CSF in the model. Nevertheless, the
histogram of their intensity values are not heavy-tailed,
therefore, a different strategy should be envisaged for this
tissue.

5. CONCLUSION

In this work, we have presented an expectation maximization
hidden Markov random field algorithm for the segmentation of
white and gray matter in magnetic resonance images. In order to
achieve this goal, distributions of intensity values of GM andWM
have been modeled using α-stable distributions. This method
has been tested using synthetic and real brain MRI data. We
have compared the proposed methodology to the modelization
of these tissue distributions using Gaussians. We have obtained a
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better performance in terms of accuracy when the α-stable model
is used.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

This work was supported by MINECO/FEDER under the
TEC2015-64718-R project and Junta de Andalucía under
the P11-TIC-7103 Excellence Project. This work was partly
supported by the Salvador de Madariaga Mobility Grants
2017.

REFERENCES

Ashburner, J., and Friston, K. (2005). Unified segmentation. NeuroImage 26,

839–851. doi: 10.1016/j.neuroimage.2005.02.018

Ashburner, J., and Friston, K. (2007). “Segmentation,” in Statistical Parametric

Mapping, eds K. Friston, J. Ashburner, S. Kiebel, T. Nichols, and W. Penny

(London: Academic Press), 81–91. doi: 10.1016/B978-012372560-8/50006-1

Beare, R., Chen, J., Kelly, C., Alexopoulos, D., Smyser, C., Rogers, C., et al. (2016).

Neonatal brain tissue classification with morphological adaptation and unified

segmentation. Front. Neuroinformatics 10:12. doi: 10.3389/fninf.2016.00012

da Silva, A. R. F. (2009). Bayesian mixture models of variable dimension

for image segmentation. Comput. Methods Prog. Biomed. 94, 1–14.

doi: 10.1016/j.cmpb.2008.05.010

Greenspan, H., Ruf, A., and Goldberger, J. (2006). Constrained Gaussian mixture

model framework for automatic segmentation of mr brain images. IEEE Trans.

Med. Imaging 25, 1233–1245. doi: 10.1109/TMI.2006.880668

Laidlaw, D. H., Fleischer, K. W., and Barr, A. H. (1998). Partial-volume Bayesian

classification of material mixtures in MR volume data using voxel histograms.

IEEE Trans. Med. Imaging 17, 74–86. doi: 10.1109/42.668696

Leemput, K. V., Maes, F., Vandermeulen, D., and Suetens, P. (1999). Automated

model-based tissue classification of MR images of the brain. IEEE Trans. Med.

Imaging 18, 897–908. doi: 10.1109/42.811270

Liang, K. B., Guan, Y. H., and Luo, Y. T. (2016). “A brain MR image

segmentation method based on Gaussian model and Markov random

field,” in 2016 IEEE Advanced Information Management, Communicates,

Electronic and Automation Control Conference (IMCEC) (Xi’an), 2042–2048.

doi: 10.1109/IMCEC.2016.7867573

Merisaari, H., Parkkola, R., Alhoniemi, E., Teräs, M., Lehtonen, L., Haataja, L.,

et al. (2009). Gaussian mixture model-based segmentation of MR images

taken from premature infant brains. J. Neurosci. Methods 182, 110–122.

doi: 10.1016/j.jneumeth.2009.05.026

Mulder, I., Khmelinskii, A., Dzyubachyk, O., de Jong, S., Rieff, N., Wermer, M.,

et al. (2017). Automated ischemic lesion segmentation in MRI mouse brain

data after transient middle cerebral artery occlusion. Front. Neuroinformatics

11:3. doi: 10.3389/fninf.2017.00003

Nguyen, D. M. H., Vu, H. T., Ung, H. Q., and Nguyen, B. T. (2017). “3D-brain

segmentation using deep neural network and Gaussian mixture model,” in 2017

IEEE Winter Conference on Applications of Computer Vision (WACV) (Santa

Rosa, CA), 815–824. doi: 10.1109/WACV.2017.96

Nolan, J. P. (1997). Numerical calculation of stable densities and

distribution functions. Commun. Statist. Stochastic Models 13, 759–774.

doi: 10.1080/15326349708807450

Ortiz, A., Gorriz, J., Ramirez, J., and Salas-Gonzalez, D. (2012). Unsupervised

neural techniques applied to MR brain image segmentation. Adv. Artif. Neural

Syst. 2012:1. doi: 10.1155/2012/457590

Ortiz, A., Gorriz, J., Ramirez, J., and Salas-Gonzalez, D. (2014). Improving MR

brain image segmentation using self-organising maps and entropy-gradient

clustering. Inform. Sci. 262, 117–136. doi: 10.1016/j.ins.2013.10.002

Ruan, S., Jaggi, C., Xue, J., Fadili, J., and Bloyet, D. (2000). Brain tissue classification

ofmagnetic resonance images using partial volumemodeling. IEEE Trans.Med.

Imaging 19, 1179–1187. doi: 10.1109/42.897810

Salas-Gonzalez, D., Kuruoglu, E. E., and Ruiz, D. P. (2009). Finite mixture of stable

distributions.Digital Signal Process. 19, 250–264. doi: 10.1016/j.dsp.2007.11.004

Salas-Gonzalez, D., Kuruoglu, E. E., and Ruiz, D. P. (2010).Modelling withmixture

of symmetric stable distributions using gibbs sampling. Signal Process. 90,

774–783. doi: 10.1016/j.sigpro.2009.07.003

Salas-Gonzalez, D., Górriz, J., Ramírez, J., Illán, I., and Lang, E. (2013a). Linear

intensity normalization of FP-CIT SPECT brain images using the α-stable

distribution. NeuroImage 65, 449–455. doi: 10.1016/j.neuroimage.2012.10.005

Salas-Gonzalez, D., Górriz, J., Ramírez, J., Schloegl, M., Lang, E., and Ortiz,

A. (2013b). Parameterization of the distribution of white and grey matter

in MRI using the α-stable distribution. Comput. Biol. Med. 43, 559–567.

doi: 10.1016/j.compbiomed.2013.01.003

Salas-Gonzalez, D., Gorriz, J., Ramirez, J., and Lang, E. (2014). “Why using the α-

stable distribution in neuroimage?,” in SIGMAP 2014 - Proceedings of the 11th

International Conference on Signal Processing and Multimedia Applications,

Part of ICETE 2014 - 11th International Joint Conference on e-Business

and Telecommunications (Vienna), 297–301. doi: 10.5220/00050911029

70301

Salas-Gonzalez, D., Górriz, J., Ramírez, J., Illán, I., Padilla, P., Martínez-Murcia,

F., et al. (2015). Building a FP-CIT SPECT brain template using a posterization

approach. Neuroinformatics 13, 391–402. doi: 10.1007/s12021-015-9262-9

Samorodnitsky, G., and Taqqu, M. (1994). Stable Non-Gaussian Random Processes:

Stochastic Models with Infinite Variance. New York, NY: Chapman-Hall.

Serag, A., Wilkinson, A., Telford, E., Pataky, R., Sparrow, S., Anblagan, D.,

et al. (2017). Segma: an automatic segmentation approach for human brain

MRI using sliding window and random forests. Front. Neuroinformatics 11:2.

doi: 10.3389/fninf.2017.00002

Wang, X., He, S., and Tong, Z. (2017). Improved mixture model for Markov

random field and its application in magnetic resonance image segmentation.

J. Med. Imaging Health Inform. 7, 323–329. doi: 10.1166/jmihi.2017.2060

Wang, Q. (2012). GMM-based hidden Markov random field for color image and

3D volume segmentation. arXiv preprint arXiv:1212.4527.

Xia, Y., Ji, Z., and Zhang, Y. (2016). Brain MRI image segmentation based

on learning local variational gaussian mixture models. Neurocomputing 204,

189–197. doi: 10.1016/j.neucom.2015.08.125

Zhang, Y., Brady, M., and Smith, S. (2001). Segmentation of brain

MR images through a hidden Markov random field model and the

expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57.

doi: 10.1109/42.906424

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Castillo-Barnes, Peis, Martínez-Murcia, Segovia, Illán, Górriz,

Ramírez and Salas-Gonzalez. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) or licensor

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 10 November 2017 | Volume 11 | Article 66

https://doi.org/10.1016/j.neuroimage.2005.02.018
https://doi.org/10.1016/B978-012372560-8/50006-1
https://doi.org/10.3389/fninf.2016.00012
https://doi.org/10.1016/j.cmpb.2008.05.010
https://doi.org/10.1109/TMI.2006.880668
https://doi.org/10.1109/42.668696
https://doi.org/10.1109/42.811270
https://doi.org/10.1109/IMCEC.2016.7867573
https://doi.org/10.1016/j.jneumeth.2009.05.026
https://doi.org/10.3389/fninf.2017.00003
https://doi.org/10.1109/WACV.2017.96
https://doi.org/10.1080/15326349708807450
https://doi.org/10.1155/2012/457590
https://doi.org/10.1016/j.ins.2013.10.002
https://doi.org/10.1109/42.897810
https://doi.org/10.1016/j.dsp.2007.11.004
https://doi.org/10.1016/j.sigpro.2009.07.003
https://doi.org/10.1016/j.neuroimage.2012.10.005
https://doi.org/10.1016/j.compbiomed.2013.01.003
https://doi.org/10.5220/0005091102970301
https://doi.org/10.1007/s12021-015-9262-9
https://doi.org/10.3389/fninf.2017.00002
https://doi.org/10.1166/jmihi.2017.2060
https://doi.org/10.1016/j.neucom.2015.08.125
https://doi.org/10.1109/42.906424
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	A Heavy Tailed Expectation Maximization Hidden Markov Random Field Model with Applications to Segmentation of MRI
	1. Introduction
	2. Materials and Methods
	2.1. Hidden Markov Random Field with α-Stable Distributions
	2.1.1. Expectation-Maximization Algorithm
	1) Expectation
	2) Maximization


	2.2. MRI Database

	3. Results
	3.1. Synthetic Data
	3.2. MRI Data

	4. Discussion
	4.1. Future Work

	5. Conclusion
	Author Contributions
	Funding
	References


